Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
/*
 * AD7280A Lithium Ion Battery Monitoring System
 *
 * Copyright 2011 Analog Devices Inc.
 *
 * Licensed under the GPL-2.
 */

#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>

#include "ad7280a.h"

/* Registers */
#define AD7280A_CELL_VOLTAGE_1		0x0  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_2		0x1  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_3		0x2  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_4		0x3  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_5		0x4  /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_6		0x5  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_1		0x6  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_2		0x7  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_3		0x8  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_4		0x9  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_5		0xA  /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_6		0xB  /* D11 to D0, Read only */
#define AD7280A_SELF_TEST		0xC  /* D11 to D0, Read only */
#define AD7280A_CONTROL_HB		0xD  /* D15 to D8, Read/write */
#define AD7280A_CONTROL_LB		0xE  /* D7 to D0, Read/write */
#define AD7280A_CELL_OVERVOLTAGE	0xF  /* D7 to D0, Read/write */
#define AD7280A_CELL_UNDERVOLTAGE	0x10 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_OVERVOLTAGE	0x11 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_UNDERVOLTAGE	0x12 /* D7 to D0, Read/write */
#define AD7280A_ALERT			0x13 /* D7 to D0, Read/write */
#define AD7280A_CELL_BALANCE		0x14 /* D7 to D0, Read/write */
#define AD7280A_CB1_TIMER		0x15 /* D7 to D0, Read/write */
#define AD7280A_CB2_TIMER		0x16 /* D7 to D0, Read/write */
#define AD7280A_CB3_TIMER		0x17 /* D7 to D0, Read/write */
#define AD7280A_CB4_TIMER		0x18 /* D7 to D0, Read/write */
#define AD7280A_CB5_TIMER		0x19 /* D7 to D0, Read/write */
#define AD7280A_CB6_TIMER		0x1A /* D7 to D0, Read/write */
#define AD7280A_PD_TIMER		0x1B /* D7 to D0, Read/write */
#define AD7280A_READ			0x1C /* D7 to D0, Read/write */
#define AD7280A_CNVST_CONTROL		0x1D /* D7 to D0, Read/write */

/* Bits and Masks */
#define AD7280A_CTRL_HB_CONV_INPUT_ALL			0
#define AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_4	BIT(6)
#define AD7280A_CTRL_HB_CONV_INPUT_6CELL		BIT(7)
#define AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST		(BIT(7) | BIT(6))
#define AD7280A_CTRL_HB_CONV_RES_READ_ALL		0
#define AD7280A_CTRL_HB_CONV_RES_READ_6CELL_AUX1_3_4	BIT(4)
#define AD7280A_CTRL_HB_CONV_RES_READ_6CELL		BIT(5)
#define AD7280A_CTRL_HB_CONV_RES_READ_NO		(BIT(5) | BIT(4))
#define AD7280A_CTRL_HB_CONV_START_CNVST		0
#define AD7280A_CTRL_HB_CONV_START_CS			BIT(3)
#define AD7280A_CTRL_HB_CONV_AVG_DIS			0
#define AD7280A_CTRL_HB_CONV_AVG_2			BIT(1)
#define AD7280A_CTRL_HB_CONV_AVG_4			BIT(2)
#define AD7280A_CTRL_HB_CONV_AVG_8			(BIT(2) | BIT(1))
#define AD7280A_CTRL_HB_CONV_AVG(x)			((x) << 1)
#define AD7280A_CTRL_HB_PWRDN_SW			BIT(0)

#define AD7280A_CTRL_LB_SWRST				BIT(7)
#define AD7280A_CTRL_LB_ACQ_TIME_400ns			0
#define AD7280A_CTRL_LB_ACQ_TIME_800ns			BIT(5)
#define AD7280A_CTRL_LB_ACQ_TIME_1200ns			BIT(6)
#define AD7280A_CTRL_LB_ACQ_TIME_1600ns			(BIT(6) | BIT(5))
#define AD7280A_CTRL_LB_ACQ_TIME(x)			((x) << 5)
#define AD7280A_CTRL_LB_MUST_SET			BIT(4)
#define AD7280A_CTRL_LB_THERMISTOR_EN			BIT(3)
#define AD7280A_CTRL_LB_LOCK_DEV_ADDR			BIT(2)
#define AD7280A_CTRL_LB_INC_DEV_ADDR			BIT(1)
#define AD7280A_CTRL_LB_DAISY_CHAIN_RB_EN		BIT(0)

#define AD7280A_ALERT_GEN_STATIC_HIGH			BIT(6)
#define AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN		(BIT(7) | BIT(6))

#define AD7280A_ALL_CELLS				(0xAD << 16)

#define AD7280A_MAX_SPI_CLK_Hz		700000 /* < 1MHz */
#define AD7280A_MAX_CHAIN		8
#define AD7280A_CELLS_PER_DEV		6
#define AD7280A_BITS			12
#define AD7280A_NUM_CH			(AD7280A_AUX_ADC_6 - \
					AD7280A_CELL_VOLTAGE_1 + 1)

#define AD7280A_DEVADDR_MASTER		0
#define AD7280A_DEVADDR_ALL		0x1F
/* 5-bit device address is sent LSB first */
#define AD7280A_DEVADDR(addr)	(((addr & 0x1) << 4) | ((addr & 0x2) << 3) | \
				(addr & 0x4) | ((addr & 0x8) >> 3) | \
				((addr & 0x10) >> 4))

/* During a read a valid write is mandatory.
 * So writing to the highest available address (Address 0x1F)
 * and setting the address all parts bit to 0 is recommended
 * So the TXVAL is AD7280A_DEVADDR_ALL + CRC
 */
#define AD7280A_READ_TXVAL	0xF800030A

/*
 * AD7280 CRC
 *
 * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F
 */
#define POLYNOM		0x2F
#define POLYNOM_ORDER	8
#define HIGHBIT		(1 << (POLYNOM_ORDER - 1))

struct ad7280_state {
	struct spi_device		*spi;
	struct iio_chan_spec		*channels;
	struct iio_dev_attr		*iio_attr;
	int				slave_num;
	int				scan_cnt;
	int				readback_delay_us;
	unsigned char			crc_tab[256];
	unsigned char			ctrl_hb;
	unsigned char			ctrl_lb;
	unsigned char			cell_threshhigh;
	unsigned char			cell_threshlow;
	unsigned char			aux_threshhigh;
	unsigned char			aux_threshlow;
	unsigned char			cb_mask[AD7280A_MAX_CHAIN];

	__be32				buf[2] ____cacheline_aligned;
};

static void ad7280_crc8_build_table(unsigned char *crc_tab)
{
	unsigned char bit, crc;
	int cnt, i;

	for (cnt = 0; cnt < 256; cnt++) {
		crc = cnt;
		for (i = 0; i < 8; i++) {
			bit = crc & HIGHBIT;
			crc <<= 1;
			if (bit)
				crc ^= POLYNOM;
		}
		crc_tab[cnt] = crc;
	}
}

static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned val)
{
	unsigned char crc;

	crc = crc_tab[val >> 16 & 0xFF];
	crc = crc_tab[crc ^ (val >> 8 & 0xFF)];

	return  crc ^ (val & 0xFF);
}

static int ad7280_check_crc(struct ad7280_state *st, unsigned val)
{
	unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10);

	if (crc != ((val >> 2) & 0xFF))
		return -EIO;

	return 0;
}

/* After initiating a conversion sequence we need to wait until the
 * conversion is done. The delay is typically in the range of 15..30 us
 * however depending an the number of devices in the daisy chain and the
 * number of averages taken, conversion delays and acquisition time options
 * it may take up to 250us, in this case we better sleep instead of busy
 * wait.
 */

static void ad7280_delay(struct ad7280_state *st)
{
	if (st->readback_delay_us < 50)
		udelay(st->readback_delay_us);
	else
		usleep_range(250, 500);
}

static int __ad7280_read32(struct ad7280_state *st, unsigned *val)
{
	int ret;
	struct spi_transfer t = {
		.tx_buf	= &st->buf[0],
		.rx_buf = &st->buf[1],
		.len = 4,
	};

	st->buf[0] = cpu_to_be32(AD7280A_READ_TXVAL);

	ret = spi_sync_transfer(st->spi, &t, 1);
	if (ret)
		return ret;

	*val = be32_to_cpu(st->buf[1]);

	return 0;
}

static int ad7280_write(struct ad7280_state *st, unsigned devaddr,
			unsigned addr, bool all, unsigned val)
{
	unsigned reg = (devaddr << 27 | addr << 21 |
			(val & 0xFF) << 13 | all << 12);

	reg |= ad7280_calc_crc8(st->crc_tab, reg >> 11) << 3 | 0x2;
	st->buf[0] = cpu_to_be32(reg);

	return spi_write(st->spi, &st->buf[0], 4);
}

static int ad7280_read(struct ad7280_state *st, unsigned devaddr,
			unsigned addr)
{
	int ret;
	unsigned tmp;

	/* turns off the read operation on all parts */
	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
			AD7280A_CTRL_HB_CONV_INPUT_ALL |
			AD7280A_CTRL_HB_CONV_RES_READ_NO |
			st->ctrl_hb);
	if (ret)
		return ret;

	/* turns on the read operation on the addressed part */
	ret = ad7280_write(st, devaddr, AD7280A_CONTROL_HB, 0,
			AD7280A_CTRL_HB_CONV_INPUT_ALL |
			AD7280A_CTRL_HB_CONV_RES_READ_ALL |
			st->ctrl_hb);
	if (ret)
		return ret;

	/* Set register address on the part to be read from */
	ret = ad7280_write(st, devaddr, AD7280A_READ, 0, addr << 2);
	if (ret)
		return ret;

	__ad7280_read32(st, &tmp);

	if (ad7280_check_crc(st, tmp))
		return -EIO;

	if (((tmp >> 27) != devaddr) || (((tmp >> 21) & 0x3F) != addr))
		return -EFAULT;

	return (tmp >> 13) & 0xFF;
}

static int ad7280_read_channel(struct ad7280_state *st, unsigned devaddr,
			       unsigned addr)
{
	int ret;
	unsigned tmp;

	ret = ad7280_write(st, devaddr, AD7280A_READ, 0, addr << 2);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
			AD7280A_CTRL_HB_CONV_INPUT_ALL |
			AD7280A_CTRL_HB_CONV_RES_READ_NO |
			st->ctrl_hb);
	if (ret)
		return ret;

	ret = ad7280_write(st, devaddr, AD7280A_CONTROL_HB, 0,
			AD7280A_CTRL_HB_CONV_INPUT_ALL |
			AD7280A_CTRL_HB_CONV_RES_READ_ALL |
			AD7280A_CTRL_HB_CONV_START_CS |
			st->ctrl_hb);
	if (ret)
		return ret;

	ad7280_delay(st);

	__ad7280_read32(st, &tmp);

	if (ad7280_check_crc(st, tmp))
		return -EIO;

	if (((tmp >> 27) != devaddr) || (((tmp >> 23) & 0xF) != addr))
		return -EFAULT;

	return (tmp >> 11) & 0xFFF;
}

static int ad7280_read_all_channels(struct ad7280_state *st, unsigned cnt,
			     unsigned *array)
{
	int i, ret;
	unsigned tmp, sum = 0;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ, 1,
			   AD7280A_CELL_VOLTAGE_1 << 2);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
			AD7280A_CTRL_HB_CONV_INPUT_ALL |
			AD7280A_CTRL_HB_CONV_RES_READ_ALL |
			AD7280A_CTRL_HB_CONV_START_CS |
			st->ctrl_hb);
	if (ret)
		return ret;

	ad7280_delay(st);

	for (i = 0; i < cnt; i++) {
		__ad7280_read32(st, &tmp);

		if (ad7280_check_crc(st, tmp))
			return -EIO;

		if (array)
			array[i] = tmp;
		/* only sum cell voltages */
		if (((tmp >> 23) & 0xF) <= AD7280A_CELL_VOLTAGE_6)
			sum += ((tmp >> 11) & 0xFFF);
	}

	return sum;
}

static int ad7280_chain_setup(struct ad7280_state *st)
{
	unsigned val, n;
	int ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_LB, 1,
			AD7280A_CTRL_LB_DAISY_CHAIN_RB_EN |
			AD7280A_CTRL_LB_LOCK_DEV_ADDR |
			AD7280A_CTRL_LB_MUST_SET |
			AD7280A_CTRL_LB_SWRST |
			st->ctrl_lb);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_LB, 1,
			AD7280A_CTRL_LB_DAISY_CHAIN_RB_EN |
			AD7280A_CTRL_LB_LOCK_DEV_ADDR |
			AD7280A_CTRL_LB_MUST_SET |
			st->ctrl_lb);
	if (ret)
		return ret;

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ, 1,
			AD7280A_CONTROL_LB << 2);
	if (ret)
		return ret;

	for (n = 0; n <= AD7280A_MAX_CHAIN; n++) {
		__ad7280_read32(st, &val);
		if (val == 0)
			return n - 1;

		if (ad7280_check_crc(st, val))
			return -EIO;

		if (n != AD7280A_DEVADDR(val >> 27))
			return -EIO;
	}

	return -EFAULT;
}

static ssize_t ad7280_show_balance_sw(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ad7280_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);

	return sprintf(buf, "%d\n",
		       !!(st->cb_mask[this_attr->address >> 8] &
		       (1 << ((this_attr->address & 0xFF) + 2))));
}

static ssize_t ad7280_store_balance_sw(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf,
					 size_t len)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ad7280_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
	bool readin;
	int ret;
	unsigned devaddr, ch;

	ret = strtobool(buf, &readin);
	if (ret)
		return ret;

	devaddr = this_attr->address >> 8;
	ch = this_attr->address & 0xFF;

	mutex_lock(&indio_dev->mlock);
	if (readin)
		st->cb_mask[devaddr] |= 1 << (ch + 2);
	else
		st->cb_mask[devaddr] &= ~(1 << (ch + 2));

	ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE,
			   0, st->cb_mask[devaddr]);
	mutex_unlock(&indio_dev->mlock);

	return ret ? ret : len;
}

static ssize_t ad7280_show_balance_timer(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ad7280_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
	int ret;
	unsigned msecs;

	mutex_lock(&indio_dev->mlock);
	ret = ad7280_read(st, this_attr->address >> 8,
			this_attr->address & 0xFF);
	mutex_unlock(&indio_dev->mlock);

	if (ret < 0)
		return ret;

	msecs = (ret >> 3) * 71500;

	return sprintf(buf, "%u\n", msecs);
}

static ssize_t ad7280_store_balance_timer(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf,
					 size_t len)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ad7280_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
	unsigned long val;
	int ret;

	ret = kstrtoul(buf, 10, &val);
	if (ret)
		return ret;

	val /= 71500;

	if (val > 31)
		return -EINVAL;

	mutex_lock(&indio_dev->mlock);
	ret = ad7280_write(st, this_attr->address >> 8,
			   this_attr->address & 0xFF,
			   0, (val & 0x1F) << 3);
	mutex_unlock(&indio_dev->mlock);

	return ret ? ret : len;
}

static struct attribute *ad7280_attributes[AD7280A_MAX_CHAIN *
					   AD7280A_CELLS_PER_DEV * 2 + 1];

static struct attribute_group ad7280_attrs_group = {
	.attrs = ad7280_attributes,
};

static int ad7280_channel_init(struct ad7280_state *st)
{
	int dev, ch, cnt;

	st->channels = kcalloc((st->slave_num + 1) * 12 + 2,
			       sizeof(*st->channels), GFP_KERNEL);
	if (st->channels == NULL)
		return -ENOMEM;

	for (dev = 0, cnt = 0; dev <= st->slave_num; dev++)
		for (ch = AD7280A_CELL_VOLTAGE_1; ch <= AD7280A_AUX_ADC_6; ch++,
			cnt++) {
			if (ch < AD7280A_AUX_ADC_1) {
				st->channels[cnt].type = IIO_VOLTAGE;
				st->channels[cnt].differential = 1;
				st->channels[cnt].channel = (dev * 6) + ch;
				st->channels[cnt].channel2 =
					st->channels[cnt].channel + 1;
			} else {
				st->channels[cnt].type = IIO_TEMP;
				st->channels[cnt].channel = (dev * 6) + ch - 6;
			}
			st->channels[cnt].indexed = 1;
			st->channels[cnt].info_mask_separate =
				BIT(IIO_CHAN_INFO_RAW);
			st->channels[cnt].info_mask_shared_by_type =
				BIT(IIO_CHAN_INFO_SCALE);
			st->channels[cnt].address =
				AD7280A_DEVADDR(dev) << 8 | ch;
			st->channels[cnt].scan_index = cnt;
			st->channels[cnt].scan_type.sign = 'u';
			st->channels[cnt].scan_type.realbits = 12;
			st->channels[cnt].scan_type.storagebits = 32;
			st->channels[cnt].scan_type.shift = 0;
		}

	st->channels[cnt].type = IIO_VOLTAGE;
	st->channels[cnt].differential = 1;
	st->channels[cnt].channel = 0;
	st->channels[cnt].channel2 = dev * 6;
	st->channels[cnt].address = AD7280A_ALL_CELLS;
	st->channels[cnt].indexed = 1;
	st->channels[cnt].info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	st->channels[cnt].info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
	st->channels[cnt].scan_index = cnt;
	st->channels[cnt].scan_type.sign = 'u';
	st->channels[cnt].scan_type.realbits = 32;
	st->channels[cnt].scan_type.storagebits = 32;
	st->channels[cnt].scan_type.shift = 0;
	cnt++;
	st->channels[cnt].type = IIO_TIMESTAMP;
	st->channels[cnt].channel = -1;
	st->channels[cnt].scan_index = cnt;
	st->channels[cnt].scan_type.sign = 's';
	st->channels[cnt].scan_type.realbits = 64;
	st->channels[cnt].scan_type.storagebits = 64;
	st->channels[cnt].scan_type.shift = 0;

	return cnt + 1;
}

static int ad7280_attr_init(struct ad7280_state *st)
{
	int dev, ch, cnt;

	st->iio_attr = kcalloc(2, sizeof(*st->iio_attr) *
			       (st->slave_num + 1) * AD7280A_CELLS_PER_DEV,
			       GFP_KERNEL);
	if (st->iio_attr == NULL)
		return -ENOMEM;

	for (dev = 0, cnt = 0; dev <= st->slave_num; dev++)
		for (ch = AD7280A_CELL_VOLTAGE_1; ch <= AD7280A_CELL_VOLTAGE_6;
			ch++, cnt++) {
			st->iio_attr[cnt].address =
				AD7280A_DEVADDR(dev) << 8 | ch;
			st->iio_attr[cnt].dev_attr.attr.mode =
				S_IWUSR | S_IRUGO;
			st->iio_attr[cnt].dev_attr.show =
				ad7280_show_balance_sw;
			st->iio_attr[cnt].dev_attr.store =
				ad7280_store_balance_sw;
			st->iio_attr[cnt].dev_attr.attr.name =
				kasprintf(GFP_KERNEL,
					"in%d-in%d_balance_switch_en",
					(dev * AD7280A_CELLS_PER_DEV) + ch,
					(dev * AD7280A_CELLS_PER_DEV) + ch + 1);
			ad7280_attributes[cnt] =
				&st->iio_attr[cnt].dev_attr.attr;
			cnt++;
			st->iio_attr[cnt].address =
				AD7280A_DEVADDR(dev) << 8 |
				(AD7280A_CB1_TIMER + ch);
			st->iio_attr[cnt].dev_attr.attr.mode =
				S_IWUSR | S_IRUGO;
			st->iio_attr[cnt].dev_attr.show =
				ad7280_show_balance_timer;
			st->iio_attr[cnt].dev_attr.store =
				ad7280_store_balance_timer;
			st->iio_attr[cnt].dev_attr.attr.name =
				kasprintf(GFP_KERNEL, "in%d-in%d_balance_timer",
					(dev * AD7280A_CELLS_PER_DEV) + ch,
					(dev * AD7280A_CELLS_PER_DEV) + ch + 1);
			ad7280_attributes[cnt] =
				&st->iio_attr[cnt].dev_attr.attr;
		}

	ad7280_attributes[cnt] = NULL;

	return 0;
}

static ssize_t ad7280_read_channel_config(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ad7280_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
	unsigned val;

	switch ((u32) this_attr->address) {
	case AD7280A_CELL_OVERVOLTAGE:
		val = 1000 + (st->cell_threshhigh * 1568) / 100;
		break;
	case AD7280A_CELL_UNDERVOLTAGE:
		val = 1000 + (st->cell_threshlow * 1568) / 100;
		break;
	case AD7280A_AUX_ADC_OVERVOLTAGE:
		val = (st->aux_threshhigh * 196) / 10;
		break;
	case AD7280A_AUX_ADC_UNDERVOLTAGE:
		val = (st->aux_threshlow * 196) / 10;
		break;
	default:
		return -EINVAL;
	}

	return sprintf(buf, "%u\n", val);
}

static ssize_t ad7280_write_channel_config(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf,
					 size_t len)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ad7280_state *st = iio_priv(indio_dev);
	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);

	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	switch ((u32) this_attr->address) {
	case AD7280A_CELL_OVERVOLTAGE:
	case AD7280A_CELL_UNDERVOLTAGE:
		val = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */
		break;
	case AD7280A_AUX_ADC_OVERVOLTAGE:
	case AD7280A_AUX_ADC_UNDERVOLTAGE:
		val = (val * 10) / 196; /* LSB 19.6mV */
		break;
	default:
		return -EFAULT;
	}

	val = clamp(val, 0L, 0xFFL);

	mutex_lock(&indio_dev->mlock);
	switch ((u32) this_attr->address) {
	case AD7280A_CELL_OVERVOLTAGE:
		st->cell_threshhigh = val;
		break;
	case AD7280A_CELL_UNDERVOLTAGE:
		st->cell_threshlow = val;
		break;
	case AD7280A_AUX_ADC_OVERVOLTAGE:
		st->aux_threshhigh = val;
		break;
	case AD7280A_AUX_ADC_UNDERVOLTAGE:
		st->aux_threshlow = val;
		break;
	}

	ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
			   this_attr->address, 1, val);

	mutex_unlock(&indio_dev->mlock);

	return ret ? ret : len;
}

static irqreturn_t ad7280_event_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct ad7280_state *st = iio_priv(indio_dev);
	unsigned *channels;
	int i, ret;

	channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL);
	if (channels == NULL)
		return IRQ_HANDLED;

	ret = ad7280_read_all_channels(st, st->scan_cnt, channels);
	if (ret < 0)
		goto out;

	for (i = 0; i < st->scan_cnt; i++) {
		if (((channels[i] >> 23) & 0xF) <= AD7280A_CELL_VOLTAGE_6) {
			if (((channels[i] >> 11) & 0xFFF) >=
				st->cell_threshhigh)
				iio_push_event(indio_dev,
					IIO_EVENT_CODE(IIO_VOLTAGE,
						       1,
						       0,
						       IIO_EV_DIR_RISING,
						       IIO_EV_TYPE_THRESH,
						       0, 0, 0),
					iio_get_time_ns());
			else if (((channels[i] >> 11) & 0xFFF) <=
				st->cell_threshlow)
				iio_push_event(indio_dev,
					IIO_EVENT_CODE(IIO_VOLTAGE,
						       1,
						       0,
						       IIO_EV_DIR_FALLING,
						       IIO_EV_TYPE_THRESH,
						       0, 0, 0),
					iio_get_time_ns());
		} else {
			if (((channels[i] >> 11) & 0xFFF) >= st->aux_threshhigh)
				iio_push_event(indio_dev,
					IIO_UNMOD_EVENT_CODE(IIO_TEMP,
					0,
					IIO_EV_TYPE_THRESH,
					IIO_EV_DIR_RISING),
					iio_get_time_ns());
			else if (((channels[i] >> 11) & 0xFFF) <=
				st->aux_threshlow)
				iio_push_event(indio_dev,
					IIO_UNMOD_EVENT_CODE(IIO_TEMP,
					0,
					IIO_EV_TYPE_THRESH,
					IIO_EV_DIR_FALLING),
					iio_get_time_ns());
		}
	}

out:
	kfree(channels);

	return IRQ_HANDLED;
}

static IIO_DEVICE_ATTR_NAMED(in_thresh_low_value,
		in_voltage-voltage_thresh_low_value,
		S_IRUGO | S_IWUSR,
		ad7280_read_channel_config,
		ad7280_write_channel_config,
		AD7280A_CELL_UNDERVOLTAGE);

static IIO_DEVICE_ATTR_NAMED(in_thresh_high_value,
		in_voltage-voltage_thresh_high_value,
		S_IRUGO | S_IWUSR,
		ad7280_read_channel_config,
		ad7280_write_channel_config,
		AD7280A_CELL_OVERVOLTAGE);

static IIO_DEVICE_ATTR(in_temp_thresh_low_value,
		S_IRUGO | S_IWUSR,
		ad7280_read_channel_config,
		ad7280_write_channel_config,
		AD7280A_AUX_ADC_UNDERVOLTAGE);

static IIO_DEVICE_ATTR(in_temp_thresh_high_value,
		S_IRUGO | S_IWUSR,
		ad7280_read_channel_config,
		ad7280_write_channel_config,
		AD7280A_AUX_ADC_OVERVOLTAGE);


static struct attribute *ad7280_event_attributes[] = {
	&iio_dev_attr_in_thresh_low_value.dev_attr.attr,
	&iio_dev_attr_in_thresh_high_value.dev_attr.attr,
	&iio_dev_attr_in_temp_thresh_low_value.dev_attr.attr,
	&iio_dev_attr_in_temp_thresh_high_value.dev_attr.attr,
	NULL,
};

static struct attribute_group ad7280_event_attrs_group = {
	.attrs = ad7280_event_attributes,
};

static int ad7280_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val,
			   int *val2,
			   long m)
{
	struct ad7280_state *st = iio_priv(indio_dev);
	int ret;

	switch (m) {
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&indio_dev->mlock);
		if (chan->address == AD7280A_ALL_CELLS)
			ret = ad7280_read_all_channels(st, st->scan_cnt, NULL);
		else
			ret = ad7280_read_channel(st, chan->address >> 8,
						  chan->address & 0xFF);
		mutex_unlock(&indio_dev->mlock);

		if (ret < 0)
			return ret;

		*val = ret;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6)
			*val = 4000;
		else
			*val = 5000;

		*val2 = AD7280A_BITS;
		return IIO_VAL_FRACTIONAL_LOG2;
	}
	return -EINVAL;
}

static const struct iio_info ad7280_info = {
	.read_raw = &ad7280_read_raw,
	.event_attrs = &ad7280_event_attrs_group,
	.attrs = &ad7280_attrs_group,
	.driver_module = THIS_MODULE,
};

static const struct ad7280_platform_data ad7793_default_pdata = {
	.acquisition_time = AD7280A_ACQ_TIME_400ns,
	.conversion_averaging = AD7280A_CONV_AVG_DIS,
	.thermistor_term_en = true,
};

static int ad7280_probe(struct spi_device *spi)
{
	const struct ad7280_platform_data *pdata = spi->dev.platform_data;
	struct ad7280_state *st;
	int ret;
	const unsigned short tACQ_ns[4] = {465, 1010, 1460, 1890};
	const unsigned short nAVG[4] = {1, 2, 4, 8};
	struct iio_dev *indio_dev;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (indio_dev == NULL)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	spi_set_drvdata(spi, indio_dev);
	st->spi = spi;

	if (!pdata)
		pdata = &ad7793_default_pdata;

	ad7280_crc8_build_table(st->crc_tab);

	st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_Hz;
	st->spi->mode = SPI_MODE_1;
	spi_setup(st->spi);

	st->ctrl_lb = AD7280A_CTRL_LB_ACQ_TIME(pdata->acquisition_time & 0x3);
	st->ctrl_hb = AD7280A_CTRL_HB_CONV_AVG(pdata->conversion_averaging
			& 0x3) | (pdata->thermistor_term_en ?
			AD7280A_CTRL_LB_THERMISTOR_EN : 0);

	ret = ad7280_chain_setup(st);
	if (ret < 0)
		return ret;

	st->slave_num = ret;
	st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH;
	st->cell_threshhigh = 0xFF;
	st->aux_threshhigh = 0xFF;

	/*
	 * Total Conversion Time = ((tACQ + tCONV) *
	 *			   (Number of Conversions per Part)) −
	 *			   tACQ + ((N - 1) * tDELAY)
	 *
	 * Readback Delay = Total Conversion Time + tWAIT
	 */

	st->readback_delay_us =
		((tACQ_ns[pdata->acquisition_time & 0x3] + 695) *
		(AD7280A_NUM_CH * nAVG[pdata->conversion_averaging & 0x3]))
		- tACQ_ns[pdata->acquisition_time & 0x3] +
		st->slave_num * 250;

	/* Convert to usecs */
	st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000);
	st->readback_delay_us += 5; /* Add tWAIT */

	indio_dev->name = spi_get_device_id(spi)->name;
	indio_dev->dev.parent = &spi->dev;
	indio_dev->modes = INDIO_DIRECT_MODE;

	ret = ad7280_channel_init(st);
	if (ret < 0)
		return ret;

	indio_dev->num_channels = ret;
	indio_dev->channels = st->channels;
	indio_dev->info = &ad7280_info;

	ret = ad7280_attr_init(st);
	if (ret < 0)
		goto error_free_channels;

	ret = iio_device_register(indio_dev);
	if (ret)
		goto error_free_attr;

	if (spi->irq > 0) {
		ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
				   AD7280A_ALERT, 1,
				   AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN);
		if (ret)
			goto error_unregister;

		ret = ad7280_write(st, AD7280A_DEVADDR(st->slave_num),
				   AD7280A_ALERT, 0,
				   AD7280A_ALERT_GEN_STATIC_HIGH |
				   (pdata->chain_last_alert_ignore & 0xF));
		if (ret)
			goto error_unregister;

		ret = request_threaded_irq(spi->irq,
					   NULL,
					   ad7280_event_handler,
					   IRQF_TRIGGER_FALLING |
					   IRQF_ONESHOT,
					   indio_dev->name,
					   indio_dev);
		if (ret)
			goto error_unregister;
	}

	return 0;
error_unregister:
	iio_device_unregister(indio_dev);

error_free_attr:
	kfree(st->iio_attr);

error_free_channels:
	kfree(st->channels);

	return ret;
}

static int ad7280_remove(struct spi_device *spi)
{
	struct iio_dev *indio_dev = spi_get_drvdata(spi);
	struct ad7280_state *st = iio_priv(indio_dev);

	if (spi->irq > 0)
		free_irq(spi->irq, indio_dev);
	iio_device_unregister(indio_dev);

	ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CONTROL_HB, 1,
			AD7280A_CTRL_HB_PWRDN_SW | st->ctrl_hb);

	kfree(st->channels);
	kfree(st->iio_attr);

	return 0;
}

static const struct spi_device_id ad7280_id[] = {
	{"ad7280a", 0},
	{}
};
MODULE_DEVICE_TABLE(spi, ad7280_id);

static struct spi_driver ad7280_driver = {
	.driver = {
		.name	= "ad7280",
		.owner	= THIS_MODULE,
	},
	.probe		= ad7280_probe,
	.remove		= ad7280_remove,
	.id_table	= ad7280_id,
};
module_spi_driver(ad7280_driver);

MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("Analog Devices AD7280A");
MODULE_LICENSE("GPL v2");