Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/*
 *  Kernel Probes (KProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corp. 2002, 2006
 *
 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 */

#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/preempt.h>
#include <linux/stop_machine.h>
#include <linux/kdebug.h>
#include <linux/uaccess.h>
#include <linux/extable.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/hardirq.h>
#include <linux/ftrace.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <linux/uaccess.h>
#include <asm/dis.h>

DEFINE_PER_CPU(struct kprobe *, current_kprobe);
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

struct kretprobe_blackpoint kretprobe_blacklist[] = { };

DEFINE_INSN_CACHE_OPS(dmainsn);

static void *alloc_dmainsn_page(void)
{
	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
}

static void free_dmainsn_page(void *page)
{
	free_page((unsigned long)page);
}

struct kprobe_insn_cache kprobe_dmainsn_slots = {
	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
	.alloc = alloc_dmainsn_page,
	.free = free_dmainsn_page,
	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
	.insn_size = MAX_INSN_SIZE,
};

static void copy_instruction(struct kprobe *p)
{
	unsigned long ip = (unsigned long) p->addr;
	s64 disp, new_disp;
	u64 addr, new_addr;

	if (ftrace_location(ip) == ip) {
		/*
		 * If kprobes patches the instruction that is morphed by
		 * ftrace make sure that kprobes always sees the branch
		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
		 * in case of hotpatch.
		 */
		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
		p->ainsn.is_ftrace_insn = 1;
	} else
		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
	p->opcode = p->ainsn.insn[0];
	if (!probe_is_insn_relative_long(p->ainsn.insn))
		return;
	/*
	 * For pc-relative instructions in RIL-b or RIL-c format patch the
	 * RI2 displacement field. We have already made sure that the insn
	 * slot for the patched instruction is within the same 2GB area
	 * as the original instruction (either kernel image or module area).
	 * Therefore the new displacement will always fit.
	 */
	disp = *(s32 *)&p->ainsn.insn[1];
	addr = (u64)(unsigned long)p->addr;
	new_addr = (u64)(unsigned long)p->ainsn.insn;
	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
	*(s32 *)&p->ainsn.insn[1] = new_disp;
}
NOKPROBE_SYMBOL(copy_instruction);

static inline int is_kernel_addr(void *addr)
{
	return addr < (void *)_end;
}

static int s390_get_insn_slot(struct kprobe *p)
{
	/*
	 * Get an insn slot that is within the same 2GB area like the original
	 * instruction. That way instructions with a 32bit signed displacement
	 * field can be patched and executed within the insn slot.
	 */
	p->ainsn.insn = NULL;
	if (is_kernel_addr(p->addr))
		p->ainsn.insn = get_dmainsn_slot();
	else if (is_module_addr(p->addr))
		p->ainsn.insn = get_insn_slot();
	return p->ainsn.insn ? 0 : -ENOMEM;
}
NOKPROBE_SYMBOL(s390_get_insn_slot);

static void s390_free_insn_slot(struct kprobe *p)
{
	if (!p->ainsn.insn)
		return;
	if (is_kernel_addr(p->addr))
		free_dmainsn_slot(p->ainsn.insn, 0);
	else
		free_insn_slot(p->ainsn.insn, 0);
	p->ainsn.insn = NULL;
}
NOKPROBE_SYMBOL(s390_free_insn_slot);

int arch_prepare_kprobe(struct kprobe *p)
{
	if ((unsigned long) p->addr & 0x01)
		return -EINVAL;
	/* Make sure the probe isn't going on a difficult instruction */
	if (probe_is_prohibited_opcode(p->addr))
		return -EINVAL;
	if (s390_get_insn_slot(p))
		return -ENOMEM;
	copy_instruction(p);
	return 0;
}
NOKPROBE_SYMBOL(arch_prepare_kprobe);

int arch_check_ftrace_location(struct kprobe *p)
{
	return 0;
}

struct swap_insn_args {
	struct kprobe *p;
	unsigned int arm_kprobe : 1;
};

static int swap_instruction(void *data)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	unsigned long status = kcb->kprobe_status;
	struct swap_insn_args *args = data;
	struct ftrace_insn new_insn, *insn;
	struct kprobe *p = args->p;
	size_t len;

	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
	len = sizeof(new_insn.opc);
	if (!p->ainsn.is_ftrace_insn)
		goto skip_ftrace;
	len = sizeof(new_insn);
	insn = (struct ftrace_insn *) p->addr;
	if (args->arm_kprobe) {
		if (is_ftrace_nop(insn))
			new_insn.disp = KPROBE_ON_FTRACE_NOP;
		else
			new_insn.disp = KPROBE_ON_FTRACE_CALL;
	} else {
		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
		if (insn->disp == KPROBE_ON_FTRACE_NOP)
			ftrace_generate_nop_insn(&new_insn);
	}
skip_ftrace:
	kcb->kprobe_status = KPROBE_SWAP_INST;
	s390_kernel_write(p->addr, &new_insn, len);
	kcb->kprobe_status = status;
	return 0;
}
NOKPROBE_SYMBOL(swap_instruction);

void arch_arm_kprobe(struct kprobe *p)
{
	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};

	stop_machine(swap_instruction, &args, NULL);
}
NOKPROBE_SYMBOL(arch_arm_kprobe);

void arch_disarm_kprobe(struct kprobe *p)
{
	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};

	stop_machine(swap_instruction, &args, NULL);
}
NOKPROBE_SYMBOL(arch_disarm_kprobe);

void arch_remove_kprobe(struct kprobe *p)
{
	s390_free_insn_slot(p);
}
NOKPROBE_SYMBOL(arch_remove_kprobe);

static void enable_singlestep(struct kprobe_ctlblk *kcb,
			      struct pt_regs *regs,
			      unsigned long ip)
{
	struct per_regs per_kprobe;

	/* Set up the PER control registers %cr9-%cr11 */
	per_kprobe.control = PER_EVENT_IFETCH;
	per_kprobe.start = ip;
	per_kprobe.end = ip;

	/* Save control regs and psw mask */
	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
	kcb->kprobe_saved_imask = regs->psw.mask &
		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);

	/* Set PER control regs, turns on single step for the given address */
	__ctl_load(per_kprobe, 9, 11);
	regs->psw.mask |= PSW_MASK_PER;
	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
	regs->psw.addr = ip;
}
NOKPROBE_SYMBOL(enable_singlestep);

static void disable_singlestep(struct kprobe_ctlblk *kcb,
			       struct pt_regs *regs,
			       unsigned long ip)
{
	/* Restore control regs and psw mask, set new psw address */
	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
	regs->psw.mask &= ~PSW_MASK_PER;
	regs->psw.mask |= kcb->kprobe_saved_imask;
	regs->psw.addr = ip;
}
NOKPROBE_SYMBOL(disable_singlestep);

/*
 * Activate a kprobe by storing its pointer to current_kprobe. The
 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 * two kprobes can be active, see KPROBE_REENTER.
 */
static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
{
	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
	kcb->prev_kprobe.status = kcb->kprobe_status;
	__this_cpu_write(current_kprobe, p);
}
NOKPROBE_SYMBOL(push_kprobe);

/*
 * Deactivate a kprobe by backing up to the previous state. If the
 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 * for any other state prev_kprobe.kp will be NULL.
 */
static void pop_kprobe(struct kprobe_ctlblk *kcb)
{
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
	kcb->kprobe_status = kcb->prev_kprobe.status;
}
NOKPROBE_SYMBOL(pop_kprobe);

void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
{
	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];

	/* Replace the return addr with trampoline addr */
	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
}
NOKPROBE_SYMBOL(arch_prepare_kretprobe);

static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
{
	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SSDONE:
	case KPROBE_HIT_ACTIVE:
		kprobes_inc_nmissed_count(p);
		break;
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
	default:
		/*
		 * A kprobe on the code path to single step an instruction
		 * is a BUG. The code path resides in the .kprobes.text
		 * section and is executed with interrupts disabled.
		 */
		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
		dump_kprobe(p);
		BUG();
	}
}
NOKPROBE_SYMBOL(kprobe_reenter_check);

static int kprobe_handler(struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb;
	struct kprobe *p;

	/*
	 * We want to disable preemption for the entire duration of kprobe
	 * processing. That includes the calls to the pre/post handlers
	 * and single stepping the kprobe instruction.
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();
	p = get_kprobe((void *)(regs->psw.addr - 2));

	if (p) {
		if (kprobe_running()) {
			/*
			 * We have hit a kprobe while another is still
			 * active. This can happen in the pre and post
			 * handler. Single step the instruction of the
			 * new probe but do not call any handler function
			 * of this secondary kprobe.
			 * push_kprobe and pop_kprobe saves and restores
			 * the currently active kprobe.
			 */
			kprobe_reenter_check(kcb, p);
			push_kprobe(kcb, p);
			kcb->kprobe_status = KPROBE_REENTER;
		} else {
			/*
			 * If we have no pre-handler or it returned 0, we
			 * continue with single stepping. If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry
			 * for jprobe processing, so get out doing nothing
			 * more here.
			 */
			push_kprobe(kcb, p);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
			if (p->pre_handler && p->pre_handler(p, regs))
				return 1;
			kcb->kprobe_status = KPROBE_HIT_SS;
		}
		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
		return 1;
	} else if (kprobe_running()) {
		p = __this_cpu_read(current_kprobe);
		if (p->break_handler && p->break_handler(p, regs)) {
			/*
			 * Continuation after the jprobe completed and
			 * caused the jprobe_return trap. The jprobe
			 * break_handler "returns" to the original
			 * function that still has the kprobe breakpoint
			 * installed. We continue with single stepping.
			 */
			kcb->kprobe_status = KPROBE_HIT_SS;
			enable_singlestep(kcb, regs,
					  (unsigned long) p->ainsn.insn);
			return 1;
		} /* else:
		   * No kprobe at this address and the current kprobe
		   * has no break handler (no jprobe!). The kernel just
		   * exploded, let the standard trap handler pick up the
		   * pieces.
		   */
	} /* else:
	   * No kprobe at this address and no active kprobe. The trap has
	   * not been caused by a kprobe breakpoint. The race of breakpoint
	   * vs. kprobe remove does not exist because on s390 as we use
	   * stop_machine to arm/disarm the breakpoints.
	   */
	preempt_enable_no_resched();
	return 0;
}
NOKPROBE_SYMBOL(kprobe_handler);

/*
 * Function return probe trampoline:
 *	- init_kprobes() establishes a probepoint here
 *	- When the probed function returns, this probe
 *		causes the handlers to fire
 */
static void __used kretprobe_trampoline_holder(void)
{
	asm volatile(".global kretprobe_trampoline\n"
		     "kretprobe_trampoline: bcr 0,0\n");
}

/*
 * Called when the probe at kretprobe trampoline is hit
 */
static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kretprobe_instance *ri;
	struct hlist_head *head, empty_rp;
	struct hlist_node *tmp;
	unsigned long flags, orig_ret_address;
	unsigned long trampoline_address;
	kprobe_opcode_t *correct_ret_addr;

	INIT_HLIST_HEAD(&empty_rp);
	kretprobe_hash_lock(current, &head, &flags);

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more than one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *	 function, the first instance's ret_addr will point to the
	 *	 real return address, and all the rest will point to
	 *	 kretprobe_trampoline
	 */
	ri = NULL;
	orig_ret_address = 0;
	correct_ret_addr = NULL;
	trampoline_address = (unsigned long) &kretprobe_trampoline;
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		orig_ret_address = (unsigned long) ri->ret_addr;

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);

	correct_ret_addr = ri->ret_addr;
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		orig_ret_address = (unsigned long) ri->ret_addr;

		if (ri->rp && ri->rp->handler) {
			ri->ret_addr = correct_ret_addr;
			ri->rp->handler(ri, regs);
		}

		recycle_rp_inst(ri, &empty_rp);

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	regs->psw.addr = orig_ret_address;

	pop_kprobe(get_kprobe_ctlblk());
	kretprobe_hash_unlock(current, &flags);
	preempt_enable_no_resched();

	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
	return 1;
}
NOKPROBE_SYMBOL(trampoline_probe_handler);

/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "breakpoint"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 */
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	unsigned long ip = regs->psw.addr;
	int fixup = probe_get_fixup_type(p->ainsn.insn);

	/* Check if the kprobes location is an enabled ftrace caller */
	if (p->ainsn.is_ftrace_insn) {
		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
		struct ftrace_insn call_insn;

		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
		/*
		 * A kprobe on an enabled ftrace call site actually single
		 * stepped an unconditional branch (ftrace nop equivalent).
		 * Now we need to fixup things and pretend that a brasl r0,...
		 * was executed instead.
		 */
		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
		}
	}

	if (fixup & FIXUP_PSW_NORMAL)
		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;

	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
		int ilen = insn_length(p->ainsn.insn[0] >> 8);
		if (ip - (unsigned long) p->ainsn.insn == ilen)
			ip = (unsigned long) p->addr + ilen;
	}

	if (fixup & FIXUP_RETURN_REGISTER) {
		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
		regs->gprs[reg] += (unsigned long) p->addr -
				   (unsigned long) p->ainsn.insn;
	}

	disable_singlestep(kcb, regs, ip);
}
NOKPROBE_SYMBOL(resume_execution);

static int post_kprobe_handler(struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	struct kprobe *p = kprobe_running();

	if (!p)
		return 0;

	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		p->post_handler(p, regs, 0);
	}

	resume_execution(p, regs);
	pop_kprobe(kcb);
	preempt_enable_no_resched();

	/*
	 * if somebody else is singlestepping across a probe point, psw mask
	 * will have PER set, in which case, continue the remaining processing
	 * of do_single_step, as if this is not a probe hit.
	 */
	if (regs->psw.mask & PSW_MASK_PER)
		return 0;

	return 1;
}
NOKPROBE_SYMBOL(post_kprobe_handler);

static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	struct kprobe *p = kprobe_running();
	const struct exception_table_entry *entry;

	switch(kcb->kprobe_status) {
	case KPROBE_SWAP_INST:
		/* We are here because the instruction replacement failed */
		return 0;
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the nip points back to the probe address
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
		disable_singlestep(kcb, regs, (unsigned long) p->addr);
		pop_kprobe(kcb);
		preempt_enable_no_resched();
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accounting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(p);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
		entry = search_exception_tables(regs->psw.addr);
		if (entry) {
			regs->psw.addr = extable_fixup(entry);
			return 1;
		}

		/*
		 * fixup_exception() could not handle it,
		 * Let do_page_fault() fix it.
		 */
		break;
	default:
		break;
	}
	return 0;
}
NOKPROBE_SYMBOL(kprobe_trap_handler);

int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
	int ret;

	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
		local_irq_disable();
	ret = kprobe_trap_handler(regs, trapnr);
	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
	return ret;
}
NOKPROBE_SYMBOL(kprobe_fault_handler);

/*
 * Wrapper routine to for handling exceptions.
 */
int kprobe_exceptions_notify(struct notifier_block *self,
			     unsigned long val, void *data)
{
	struct die_args *args = (struct die_args *) data;
	struct pt_regs *regs = args->regs;
	int ret = NOTIFY_DONE;

	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
		local_irq_disable();

	switch (val) {
	case DIE_BPT:
		if (kprobe_handler(regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_SSTEP:
		if (post_kprobe_handler(regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_TRAP:
		if (!preemptible() && kprobe_running() &&
		    kprobe_trap_handler(regs, args->trapnr))
			ret = NOTIFY_STOP;
		break;
	default:
		break;
	}

	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);

	return ret;
}
NOKPROBE_SYMBOL(kprobe_exceptions_notify);

int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	unsigned long stack;

	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));

	/* setup return addr to the jprobe handler routine */
	regs->psw.addr = (unsigned long) jp->entry;
	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);

	/* r15 is the stack pointer */
	stack = (unsigned long) regs->gprs[15];

	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));

	/*
	 * jprobes use jprobe_return() which skips the normal return
	 * path of the function, and this messes up the accounting of the
	 * function graph tracer to get messed up.
	 *
	 * Pause function graph tracing while performing the jprobe function.
	 */
	pause_graph_tracing();
	return 1;
}
NOKPROBE_SYMBOL(setjmp_pre_handler);

void jprobe_return(void)
{
	asm volatile(".word 0x0002");
}
NOKPROBE_SYMBOL(jprobe_return);

int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
	unsigned long stack;

	/* It's OK to start function graph tracing again */
	unpause_graph_tracing();

	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];

	/* Put the regs back */
	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
	/* put the stack back */
	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
	preempt_enable_no_resched();
	return 1;
}
NOKPROBE_SYMBOL(longjmp_break_handler);

static struct kprobe trampoline = {
	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
	.pre_handler = trampoline_probe_handler
};

int __init arch_init_kprobes(void)
{
	return register_kprobe(&trampoline);
}

int arch_trampoline_kprobe(struct kprobe *p)
{
	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
}
NOKPROBE_SYMBOL(arch_trampoline_kprobe);