Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*
 * Freescale i.MX28 LRADC driver
 *
 * Copyright (c) 2012 DENX Software Engineering, GmbH.
 * Marek Vasut <marex@denx.de>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 */

#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/sysfs.h>
#include <linux/list.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/stmp_device.h>
#include <linux/bitops.h>
#include <linux/completion.h>

#include <mach/mxs.h>
#include <mach/common.h>

#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

#define DRIVER_NAME		"mxs-lradc"

#define LRADC_MAX_DELAY_CHANS	4
#define LRADC_MAX_MAPPED_CHANS	8
#define LRADC_MAX_TOTAL_CHANS	16

#define LRADC_DELAY_TIMER_HZ	2000

/*
 * Make this runtime configurable if necessary. Currently, if the buffered mode
 * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
 * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
 * seconds. The result is that the samples arrive every 500mS.
 */
#define LRADC_DELAY_TIMER_PER	200
#define LRADC_DELAY_TIMER_LOOP	5

static const char * const mxs_lradc_irq_name[] = {
	"mxs-lradc-touchscreen",
	"mxs-lradc-thresh0",
	"mxs-lradc-thresh1",
	"mxs-lradc-channel0",
	"mxs-lradc-channel1",
	"mxs-lradc-channel2",
	"mxs-lradc-channel3",
	"mxs-lradc-channel4",
	"mxs-lradc-channel5",
	"mxs-lradc-channel6",
	"mxs-lradc-channel7",
	"mxs-lradc-button0",
	"mxs-lradc-button1",
};

struct mxs_lradc_chan {
	uint8_t				slot;
	uint8_t				flags;
};

struct mxs_lradc {
	struct device		*dev;
	void __iomem		*base;
	int			irq[13];

	uint32_t		*buffer;
	struct iio_trigger	*trig;

	struct mutex		lock;

	uint8_t			enable;

	struct completion	completion;
};

#define	LRADC_CTRL0				0x00
#define LRADC_CTRL0_TOUCH_DETECT_ENABLE		(1 << 23)
#define LRADC_CTRL0_TOUCH_SCREEN_TYPE		(1 << 22)

#define	LRADC_CTRL1				0x10
#define	LRADC_CTRL1_LRADC_IRQ(n)		(1 << (n))
#define	LRADC_CTRL1_LRADC_IRQ_MASK		0x1fff
#define	LRADC_CTRL1_LRADC_IRQ_EN(n)		(1 << ((n) + 16))
#define	LRADC_CTRL1_LRADC_IRQ_EN_MASK		(0x1fff << 16)

#define	LRADC_CTRL2				0x20
#define	LRADC_CTRL2_TEMPSENSE_PWD		(1 << 15)

#define	LRADC_CH(n)				(0x50 + (0x10 * (n)))
#define	LRADC_CH_ACCUMULATE			(1 << 29)
#define	LRADC_CH_NUM_SAMPLES_MASK		(0x1f << 24)
#define	LRADC_CH_NUM_SAMPLES_OFFSET		24
#define	LRADC_CH_VALUE_MASK			0x3ffff
#define	LRADC_CH_VALUE_OFFSET			0

#define	LRADC_DELAY(n)				(0xd0 + (0x10 * (n)))
#define	LRADC_DELAY_TRIGGER_LRADCS_MASK		(0xff << 24)
#define	LRADC_DELAY_TRIGGER_LRADCS_OFFSET	24
#define	LRADC_DELAY_KICK			(1 << 20)
#define	LRADC_DELAY_TRIGGER_DELAYS_MASK		(0xf << 16)
#define	LRADC_DELAY_TRIGGER_DELAYS_OFFSET	16
#define	LRADC_DELAY_LOOP_COUNT_MASK		(0x1f << 11)
#define	LRADC_DELAY_LOOP_COUNT_OFFSET		11
#define	LRADC_DELAY_DELAY_MASK			0x7ff
#define	LRADC_DELAY_DELAY_OFFSET		0

#define	LRADC_CTRL4				0x140
#define	LRADC_CTRL4_LRADCSELECT_MASK(n)		(0xf << ((n) * 4))
#define	LRADC_CTRL4_LRADCSELECT_OFFSET(n)	((n) * 4)

/*
 * Raw I/O operations
 */
static int mxs_lradc_read_raw(struct iio_dev *iio_dev,
			const struct iio_chan_spec *chan,
			int *val, int *val2, long m)
{
	struct mxs_lradc *lradc = iio_priv(iio_dev);
	int ret;

	if (m != IIO_CHAN_INFO_RAW)
		return -EINVAL;

	/* Check for invalid channel */
	if (chan->channel > LRADC_MAX_TOTAL_CHANS)
		return -EINVAL;

	/*
	 * See if there is no buffered operation in progess. If there is, simply
	 * bail out. This can be improved to support both buffered and raw IO at
	 * the same time, yet the code becomes horribly complicated. Therefore I
	 * applied KISS principle here.
	 */
	ret = mutex_trylock(&lradc->lock);
	if (!ret)
		return -EBUSY;

	INIT_COMPLETION(lradc->completion);

	/*
	 * No buffered operation in progress, map the channel and trigger it.
	 * Virtual channel 0 is always used here as the others are always not
	 * used if doing raw sampling.
	 */
	writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK,
		lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
	writel(0xff, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);

	writel(chan->channel, lradc->base + LRADC_CTRL4);
	writel(0, lradc->base + LRADC_CH(0));

	/* Enable the IRQ and start sampling the channel. */
	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
		lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
	writel(1 << 0, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_SET);

	/* Wait for completion on the channel, 1 second max. */
	ret = wait_for_completion_killable_timeout(&lradc->completion, HZ);
	if (!ret)
		ret = -ETIMEDOUT;
	if (ret < 0)
		goto err;

	/* Read the data. */
	*val = readl(lradc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
	ret = IIO_VAL_INT;

err:
	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
		lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);

	mutex_unlock(&lradc->lock);

	return ret;
}

static const struct iio_info mxs_lradc_iio_info = {
	.driver_module		= THIS_MODULE,
	.read_raw		= mxs_lradc_read_raw,
};

/*
 * IRQ Handling
 */
static irqreturn_t mxs_lradc_handle_irq(int irq, void *data)
{
	struct iio_dev *iio = data;
	struct mxs_lradc *lradc = iio_priv(iio);
	unsigned long reg = readl(lradc->base + LRADC_CTRL1);

	if (!(reg & LRADC_CTRL1_LRADC_IRQ_MASK))
		return IRQ_NONE;

	/*
	 * Touchscreen IRQ handling code shall probably have priority
	 * and therefore shall be placed here.
	 */

	if (iio_buffer_enabled(iio))
		iio_trigger_poll(iio->trig, iio_get_time_ns());
	else if (reg & LRADC_CTRL1_LRADC_IRQ(0))
		complete(&lradc->completion);

	writel(reg & LRADC_CTRL1_LRADC_IRQ_MASK,
		lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);

	return IRQ_HANDLED;
}

/*
 * Trigger handling
 */
static irqreturn_t mxs_lradc_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *iio = pf->indio_dev;
	struct mxs_lradc *lradc = iio_priv(iio);
	const uint32_t chan_value = LRADC_CH_ACCUMULATE |
		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
	unsigned int i, j = 0;

	for_each_set_bit(i, iio->active_scan_mask, iio->masklength) {
		lradc->buffer[j] = readl(lradc->base + LRADC_CH(j));
		writel(chan_value, lradc->base + LRADC_CH(j));
		lradc->buffer[j] &= LRADC_CH_VALUE_MASK;
		lradc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
		j++;
	}

	if (iio->scan_timestamp) {
		s64 *timestamp = (s64 *)((u8 *)lradc->buffer +
					ALIGN(j, sizeof(s64)));
		*timestamp = pf->timestamp;
	}

	iio_push_to_buffers(iio, (u8 *)lradc->buffer);

	iio_trigger_notify_done(iio->trig);

	return IRQ_HANDLED;
}

static int mxs_lradc_configure_trigger(struct iio_trigger *trig, bool state)
{
	struct iio_dev *iio = trig->private_data;
	struct mxs_lradc *lradc = iio_priv(iio);
	const uint32_t st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;

	writel(LRADC_DELAY_KICK, lradc->base + LRADC_DELAY(0) + st);

	return 0;
}

static const struct iio_trigger_ops mxs_lradc_trigger_ops = {
	.owner = THIS_MODULE,
	.set_trigger_state = &mxs_lradc_configure_trigger,
};

static int mxs_lradc_trigger_init(struct iio_dev *iio)
{
	int ret;
	struct iio_trigger *trig;

	trig = iio_trigger_alloc("%s-dev%i", iio->name, iio->id);
	if (trig == NULL)
		return -ENOMEM;

	trig->dev.parent = iio->dev.parent;
	trig->private_data = iio;
	trig->ops = &mxs_lradc_trigger_ops;

	ret = iio_trigger_register(trig);
	if (ret) {
		iio_trigger_free(trig);
		return ret;
	}

	iio->trig = trig;

	return 0;
}

static void mxs_lradc_trigger_remove(struct iio_dev *iio)
{
	iio_trigger_unregister(iio->trig);
	iio_trigger_free(iio->trig);
}

static int mxs_lradc_buffer_preenable(struct iio_dev *iio)
{
	struct mxs_lradc *lradc = iio_priv(iio);
	struct iio_buffer *buffer = iio->buffer;
	int ret = 0, chan, ofs = 0, enable = 0;
	uint32_t ctrl4 = 0;
	uint32_t ctrl1_irq = 0;
	const uint32_t chan_value = LRADC_CH_ACCUMULATE |
		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
	const int len = bitmap_weight(buffer->scan_mask, LRADC_MAX_TOTAL_CHANS);

	if (!len)
		return -EINVAL;

	/*
	 * Lock the driver so raw access can not be done during buffered
	 * operation. This simplifies the code a lot.
	 */
	ret = mutex_trylock(&lradc->lock);
	if (!ret)
		return -EBUSY;

	lradc->buffer = kmalloc(len * sizeof(*lradc->buffer), GFP_KERNEL);
	if (!lradc->buffer) {
		ret = -ENOMEM;
		goto err_mem;
	}

	ret = iio_sw_buffer_preenable(iio);
	if (ret < 0)
		goto err_buf;

	writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK,
		lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
	writel(0xff, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);

	for_each_set_bit(chan, buffer->scan_mask, LRADC_MAX_TOTAL_CHANS) {
		ctrl4 |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
		ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
		writel(chan_value, lradc->base + LRADC_CH(ofs));
		enable |= 1 << ofs;
		ofs++;
	}

	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
		lradc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);

	writel(ctrl4, lradc->base + LRADC_CTRL4);
	writel(ctrl1_irq, lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);

	writel(enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
		lradc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_SET);

	return 0;

err_buf:
	kfree(lradc->buffer);
err_mem:
	mutex_unlock(&lradc->lock);
	return ret;
}

static int mxs_lradc_buffer_postdisable(struct iio_dev *iio)
{
	struct mxs_lradc *lradc = iio_priv(iio);

	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
		lradc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);

	writel(0xff, lradc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
	writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK,
		lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);

	kfree(lradc->buffer);
	mutex_unlock(&lradc->lock);

	return 0;
}

static bool mxs_lradc_validate_scan_mask(struct iio_dev *iio,
					const unsigned long *mask)
{
	const int mw = bitmap_weight(mask, iio->masklength);

	return mw <= LRADC_MAX_MAPPED_CHANS;
}

static const struct iio_buffer_setup_ops mxs_lradc_buffer_ops = {
	.preenable = &mxs_lradc_buffer_preenable,
	.postenable = &iio_triggered_buffer_postenable,
	.predisable = &iio_triggered_buffer_predisable,
	.postdisable = &mxs_lradc_buffer_postdisable,
	.validate_scan_mask = &mxs_lradc_validate_scan_mask,
};

/*
 * Driver initialization
 */

#define MXS_ADC_CHAN(idx, chan_type) {				\
	.type = (chan_type),					\
	.indexed = 1,						\
	.scan_index = (idx),					\
	.info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT,		\
	.channel = (idx),					\
	.scan_type = {						\
		.sign = 'u',					\
		.realbits = 18,					\
		.storagebits = 32,				\
	},							\
}

static const struct iio_chan_spec mxs_lradc_chan_spec[] = {
	MXS_ADC_CHAN(0, IIO_VOLTAGE),
	MXS_ADC_CHAN(1, IIO_VOLTAGE),
	MXS_ADC_CHAN(2, IIO_VOLTAGE),
	MXS_ADC_CHAN(3, IIO_VOLTAGE),
	MXS_ADC_CHAN(4, IIO_VOLTAGE),
	MXS_ADC_CHAN(5, IIO_VOLTAGE),
	MXS_ADC_CHAN(6, IIO_VOLTAGE),
	MXS_ADC_CHAN(7, IIO_VOLTAGE),	/* VBATT */
	MXS_ADC_CHAN(8, IIO_TEMP),	/* Temp sense 0 */
	MXS_ADC_CHAN(9, IIO_TEMP),	/* Temp sense 1 */
	MXS_ADC_CHAN(10, IIO_VOLTAGE),	/* VDDIO */
	MXS_ADC_CHAN(11, IIO_VOLTAGE),	/* VTH */
	MXS_ADC_CHAN(12, IIO_VOLTAGE),	/* VDDA */
	MXS_ADC_CHAN(13, IIO_VOLTAGE),	/* VDDD */
	MXS_ADC_CHAN(14, IIO_VOLTAGE),	/* VBG */
	MXS_ADC_CHAN(15, IIO_VOLTAGE),	/* VDD5V */
};

static void mxs_lradc_hw_init(struct mxs_lradc *lradc)
{
	int i;
	const uint32_t cfg =
		(LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);

	stmp_reset_block(lradc->base);

	for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++)
		writel(cfg | (1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + i)),
			lradc->base + LRADC_DELAY(i));

	/* Start internal temperature sensing. */
	writel(0, lradc->base + LRADC_CTRL2);
}

static void mxs_lradc_hw_stop(struct mxs_lradc *lradc)
{
	int i;

	writel(LRADC_CTRL1_LRADC_IRQ_EN_MASK,
		lradc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);

	for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++)
		writel(0, lradc->base + LRADC_DELAY(i));
}

static int mxs_lradc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct mxs_lradc *lradc;
	struct iio_dev *iio;
	struct resource *iores;
	int ret = 0;
	int i;

	/* Allocate the IIO device. */
	iio = iio_device_alloc(sizeof(*lradc));
	if (!iio) {
		dev_err(dev, "Failed to allocate IIO device\n");
		return -ENOMEM;
	}

	lradc = iio_priv(iio);

	/* Grab the memory area */
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	lradc->dev = &pdev->dev;
	lradc->base = devm_request_and_ioremap(dev, iores);
	if (!lradc->base) {
		ret = -EADDRNOTAVAIL;
		goto err_addr;
	}

	/* Grab all IRQ sources */
	for (i = 0; i < 13; i++) {
		lradc->irq[i] = platform_get_irq(pdev, i);
		if (lradc->irq[i] < 0) {
			ret = -EINVAL;
			goto err_addr;
		}

		ret = devm_request_irq(dev, lradc->irq[i],
					mxs_lradc_handle_irq, 0,
					mxs_lradc_irq_name[i], iio);
		if (ret)
			goto err_addr;
	}

	platform_set_drvdata(pdev, iio);

	init_completion(&lradc->completion);
	mutex_init(&lradc->lock);

	iio->name = pdev->name;
	iio->dev.parent = &pdev->dev;
	iio->info = &mxs_lradc_iio_info;
	iio->modes = INDIO_DIRECT_MODE;
	iio->channels = mxs_lradc_chan_spec;
	iio->num_channels = ARRAY_SIZE(mxs_lradc_chan_spec);

	ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
				&mxs_lradc_trigger_handler,
				&mxs_lradc_buffer_ops);
	if (ret)
		goto err_addr;

	ret = mxs_lradc_trigger_init(iio);
	if (ret)
		goto err_trig;

	/* Register IIO device. */
	ret = iio_device_register(iio);
	if (ret) {
		dev_err(dev, "Failed to register IIO device\n");
		goto err_dev;
	}

	/* Configure the hardware. */
	mxs_lradc_hw_init(lradc);

	return 0;

err_dev:
	mxs_lradc_trigger_remove(iio);
err_trig:
	iio_triggered_buffer_cleanup(iio);
err_addr:
	iio_device_free(iio);
	return ret;
}

static int mxs_lradc_remove(struct platform_device *pdev)
{
	struct iio_dev *iio = platform_get_drvdata(pdev);
	struct mxs_lradc *lradc = iio_priv(iio);

	mxs_lradc_hw_stop(lradc);

	iio_device_unregister(iio);
	iio_triggered_buffer_cleanup(iio);
	mxs_lradc_trigger_remove(iio);
	iio_device_free(iio);

	return 0;
}

static const struct of_device_id mxs_lradc_dt_ids[] = {
	{ .compatible = "fsl,imx28-lradc", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_lradc_dt_ids);

static struct platform_driver mxs_lradc_driver = {
	.driver	= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
		.of_match_table = mxs_lradc_dt_ids,
	},
	.probe	= mxs_lradc_probe,
	.remove	= mxs_lradc_remove,
};

module_platform_driver(mxs_lradc_driver);

MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_DESCRIPTION("Freescale i.MX28 LRADC driver");
MODULE_LICENSE("GPL v2");