Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
/*
 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
 *
 * Derived from:
 *	https://github.com/yuq/sunxi-nfc-mtd
 *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
 *
 *	https://github.com/hno/Allwinner-Info
 *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
 *
 *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
 *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_mtd.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>

#define NFC_REG_CTL		0x0000
#define NFC_REG_ST		0x0004
#define NFC_REG_INT		0x0008
#define NFC_REG_TIMING_CTL	0x000C
#define NFC_REG_TIMING_CFG	0x0010
#define NFC_REG_ADDR_LOW	0x0014
#define NFC_REG_ADDR_HIGH	0x0018
#define NFC_REG_SECTOR_NUM	0x001C
#define NFC_REG_CNT		0x0020
#define NFC_REG_CMD		0x0024
#define NFC_REG_RCMD_SET	0x0028
#define NFC_REG_WCMD_SET	0x002C
#define NFC_REG_IO_DATA		0x0030
#define NFC_REG_ECC_CTL		0x0034
#define NFC_REG_ECC_ST		0x0038
#define NFC_REG_DEBUG		0x003C
#define NFC_REG_ECC_CNT0	0x0040
#define NFC_REG_ECC_CNT1	0x0044
#define NFC_REG_ECC_CNT2	0x0048
#define NFC_REG_ECC_CNT3	0x004c
#define NFC_REG_USER_DATA_BASE	0x0050
#define NFC_REG_SPARE_AREA	0x00A0
#define NFC_RAM0_BASE		0x0400
#define NFC_RAM1_BASE		0x0800

/* define bit use in NFC_CTL */
#define NFC_EN			BIT(0)
#define NFC_RESET		BIT(1)
#define NFC_BUS_WIDYH		BIT(2)
#define NFC_RB_SEL		BIT(3)
#define NFC_CE_SEL		GENMASK(26, 24)
#define NFC_CE_CTL		BIT(6)
#define NFC_CE_CTL1		BIT(7)
#define NFC_PAGE_SIZE		GENMASK(11, 8)
#define NFC_SAM			BIT(12)
#define NFC_RAM_METHOD		BIT(14)
#define NFC_DEBUG_CTL		BIT(31)

/* define bit use in NFC_ST */
#define NFC_RB_B2R		BIT(0)
#define NFC_CMD_INT_FLAG	BIT(1)
#define NFC_DMA_INT_FLAG	BIT(2)
#define NFC_CMD_FIFO_STATUS	BIT(3)
#define NFC_STA			BIT(4)
#define NFC_NATCH_INT_FLAG	BIT(5)
#define NFC_RB_STATE0		BIT(8)
#define NFC_RB_STATE1		BIT(9)
#define NFC_RB_STATE2		BIT(10)
#define NFC_RB_STATE3		BIT(11)

/* define bit use in NFC_INT */
#define NFC_B2R_INT_ENABLE	BIT(0)
#define NFC_CMD_INT_ENABLE	BIT(1)
#define NFC_DMA_INT_ENABLE	BIT(2)
#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
				 NFC_CMD_INT_ENABLE | \
				 NFC_DMA_INT_ENABLE)

/* define bit use in NFC_CMD */
#define NFC_CMD_LOW_BYTE	GENMASK(7, 0)
#define NFC_CMD_HIGH_BYTE	GENMASK(15, 8)
#define NFC_ADR_NUM		GENMASK(18, 16)
#define NFC_SEND_ADR		BIT(19)
#define NFC_ACCESS_DIR		BIT(20)
#define NFC_DATA_TRANS		BIT(21)
#define NFC_SEND_CMD1		BIT(22)
#define NFC_WAIT_FLAG		BIT(23)
#define NFC_SEND_CMD2		BIT(24)
#define NFC_SEQ			BIT(25)
#define NFC_DATA_SWAP_METHOD	BIT(26)
#define NFC_ROW_AUTO_INC	BIT(27)
#define NFC_SEND_CMD3		BIT(28)
#define NFC_SEND_CMD4		BIT(29)
#define NFC_CMD_TYPE		GENMASK(31, 30)

/* define bit use in NFC_RCMD_SET */
#define NFC_READ_CMD		GENMASK(7, 0)
#define NFC_RANDOM_READ_CMD0	GENMASK(15, 8)
#define NFC_RANDOM_READ_CMD1	GENMASK(23, 16)

/* define bit use in NFC_WCMD_SET */
#define NFC_PROGRAM_CMD		GENMASK(7, 0)
#define NFC_RANDOM_WRITE_CMD	GENMASK(15, 8)
#define NFC_READ_CMD0		GENMASK(23, 16)
#define NFC_READ_CMD1		GENMASK(31, 24)

/* define bit use in NFC_ECC_CTL */
#define NFC_ECC_EN		BIT(0)
#define NFC_ECC_PIPELINE	BIT(3)
#define NFC_ECC_EXCEPTION	BIT(4)
#define NFC_ECC_BLOCK_SIZE	BIT(5)
#define NFC_RANDOM_EN		BIT(9)
#define NFC_RANDOM_DIRECTION	BIT(10)
#define NFC_ECC_MODE_SHIFT	12
#define NFC_ECC_MODE		GENMASK(15, 12)
#define NFC_RANDOM_SEED		GENMASK(30, 16)

#define NFC_DEFAULT_TIMEOUT_MS	1000

#define NFC_SRAM_SIZE		1024

#define NFC_MAX_CS		7

/*
 * Ready/Busy detection type: describes the Ready/Busy detection modes
 *
 * @RB_NONE:	no external detection available, rely on STATUS command
 *		and software timeouts
 * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
 *		pin of the NAND flash chip must be connected to one of the
 *		native NAND R/B pins (those which can be muxed to the NAND
 *		Controller)
 * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
 *		pin of the NAND flash chip must be connected to a GPIO capable
 *		pin.
 */
enum sunxi_nand_rb_type {
	RB_NONE,
	RB_NATIVE,
	RB_GPIO,
};

/*
 * Ready/Busy structure: stores information related to Ready/Busy detection
 *
 * @type:	the Ready/Busy detection mode
 * @info:	information related to the R/B detection mode. Either a gpio
 *		id or a native R/B id (those supported by the NAND controller).
 */
struct sunxi_nand_rb {
	enum sunxi_nand_rb_type type;
	union {
		int gpio;
		int nativeid;
	} info;
};

/*
 * Chip Select structure: stores information related to NAND Chip Select
 *
 * @cs:		the NAND CS id used to communicate with a NAND Chip
 * @rb:		the Ready/Busy description
 */
struct sunxi_nand_chip_sel {
	u8 cs;
	struct sunxi_nand_rb rb;
};

/*
 * sunxi HW ECC infos: stores information related to HW ECC support
 *
 * @mode:	the sunxi ECC mode field deduced from ECC requirements
 * @layout:	the OOB layout depending on the ECC requirements and the
 *		selected ECC mode
 */
struct sunxi_nand_hw_ecc {
	int mode;
	struct nand_ecclayout layout;
};

/*
 * NAND chip structure: stores NAND chip device related information
 *
 * @node:		used to store NAND chips into a list
 * @nand:		base NAND chip structure
 * @mtd:		base MTD structure
 * @clk_rate:		clk_rate required for this NAND chip
 * @selected:		current active CS
 * @nsels:		number of CS lines required by the NAND chip
 * @sels:		array of CS lines descriptions
 */
struct sunxi_nand_chip {
	struct list_head node;
	struct nand_chip nand;
	struct mtd_info mtd;
	unsigned long clk_rate;
	int selected;
	int nsels;
	struct sunxi_nand_chip_sel sels[0];
};

static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
{
	return container_of(nand, struct sunxi_nand_chip, nand);
}

/*
 * NAND Controller structure: stores sunxi NAND controller information
 *
 * @controller:		base controller structure
 * @dev:		parent device (used to print error messages)
 * @regs:		NAND controller registers
 * @ahb_clk:		NAND Controller AHB clock
 * @mod_clk:		NAND Controller mod clock
 * @assigned_cs:	bitmask describing already assigned CS lines
 * @clk_rate:		NAND controller current clock rate
 * @chips:		a list containing all the NAND chips attached to
 *			this NAND controller
 * @complete:		a completion object used to wait for NAND
 *			controller events
 */
struct sunxi_nfc {
	struct nand_hw_control controller;
	struct device *dev;
	void __iomem *regs;
	struct clk *ahb_clk;
	struct clk *mod_clk;
	unsigned long assigned_cs;
	unsigned long clk_rate;
	struct list_head chips;
	struct completion complete;
};

static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
{
	return container_of(ctrl, struct sunxi_nfc, controller);
}

static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
{
	struct sunxi_nfc *nfc = dev_id;
	u32 st = readl(nfc->regs + NFC_REG_ST);
	u32 ien = readl(nfc->regs + NFC_REG_INT);

	if (!(ien & st))
		return IRQ_NONE;

	if ((ien & st) == ien)
		complete(&nfc->complete);

	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);

	return IRQ_HANDLED;
}

static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
			      unsigned int timeout_ms)
{
	init_completion(&nfc->complete);

	writel(flags, nfc->regs + NFC_REG_INT);

	if (!timeout_ms)
		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;

	if (!wait_for_completion_timeout(&nfc->complete,
					 msecs_to_jiffies(timeout_ms))) {
		dev_err(nfc->dev, "wait interrupt timedout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
{
	unsigned long timeout = jiffies +
				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);

	do {
		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
			return 0;
	} while (time_before(jiffies, timeout));

	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
	return -ETIMEDOUT;
}

static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
{
	unsigned long timeout = jiffies +
				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);

	writel(0, nfc->regs + NFC_REG_ECC_CTL);
	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);

	do {
		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
			return 0;
	} while (time_before(jiffies, timeout));

	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
	return -ETIMEDOUT;
}

static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_rb *rb;
	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
	int ret;

	if (sunxi_nand->selected < 0)
		return 0;

	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;

	switch (rb->type) {
	case RB_NATIVE:
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
			 (NFC_RB_STATE0 << rb->info.nativeid));
		if (ret)
			break;

		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
			 (NFC_RB_STATE0 << rb->info.nativeid));
		break;
	case RB_GPIO:
		ret = gpio_get_value(rb->info.gpio);
		break;
	case RB_NONE:
	default:
		ret = 0;
		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
		break;
	}

	return ret;
}

static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_chip_sel *sel;
	u32 ctl;

	if (chip > 0 && chip >= sunxi_nand->nsels)
		return;

	if (chip == sunxi_nand->selected)
		return;

	ctl = readl(nfc->regs + NFC_REG_CTL) &
	      ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN);

	if (chip >= 0) {
		sel = &sunxi_nand->sels[chip];

		ctl |= (sel->cs << 24) | NFC_EN |
		       (((nand->page_shift - 10) & 0xf) << 8);
		if (sel->rb.type == RB_NONE) {
			nand->dev_ready = NULL;
		} else {
			nand->dev_ready = sunxi_nfc_dev_ready;
			if (sel->rb.type == RB_NATIVE)
				ctl |= (sel->rb.info.nativeid << 3);
		}

		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);

		if (nfc->clk_rate != sunxi_nand->clk_rate) {
			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
			nfc->clk_rate = sunxi_nand->clk_rate;
		}
	}

	writel(ctl, nfc->regs + NFC_REG_CTL);

	sunxi_nand->selected = chip;
}

static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
		writel(tmp, nfc->regs + NFC_REG_CMD);

		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			break;

		if (buf)
			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
				      cnt);
		offs += cnt;
	}
}

static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				int len)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
		      NFC_ACCESS_DIR;
		writel(tmp, nfc->regs + NFC_REG_CMD);

		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			break;

		offs += cnt;
	}
}

static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
{
	uint8_t ret;

	sunxi_nfc_read_buf(mtd, &ret, 1);

	return ret;
}

static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
			       unsigned int ctrl)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	u32 tmp;

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return;

	if (ctrl & NAND_CTRL_CHANGE) {
		tmp = readl(nfc->regs + NFC_REG_CTL);
		if (ctrl & NAND_NCE)
			tmp |= NFC_CE_CTL;
		else
			tmp &= ~NFC_CE_CTL;
		writel(tmp, nfc->regs + NFC_REG_CTL);
	}

	if (dat == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE) {
		writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
	} else {
		writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
		writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
	}

	sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
}

static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
				      struct nand_chip *chip, uint8_t *buf,
				      int oob_required, int page)
{
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	struct nand_ecclayout *layout = ecc->layout;
	struct sunxi_nand_hw_ecc *data = ecc->priv;
	unsigned int max_bitflips = 0;
	int offset;
	int ret;
	u32 tmp;
	int i;
	int cnt;

	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
	       NFC_ECC_EXCEPTION;

	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);

	for (i = 0; i < ecc->steps; i++) {
		if (i)
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1);

		offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4;

		chip->read_buf(mtd, NULL, ecc->size);

		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			return ret;

		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
		writel(tmp, nfc->regs + NFC_REG_CMD);

		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			return ret;

		memcpy_fromio(buf + (i * ecc->size),
			      nfc->regs + NFC_RAM0_BASE, ecc->size);

		if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
			mtd->ecc_stats.failed++;
		} else {
			tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
			mtd->ecc_stats.corrected += tmp;
			max_bitflips = max_t(unsigned int, max_bitflips, tmp);
		}

		if (oob_required) {
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);

			ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
			if (ret)
				return ret;

			offset -= mtd->writesize;
			chip->read_buf(mtd, chip->oob_poi + offset,
				      ecc->bytes + 4);
		}
	}

	if (oob_required) {
		cnt = ecc->layout->oobfree[ecc->steps].length;
		if (cnt > 0) {
			offset = mtd->writesize +
				 ecc->layout->oobfree[ecc->steps].offset;
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
			offset -= mtd->writesize;
			chip->read_buf(mtd, chip->oob_poi + offset, cnt);
		}
	}

	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
	tmp &= ~NFC_ECC_EN;

	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);

	return max_bitflips;
}

static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
				       struct nand_chip *chip,
				       const uint8_t *buf, int oob_required)
{
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	struct nand_ecclayout *layout = ecc->layout;
	struct sunxi_nand_hw_ecc *data = ecc->priv;
	int offset;
	int ret;
	u32 tmp;
	int i;
	int cnt;

	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
	       NFC_ECC_EXCEPTION;

	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);

	for (i = 0; i < ecc->steps; i++) {
		if (i)
			chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1);

		chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);

		offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize;

		/* Fill OOB data in */
		if (oob_required) {
			tmp = 0xffffffff;
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
				    4);
		} else {
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE,
				    chip->oob_poi + offset - mtd->writesize,
				    4);
		}

		chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			return ret;

		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
		      (1 << 30);
		writel(tmp, nfc->regs + NFC_REG_CMD);
		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			return ret;
	}

	if (oob_required) {
		cnt = ecc->layout->oobfree[i].length;
		if (cnt > 0) {
			offset = mtd->writesize +
				 ecc->layout->oobfree[i].offset;
			chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
			offset -= mtd->writesize;
			chip->write_buf(mtd, chip->oob_poi + offset, cnt);
		}
	}

	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
	tmp &= ~NFC_ECC_EN;

	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);

	return 0;
}

static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
					       struct nand_chip *chip,
					       uint8_t *buf, int oob_required,
					       int page)
{
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	struct sunxi_nand_hw_ecc *data = ecc->priv;
	unsigned int max_bitflips = 0;
	uint8_t *oob = chip->oob_poi;
	int offset = 0;
	int ret;
	int cnt;
	u32 tmp;
	int i;

	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
	       NFC_ECC_EXCEPTION;

	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);

	for (i = 0; i < ecc->steps; i++) {
		chip->read_buf(mtd, NULL, ecc->size);

		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
		writel(tmp, nfc->regs + NFC_REG_CMD);

		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			return ret;

		memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size);
		buf += ecc->size;
		offset += ecc->size;

		if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
			mtd->ecc_stats.failed++;
		} else {
			tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
			mtd->ecc_stats.corrected += tmp;
			max_bitflips = max_t(unsigned int, max_bitflips, tmp);
		}

		if (oob_required) {
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
			chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad);
			oob += ecc->bytes + ecc->prepad;
		}

		offset += ecc->bytes + ecc->prepad;
	}

	if (oob_required) {
		cnt = mtd->oobsize - (oob - chip->oob_poi);
		if (cnt > 0) {
			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
			chip->read_buf(mtd, oob, cnt);
		}
	}

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
	       nfc->regs + NFC_REG_ECC_CTL);

	return max_bitflips;
}

static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
						struct nand_chip *chip,
						const uint8_t *buf,
						int oob_required)
{
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	struct sunxi_nand_hw_ecc *data = ecc->priv;
	uint8_t *oob = chip->oob_poi;
	int offset = 0;
	int ret;
	int cnt;
	u32 tmp;
	int i;

	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
	tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
	tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
	       NFC_ECC_EXCEPTION;

	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);

	for (i = 0; i < ecc->steps; i++) {
		chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
		offset += ecc->size;

		/* Fill OOB data in */
		if (oob_required) {
			tmp = 0xffffffff;
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
				    4);
		} else {
			memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob,
				    4);
		}

		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
		      (1 << 30);
		writel(tmp, nfc->regs + NFC_REG_CMD);

		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			return ret;

		offset += ecc->bytes + ecc->prepad;
		oob += ecc->bytes + ecc->prepad;
	}

	if (oob_required) {
		cnt = mtd->oobsize - (oob - chip->oob_poi);
		if (cnt > 0) {
			chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
			chip->write_buf(mtd, oob, cnt);
		}
	}

	tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
	tmp &= ~NFC_ECC_EN;

	writel(tmp, nfc->regs + NFC_REG_ECC_CTL);

	return 0;
}

static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
				       const struct nand_sdr_timings *timings)
{
	u32 min_clk_period = 0;

	/* T1 <=> tCLS */
	if (timings->tCLS_min > min_clk_period)
		min_clk_period = timings->tCLS_min;

	/* T2 <=> tCLH */
	if (timings->tCLH_min > min_clk_period)
		min_clk_period = timings->tCLH_min;

	/* T3 <=> tCS */
	if (timings->tCS_min > min_clk_period)
		min_clk_period = timings->tCS_min;

	/* T4 <=> tCH */
	if (timings->tCH_min > min_clk_period)
		min_clk_period = timings->tCH_min;

	/* T5 <=> tWP */
	if (timings->tWP_min > min_clk_period)
		min_clk_period = timings->tWP_min;

	/* T6 <=> tWH */
	if (timings->tWH_min > min_clk_period)
		min_clk_period = timings->tWH_min;

	/* T7 <=> tALS */
	if (timings->tALS_min > min_clk_period)
		min_clk_period = timings->tALS_min;

	/* T8 <=> tDS */
	if (timings->tDS_min > min_clk_period)
		min_clk_period = timings->tDS_min;

	/* T9 <=> tDH */
	if (timings->tDH_min > min_clk_period)
		min_clk_period = timings->tDH_min;

	/* T10 <=> tRR */
	if (timings->tRR_min > (min_clk_period * 3))
		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);

	/* T11 <=> tALH */
	if (timings->tALH_min > min_clk_period)
		min_clk_period = timings->tALH_min;

	/* T12 <=> tRP */
	if (timings->tRP_min > min_clk_period)
		min_clk_period = timings->tRP_min;

	/* T13 <=> tREH */
	if (timings->tREH_min > min_clk_period)
		min_clk_period = timings->tREH_min;

	/* T14 <=> tRC */
	if (timings->tRC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);

	/* T15 <=> tWC */
	if (timings->tWC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);


	/* Convert min_clk_period from picoseconds to nanoseconds */
	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);

	/*
	 * Convert min_clk_period into a clk frequency, then get the
	 * appropriate rate for the NAND controller IP given this formula
	 * (specified in the datasheet):
	 * nand clk_rate = 2 * min_clk_rate
	 */
	chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;

	/* TODO: configure T16-T19 */

	return 0;
}

static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
					struct device_node *np)
{
	const struct nand_sdr_timings *timings;
	int ret;
	int mode;

	mode = onfi_get_async_timing_mode(&chip->nand);
	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
		mode = chip->nand.onfi_timing_mode_default;
	} else {
		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};

		mode = fls(mode) - 1;
		if (mode < 0)
			mode = 0;

		feature[0] = mode;
		ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand,
						ONFI_FEATURE_ADDR_TIMING_MODE,
						feature);
		if (ret)
			return ret;
	}

	timings = onfi_async_timing_mode_to_sdr_timings(mode);
	if (IS_ERR(timings))
		return PTR_ERR(timings);

	return sunxi_nand_chip_set_timings(chip, timings);
}

static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
					      struct nand_ecc_ctrl *ecc,
					      struct device_node *np)
{
	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_hw_ecc *data;
	struct nand_ecclayout *layout;
	int nsectors;
	int ret;
	int i;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	/* Add ECC info retrieval from DT */
	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
		if (ecc->strength <= strengths[i])
			break;
	}

	if (i >= ARRAY_SIZE(strengths)) {
		dev_err(nfc->dev, "unsupported strength\n");
		ret = -ENOTSUPP;
		goto err;
	}

	data->mode = i;

	/* HW ECC always request ECC bytes for 1024 bytes blocks */
	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);

	/* HW ECC always work with even numbers of ECC bytes */
	ecc->bytes = ALIGN(ecc->bytes, 2);

	layout = &data->layout;
	nsectors = mtd->writesize / ecc->size;

	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
		ret = -EINVAL;
		goto err;
	}

	layout->eccbytes = (ecc->bytes * nsectors);

	ecc->layout = layout;
	ecc->priv = data;

	return 0;

err:
	kfree(data);

	return ret;
}

static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
{
	kfree(ecc->priv);
}

static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
				       struct nand_ecc_ctrl *ecc,
				       struct device_node *np)
{
	struct nand_ecclayout *layout;
	int nsectors;
	int i, j;
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
	layout = ecc->layout;
	nsectors = mtd->writesize / ecc->size;

	for (i = 0; i < nsectors; i++) {
		if (i) {
			layout->oobfree[i].offset =
				layout->oobfree[i - 1].offset +
				layout->oobfree[i - 1].length +
				ecc->bytes;
			layout->oobfree[i].length = 4;
		} else {
			/*
			 * The first 2 bytes are used for BB markers, hence we
			 * only have 2 bytes available in the first user data
			 * section.
			 */
			layout->oobfree[i].length = 2;
			layout->oobfree[i].offset = 2;
		}

		for (j = 0; j < ecc->bytes; j++)
			layout->eccpos[(ecc->bytes * i) + j] =
					layout->oobfree[i].offset +
					layout->oobfree[i].length + j;
	}

	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
		layout->oobfree[nsectors].offset =
				layout->oobfree[nsectors - 1].offset +
				layout->oobfree[nsectors - 1].length +
				ecc->bytes;
		layout->oobfree[nsectors].length = mtd->oobsize -
				((ecc->bytes + 4) * nsectors);
	}

	return 0;
}

static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
						struct nand_ecc_ctrl *ecc,
						struct device_node *np)
{
	struct nand_ecclayout *layout;
	int nsectors;
	int i;
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

	ecc->prepad = 4;
	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;

	layout = ecc->layout;
	nsectors = mtd->writesize / ecc->size;

	for (i = 0; i < (ecc->bytes * nsectors); i++)
		layout->eccpos[i] = i;

	layout->oobfree[0].length = mtd->oobsize - i;
	layout->oobfree[0].offset = i;

	return 0;
}

static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
	switch (ecc->mode) {
	case NAND_ECC_HW:
	case NAND_ECC_HW_SYNDROME:
		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
		break;
	case NAND_ECC_NONE:
		kfree(ecc->layout);
	default:
		break;
	}
}

static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
			       struct device_node *np)
{
	struct nand_chip *nand = mtd->priv;
	int strength;
	int blk_size;
	int ret;

	blk_size = of_get_nand_ecc_step_size(np);
	strength = of_get_nand_ecc_strength(np);
	if (blk_size > 0 && strength > 0) {
		ecc->size = blk_size;
		ecc->strength = strength;
	} else {
		ecc->size = nand->ecc_step_ds;
		ecc->strength = nand->ecc_strength_ds;
	}

	if (!ecc->size || !ecc->strength)
		return -EINVAL;

	ecc->mode = NAND_ECC_HW;

	ret = of_get_nand_ecc_mode(np);
	if (ret >= 0)
		ecc->mode = ret;

	switch (ecc->mode) {
	case NAND_ECC_SOFT_BCH:
		break;
	case NAND_ECC_HW:
		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_HW_SYNDROME:
		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_NONE:
		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
		if (!ecc->layout)
			return -ENOMEM;
		ecc->layout->oobfree[0].length = mtd->oobsize;
	case NAND_ECC_SOFT:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
				struct device_node *np)
{
	const struct nand_sdr_timings *timings;
	struct sunxi_nand_chip *chip;
	struct mtd_part_parser_data ppdata;
	struct mtd_info *mtd;
	struct nand_chip *nand;
	int nsels;
	int ret;
	int i;
	u32 tmp;

	if (!of_get_property(np, "reg", &nsels))
		return -EINVAL;

	nsels /= sizeof(u32);
	if (!nsels) {
		dev_err(dev, "invalid reg property size\n");
		return -EINVAL;
	}

	chip = devm_kzalloc(dev,
			    sizeof(*chip) +
			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
			    GFP_KERNEL);
	if (!chip) {
		dev_err(dev, "could not allocate chip\n");
		return -ENOMEM;
	}

	chip->nsels = nsels;
	chip->selected = -1;

	for (i = 0; i < nsels; i++) {
		ret = of_property_read_u32_index(np, "reg", i, &tmp);
		if (ret) {
			dev_err(dev, "could not retrieve reg property: %d\n",
				ret);
			return ret;
		}

		if (tmp > NFC_MAX_CS) {
			dev_err(dev,
				"invalid reg value: %u (max CS = 7)\n",
				tmp);
			return -EINVAL;
		}

		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
			dev_err(dev, "CS %d already assigned\n", tmp);
			return -EINVAL;
		}

		chip->sels[i].cs = tmp;

		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
		    tmp < 2) {
			chip->sels[i].rb.type = RB_NATIVE;
			chip->sels[i].rb.info.nativeid = tmp;
		} else {
			ret = of_get_named_gpio(np, "rb-gpios", i);
			if (ret >= 0) {
				tmp = ret;
				chip->sels[i].rb.type = RB_GPIO;
				chip->sels[i].rb.info.gpio = tmp;
				ret = devm_gpio_request(dev, tmp, "nand-rb");
				if (ret)
					return ret;

				ret = gpio_direction_input(tmp);
				if (ret)
					return ret;
			} else {
				chip->sels[i].rb.type = RB_NONE;
			}
		}
	}

	timings = onfi_async_timing_mode_to_sdr_timings(0);
	if (IS_ERR(timings)) {
		ret = PTR_ERR(timings);
		dev_err(dev,
			"could not retrieve timings for ONFI mode 0: %d\n",
			ret);
		return ret;
	}

	ret = sunxi_nand_chip_set_timings(chip, timings);
	if (ret) {
		dev_err(dev, "could not configure chip timings: %d\n", ret);
		return ret;
	}

	nand = &chip->nand;
	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
	nand->chip_delay = 200;
	nand->controller = &nfc->controller;
	nand->select_chip = sunxi_nfc_select_chip;
	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
	nand->read_buf = sunxi_nfc_read_buf;
	nand->write_buf = sunxi_nfc_write_buf;
	nand->read_byte = sunxi_nfc_read_byte;

	if (of_get_nand_on_flash_bbt(np))
		nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;

	mtd = &chip->mtd;
	mtd->dev.parent = dev;
	mtd->priv = nand;
	mtd->owner = THIS_MODULE;

	ret = nand_scan_ident(mtd, nsels, NULL);
	if (ret)
		return ret;

	ret = sunxi_nand_chip_init_timings(chip, np);
	if (ret) {
		dev_err(dev, "could not configure chip timings: %d\n", ret);
		return ret;
	}

	ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
	if (ret) {
		dev_err(dev, "ECC init failed: %d\n", ret);
		return ret;
	}

	ret = nand_scan_tail(mtd);
	if (ret) {
		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
		return ret;
	}

	ppdata.of_node = np;
	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
	if (ret) {
		dev_err(dev, "failed to register mtd device: %d\n", ret);
		nand_release(mtd);
		return ret;
	}

	list_add_tail(&chip->node, &nfc->chips);

	return 0;
}

static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
{
	struct device_node *np = dev->of_node;
	struct device_node *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (nchips > 8) {
		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
		if (ret)
			return ret;
	}

	return 0;
}

static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
{
	struct sunxi_nand_chip *chip;

	while (!list_empty(&nfc->chips)) {
		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
					node);
		nand_release(&chip->mtd);
		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
	}
}

static int sunxi_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *r;
	struct sunxi_nfc *nfc;
	int irq;
	int ret;

	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = dev;
	spin_lock_init(&nfc->controller.lock);
	init_waitqueue_head(&nfc->controller.wq);
	INIT_LIST_HEAD(&nfc->chips);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(dev, r);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(dev, "failed to retrieve irq\n");
		return irq;
	}

	nfc->ahb_clk = devm_clk_get(dev, "ahb");
	if (IS_ERR(nfc->ahb_clk)) {
		dev_err(dev, "failed to retrieve ahb clk\n");
		return PTR_ERR(nfc->ahb_clk);
	}

	ret = clk_prepare_enable(nfc->ahb_clk);
	if (ret)
		return ret;

	nfc->mod_clk = devm_clk_get(dev, "mod");
	if (IS_ERR(nfc->mod_clk)) {
		dev_err(dev, "failed to retrieve mod clk\n");
		ret = PTR_ERR(nfc->mod_clk);
		goto out_ahb_clk_unprepare;
	}

	ret = clk_prepare_enable(nfc->mod_clk);
	if (ret)
		goto out_ahb_clk_unprepare;

	ret = sunxi_nfc_rst(nfc);
	if (ret)
		goto out_mod_clk_unprepare;

	writel(0, nfc->regs + NFC_REG_INT);
	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
			       0, "sunxi-nand", nfc);
	if (ret)
		goto out_mod_clk_unprepare;

	platform_set_drvdata(pdev, nfc);

	/*
	 * TODO: replace these magic values with proper flags as soon as we
	 * know what they are encoding.
	 */
	writel(0x100, nfc->regs + NFC_REG_TIMING_CTL);
	writel(0x7ff, nfc->regs + NFC_REG_TIMING_CFG);

	ret = sunxi_nand_chips_init(dev, nfc);
	if (ret) {
		dev_err(dev, "failed to init nand chips\n");
		goto out_mod_clk_unprepare;
	}

	return 0;

out_mod_clk_unprepare:
	clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
	clk_disable_unprepare(nfc->ahb_clk);

	return ret;
}

static int sunxi_nfc_remove(struct platform_device *pdev)
{
	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);

	sunxi_nand_chips_cleanup(nfc);

	return 0;
}

static const struct of_device_id sunxi_nfc_ids[] = {
	{ .compatible = "allwinner,sun4i-a10-nand" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);

static struct platform_driver sunxi_nfc_driver = {
	.driver = {
		.name = "sunxi_nand",
		.of_match_table = sunxi_nfc_ids,
	},
	.probe = sunxi_nfc_probe,
	.remove = sunxi_nfc_remove,
};
module_platform_driver(sunxi_nfc_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Boris BREZILLON");
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
MODULE_ALIAS("platform:sunxi_nand");