Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
/*
 * fs/f2fs/f2fs.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef _LINUX_F2FS_H
#define _LINUX_F2FS_H

#include <linux/types.h>
#include <linux/page-flags.h>
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>

/*
 * For mount options
 */
#define F2FS_MOUNT_BG_GC		0x00000001
#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
#define F2FS_MOUNT_DISCARD		0x00000004
#define F2FS_MOUNT_NOHEAP		0x00000008
#define F2FS_MOUNT_XATTR_USER		0x00000010
#define F2FS_MOUNT_POSIX_ACL		0x00000020
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040

#define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
#define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)

#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
		typecheck(unsigned long long, b) &&			\
		((long long)((a) - (b)) > 0))

typedef u64 block_t;
typedef u32 nid_t;

struct f2fs_mount_info {
	unsigned int	opt;
};

static inline __u32 f2fs_crc32(void *buff, size_t len)
{
	return crc32_le(F2FS_SUPER_MAGIC, buff, len);
}

static inline bool f2fs_crc_valid(__u32 blk_crc, void *buff, size_t buff_size)
{
	return f2fs_crc32(buff, buff_size) == blk_crc;
}

/*
 * For checkpoint manager
 */
enum {
	NAT_BITMAP,
	SIT_BITMAP
};

/* for the list of orphan inodes */
struct orphan_inode_entry {
	struct list_head list;	/* list head */
	nid_t ino;		/* inode number */
};

/* for the list of directory inodes */
struct dir_inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
};

/* for the list of fsync inodes, used only during recovery */
struct fsync_inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
	block_t blkaddr;	/* block address locating the last inode */
};

#define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
#define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))

#define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
#define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
#define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
#define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)

static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
{
	int before = nats_in_cursum(rs);
	rs->n_nats = cpu_to_le16(before + i);
	return before;
}

static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
{
	int before = sits_in_cursum(rs);
	rs->n_sits = cpu_to_le16(before + i);
	return before;
}

/*
 * For INODE and NODE manager
 */
#define XATTR_NODE_OFFSET	(-1)	/*
					 * store xattrs to one node block per
					 * file keeping -1 as its node offset to
					 * distinguish from index node blocks.
					 */
#define RDONLY_NODE		1	/*
					 * specify a read-only mode when getting
					 * a node block. 0 is read-write mode.
					 * used by get_dnode_of_data().
					 */
#define F2FS_LINK_MAX		32000	/* maximum link count per file */

/* for in-memory extent cache entry */
struct extent_info {
	rwlock_t ext_lock;	/* rwlock for consistency */
	unsigned int fofs;	/* start offset in a file */
	u32 blk_addr;		/* start block address of the extent */
	unsigned int len;	/* lenth of the extent */
};

/*
 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
 */
#define FADVISE_COLD_BIT	0x01

struct f2fs_inode_info {
	struct inode vfs_inode;		/* serve a vfs inode */
	unsigned long i_flags;		/* keep an inode flags for ioctl */
	unsigned char i_advise;		/* use to give file attribute hints */
	unsigned int i_current_depth;	/* use only in directory structure */
	unsigned int i_pino;		/* parent inode number */
	umode_t i_acl_mode;		/* keep file acl mode temporarily */

	/* Use below internally in f2fs*/
	unsigned long flags;		/* use to pass per-file flags */
	unsigned long long data_version;/* lastes version of data for fsync */
	atomic_t dirty_dents;		/* # of dirty dentry pages */
	f2fs_hash_t chash;		/* hash value of given file name */
	unsigned int clevel;		/* maximum level of given file name */
	nid_t i_xattr_nid;		/* node id that contains xattrs */
	struct extent_info ext;		/* in-memory extent cache entry */
};

static inline void get_extent_info(struct extent_info *ext,
					struct f2fs_extent i_ext)
{
	write_lock(&ext->ext_lock);
	ext->fofs = le32_to_cpu(i_ext.fofs);
	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
	ext->len = le32_to_cpu(i_ext.len);
	write_unlock(&ext->ext_lock);
}

static inline void set_raw_extent(struct extent_info *ext,
					struct f2fs_extent *i_ext)
{
	read_lock(&ext->ext_lock);
	i_ext->fofs = cpu_to_le32(ext->fofs);
	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
	i_ext->len = cpu_to_le32(ext->len);
	read_unlock(&ext->ext_lock);
}

struct f2fs_nm_info {
	block_t nat_blkaddr;		/* base disk address of NAT */
	nid_t max_nid;			/* maximum possible node ids */
	nid_t init_scan_nid;		/* the first nid to be scanned */
	nid_t next_scan_nid;		/* the next nid to be scanned */

	/* NAT cache management */
	struct radix_tree_root nat_root;/* root of the nat entry cache */
	rwlock_t nat_tree_lock;		/* protect nat_tree_lock */
	unsigned int nat_cnt;		/* the # of cached nat entries */
	struct list_head nat_entries;	/* cached nat entry list (clean) */
	struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */

	/* free node ids management */
	struct list_head free_nid_list;	/* a list for free nids */
	spinlock_t free_nid_list_lock;	/* protect free nid list */
	unsigned int fcnt;		/* the number of free node id */
	struct mutex build_lock;	/* lock for build free nids */

	/* for checkpoint */
	char *nat_bitmap;		/* NAT bitmap pointer */
	int bitmap_size;		/* bitmap size */
};

/*
 * this structure is used as one of function parameters.
 * all the information are dedicated to a given direct node block determined
 * by the data offset in a file.
 */
struct dnode_of_data {
	struct inode *inode;		/* vfs inode pointer */
	struct page *inode_page;	/* its inode page, NULL is possible */
	struct page *node_page;		/* cached direct node page */
	nid_t nid;			/* node id of the direct node block */
	unsigned int ofs_in_node;	/* data offset in the node page */
	bool inode_page_locked;		/* inode page is locked or not */
	block_t	data_blkaddr;		/* block address of the node block */
};

static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
		struct page *ipage, struct page *npage, nid_t nid)
{
	memset(dn, 0, sizeof(*dn));
	dn->inode = inode;
	dn->inode_page = ipage;
	dn->node_page = npage;
	dn->nid = nid;
}

/*
 * For SIT manager
 *
 * By default, there are 6 active log areas across the whole main area.
 * When considering hot and cold data separation to reduce cleaning overhead,
 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
 * respectively.
 * In the current design, you should not change the numbers intentionally.
 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
 * logs individually according to the underlying devices. (default: 6)
 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
 * data and 8 for node logs.
 */
#define	NR_CURSEG_DATA_TYPE	(3)
#define NR_CURSEG_NODE_TYPE	(3)
#define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)

enum {
	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
	CURSEG_WARM_DATA,	/* data blocks */
	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
	CURSEG_COLD_NODE,	/* indirect node blocks */
	NO_CHECK_TYPE
};

struct f2fs_sm_info {
	struct sit_info *sit_info;		/* whole segment information */
	struct free_segmap_info *free_info;	/* free segment information */
	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
	struct curseg_info *curseg_array;	/* active segment information */

	struct list_head wblist_head;	/* list of under-writeback pages */
	spinlock_t wblist_lock;		/* lock for checkpoint */

	block_t seg0_blkaddr;		/* block address of 0'th segment */
	block_t main_blkaddr;		/* start block address of main area */
	block_t ssa_blkaddr;		/* start block address of SSA area */

	unsigned int segment_count;	/* total # of segments */
	unsigned int main_segments;	/* # of segments in main area */
	unsigned int reserved_segments;	/* # of reserved segments */
	unsigned int ovp_segments;	/* # of overprovision segments */
};

/*
 * For directory operation
 */
#define	NODE_DIR1_BLOCK		(ADDRS_PER_INODE + 1)
#define	NODE_DIR2_BLOCK		(ADDRS_PER_INODE + 2)
#define	NODE_IND1_BLOCK		(ADDRS_PER_INODE + 3)
#define	NODE_IND2_BLOCK		(ADDRS_PER_INODE + 4)
#define	NODE_DIND_BLOCK		(ADDRS_PER_INODE + 5)

/*
 * For superblock
 */
/*
 * COUNT_TYPE for monitoring
 *
 * f2fs monitors the number of several block types such as on-writeback,
 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
 */
enum count_type {
	F2FS_WRITEBACK,
	F2FS_DIRTY_DENTS,
	F2FS_DIRTY_NODES,
	F2FS_DIRTY_META,
	NR_COUNT_TYPE,
};

/*
 * FS_LOCK nesting subclasses for the lock validator:
 *
 * The locking order between these classes is
 * RENAME -> DENTRY_OPS -> DATA_WRITE -> DATA_NEW
 *    -> DATA_TRUNC -> NODE_WRITE -> NODE_NEW -> NODE_TRUNC
 */
enum lock_type {
	RENAME,		/* for renaming operations */
	DENTRY_OPS,	/* for directory operations */
	DATA_WRITE,	/* for data write */
	DATA_NEW,	/* for data allocation */
	DATA_TRUNC,	/* for data truncate */
	NODE_NEW,	/* for node allocation */
	NODE_TRUNC,	/* for node truncate */
	NODE_WRITE,	/* for node write */
	NR_LOCK_TYPE,
};

/*
 * The below are the page types of bios used in submti_bio().
 * The available types are:
 * DATA			User data pages. It operates as async mode.
 * NODE			Node pages. It operates as async mode.
 * META			FS metadata pages such as SIT, NAT, CP.
 * NR_PAGE_TYPE		The number of page types.
 * META_FLUSH		Make sure the previous pages are written
 *			with waiting the bio's completion
 * ...			Only can be used with META.
 */
enum page_type {
	DATA,
	NODE,
	META,
	NR_PAGE_TYPE,
	META_FLUSH,
};

struct f2fs_sb_info {
	struct super_block *sb;			/* pointer to VFS super block */
	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
	struct f2fs_super_block *raw_super;	/* raw super block pointer */
	int s_dirty;				/* dirty flag for checkpoint */

	/* for node-related operations */
	struct f2fs_nm_info *nm_info;		/* node manager */
	struct inode *node_inode;		/* cache node blocks */

	/* for segment-related operations */
	struct f2fs_sm_info *sm_info;		/* segment manager */
	struct bio *bio[NR_PAGE_TYPE];		/* bios to merge */
	sector_t last_block_in_bio[NR_PAGE_TYPE];	/* last block number */
	struct rw_semaphore bio_sem;		/* IO semaphore */

	/* for checkpoint */
	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
	struct inode *meta_inode;		/* cache meta blocks */
	struct mutex cp_mutex;			/* for checkpoint procedure */
	struct mutex fs_lock[NR_LOCK_TYPE];	/* for blocking FS operations */
	struct mutex write_inode;		/* mutex for write inode */
	struct mutex writepages;		/* mutex for writepages() */
	int por_doing;				/* recovery is doing or not */

	/* for orphan inode management */
	struct list_head orphan_inode_list;	/* orphan inode list */
	struct mutex orphan_inode_mutex;	/* for orphan inode list */
	unsigned int n_orphans;			/* # of orphan inodes */

	/* for directory inode management */
	struct list_head dir_inode_list;	/* dir inode list */
	spinlock_t dir_inode_lock;		/* for dir inode list lock */
	unsigned int n_dirty_dirs;		/* # of dir inodes */

	/* basic file system units */
	unsigned int log_sectors_per_block;	/* log2 sectors per block */
	unsigned int log_blocksize;		/* log2 block size */
	unsigned int blocksize;			/* block size */
	unsigned int root_ino_num;		/* root inode number*/
	unsigned int node_ino_num;		/* node inode number*/
	unsigned int meta_ino_num;		/* meta inode number*/
	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
	unsigned int blocks_per_seg;		/* blocks per segment */
	unsigned int segs_per_sec;		/* segments per section */
	unsigned int secs_per_zone;		/* sections per zone */
	unsigned int total_sections;		/* total section count */
	unsigned int total_node_count;		/* total node block count */
	unsigned int total_valid_node_count;	/* valid node block count */
	unsigned int total_valid_inode_count;	/* valid inode count */
	int active_logs;			/* # of active logs */

	block_t user_block_count;		/* # of user blocks */
	block_t total_valid_block_count;	/* # of valid blocks */
	block_t alloc_valid_block_count;	/* # of allocated blocks */
	block_t last_valid_block_count;		/* for recovery */
	u32 s_next_generation;			/* for NFS support */
	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */

	struct f2fs_mount_info mount_opt;	/* mount options */

	/* for cleaning operations */
	struct mutex gc_mutex;			/* mutex for GC */
	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */

	/*
	 * for stat information.
	 * one is for the LFS mode, and the other is for the SSR mode.
	 */
	struct f2fs_stat_info *stat_info;	/* FS status information */
	unsigned int segment_count[2];		/* # of allocated segments */
	unsigned int block_count[2];		/* # of allocated blocks */
	unsigned int last_victim[2];		/* last victim segment # */
	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
	int bg_gc;				/* background gc calls */
	spinlock_t stat_lock;			/* lock for stat operations */
};

/*
 * Inline functions
 */
static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
{
	return container_of(inode, struct f2fs_inode_info, vfs_inode);
}

static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
{
	return sb->s_fs_info;
}

static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_super_block *)(sbi->raw_super);
}

static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_checkpoint *)(sbi->ckpt);
}

static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_nm_info *)(sbi->nm_info);
}

static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_sm_info *)(sbi->sm_info);
}

static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
	return (struct sit_info *)(SM_I(sbi)->sit_info);
}

static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
{
	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
}

static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
{
	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
}

static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
{
	sbi->s_dirty = 1;
}

static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
{
	sbi->s_dirty = 0;
}

static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	return ckpt_flags & f;
}

static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags |= f;
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags &= (~f);
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

static inline void mutex_lock_op(struct f2fs_sb_info *sbi, enum lock_type t)
{
	mutex_lock_nested(&sbi->fs_lock[t], t);
}

static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, enum lock_type t)
{
	mutex_unlock(&sbi->fs_lock[t]);
}

/*
 * Check whether the given nid is within node id range.
 */
static inline void check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
{
	BUG_ON((nid >= NM_I(sbi)->max_nid));
}

#define F2FS_DEFAULT_ALLOCATED_BLOCKS	1

/*
 * Check whether the inode has blocks or not
 */
static inline int F2FS_HAS_BLOCKS(struct inode *inode)
{
	if (F2FS_I(inode)->i_xattr_nid)
		return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1);
	else
		return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS);
}

static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
				 struct inode *inode, blkcnt_t count)
{
	block_t	valid_block_count;

	spin_lock(&sbi->stat_lock);
	valid_block_count =
		sbi->total_valid_block_count + (block_t)count;
	if (valid_block_count > sbi->user_block_count) {
		spin_unlock(&sbi->stat_lock);
		return false;
	}
	inode->i_blocks += count;
	sbi->total_valid_block_count = valid_block_count;
	sbi->alloc_valid_block_count += (block_t)count;
	spin_unlock(&sbi->stat_lock);
	return true;
}

static inline int dec_valid_block_count(struct f2fs_sb_info *sbi,
						struct inode *inode,
						blkcnt_t count)
{
	spin_lock(&sbi->stat_lock);
	BUG_ON(sbi->total_valid_block_count < (block_t) count);
	BUG_ON(inode->i_blocks < count);
	inode->i_blocks -= count;
	sbi->total_valid_block_count -= (block_t)count;
	spin_unlock(&sbi->stat_lock);
	return 0;
}

static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_inc(&sbi->nr_pages[count_type]);
	F2FS_SET_SB_DIRT(sbi);
}

static inline void inode_inc_dirty_dents(struct inode *inode)
{
	atomic_inc(&F2FS_I(inode)->dirty_dents);
}

static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_dec(&sbi->nr_pages[count_type]);
}

static inline void inode_dec_dirty_dents(struct inode *inode)
{
	atomic_dec(&F2FS_I(inode)->dirty_dents);
}

static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
{
	return atomic_read(&sbi->nr_pages[count_type]);
}

static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
{
	block_t ret;
	spin_lock(&sbi->stat_lock);
	ret = sbi->total_valid_block_count;
	spin_unlock(&sbi->stat_lock);
	return ret;
}

static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);

	/* return NAT or SIT bitmap */
	if (flag == NAT_BITMAP)
		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
	else if (flag == SIT_BITMAP)
		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);

	return 0;
}

static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
	int offset = (flag == NAT_BITMAP) ?
			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
	return &ckpt->sit_nat_version_bitmap + offset;
}

static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
	block_t start_addr;
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
	unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver);

	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);

	/*
	 * odd numbered checkpoint should at cp segment 0
	 * and even segent must be at cp segment 1
	 */
	if (!(ckpt_version & 1))
		start_addr += sbi->blocks_per_seg;

	return start_addr;
}

static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
						struct inode *inode,
						unsigned int count)
{
	block_t	valid_block_count;
	unsigned int valid_node_count;

	spin_lock(&sbi->stat_lock);

	valid_block_count = sbi->total_valid_block_count + (block_t)count;
	sbi->alloc_valid_block_count += (block_t)count;
	valid_node_count = sbi->total_valid_node_count + count;

	if (valid_block_count > sbi->user_block_count) {
		spin_unlock(&sbi->stat_lock);
		return false;
	}

	if (valid_node_count > sbi->total_node_count) {
		spin_unlock(&sbi->stat_lock);
		return false;
	}

	if (inode)
		inode->i_blocks += count;
	sbi->total_valid_node_count = valid_node_count;
	sbi->total_valid_block_count = valid_block_count;
	spin_unlock(&sbi->stat_lock);

	return true;
}

static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
						struct inode *inode,
						unsigned int count)
{
	spin_lock(&sbi->stat_lock);

	BUG_ON(sbi->total_valid_block_count < count);
	BUG_ON(sbi->total_valid_node_count < count);
	BUG_ON(inode->i_blocks < count);

	inode->i_blocks -= count;
	sbi->total_valid_node_count -= count;
	sbi->total_valid_block_count -= (block_t)count;

	spin_unlock(&sbi->stat_lock);
}

static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
{
	unsigned int ret;
	spin_lock(&sbi->stat_lock);
	ret = sbi->total_valid_node_count;
	spin_unlock(&sbi->stat_lock);
	return ret;
}

static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
{
	spin_lock(&sbi->stat_lock);
	BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count);
	sbi->total_valid_inode_count++;
	spin_unlock(&sbi->stat_lock);
}

static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi)
{
	spin_lock(&sbi->stat_lock);
	BUG_ON(!sbi->total_valid_inode_count);
	sbi->total_valid_inode_count--;
	spin_unlock(&sbi->stat_lock);
	return 0;
}

static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
{
	unsigned int ret;
	spin_lock(&sbi->stat_lock);
	ret = sbi->total_valid_inode_count;
	spin_unlock(&sbi->stat_lock);
	return ret;
}

static inline void f2fs_put_page(struct page *page, int unlock)
{
	if (!page || IS_ERR(page))
		return;

	if (unlock) {
		BUG_ON(!PageLocked(page));
		unlock_page(page);
	}
	page_cache_release(page);
}

static inline void f2fs_put_dnode(struct dnode_of_data *dn)
{
	if (dn->node_page)
		f2fs_put_page(dn->node_page, 1);
	if (dn->inode_page && dn->node_page != dn->inode_page)
		f2fs_put_page(dn->inode_page, 0);
	dn->node_page = NULL;
	dn->inode_page = NULL;
}

static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
					size_t size, void (*ctor)(void *))
{
	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor);
}

#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)

static inline bool IS_INODE(struct page *page)
{
	struct f2fs_node *p = (struct f2fs_node *)page_address(page);
	return RAW_IS_INODE(p);
}

static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
{
	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
}

static inline block_t datablock_addr(struct page *node_page,
		unsigned int offset)
{
	struct f2fs_node *raw_node;
	__le32 *addr_array;
	raw_node = (struct f2fs_node *)page_address(node_page);
	addr_array = blkaddr_in_node(raw_node);
	return le32_to_cpu(addr_array[offset]);
}

static inline int f2fs_test_bit(unsigned int nr, char *addr)
{
	int mask;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	return mask & *addr;
}

static inline int f2fs_set_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	ret = mask & *addr;
	*addr |= mask;
	return ret;
}

static inline int f2fs_clear_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	ret = mask & *addr;
	*addr &= ~mask;
	return ret;
}

/* used for f2fs_inode_info->flags */
enum {
	FI_NEW_INODE,		/* indicate newly allocated inode */
	FI_NEED_CP,		/* need to do checkpoint during fsync */
	FI_INC_LINK,		/* need to increment i_nlink */
	FI_ACL_MODE,		/* indicate acl mode */
	FI_NO_ALLOC,		/* should not allocate any blocks */
};

static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	set_bit(flag, &fi->flags);
}

static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
{
	return test_bit(flag, &fi->flags);
}

static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	clear_bit(flag, &fi->flags);
}

static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
{
	fi->i_acl_mode = mode;
	set_inode_flag(fi, FI_ACL_MODE);
}

static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	if (is_inode_flag_set(fi, FI_ACL_MODE)) {
		clear_inode_flag(fi, FI_ACL_MODE);
		return 1;
	}
	return 0;
}

/*
 * file.c
 */
int f2fs_sync_file(struct file *, loff_t, loff_t, int);
void truncate_data_blocks(struct dnode_of_data *);
void f2fs_truncate(struct inode *);
int f2fs_setattr(struct dentry *, struct iattr *);
int truncate_hole(struct inode *, pgoff_t, pgoff_t);
long f2fs_ioctl(struct file *, unsigned int, unsigned long);

/*
 * inode.c
 */
void f2fs_set_inode_flags(struct inode *);
struct inode *f2fs_iget_nowait(struct super_block *, unsigned long);
struct inode *f2fs_iget(struct super_block *, unsigned long);
void update_inode(struct inode *, struct page *);
int f2fs_write_inode(struct inode *, struct writeback_control *);
void f2fs_evict_inode(struct inode *);

/*
 * namei.c
 */
struct dentry *f2fs_get_parent(struct dentry *child);

/*
 * dir.c
 */
struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
							struct page **);
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
				struct page *, struct inode *);
void init_dent_inode(struct dentry *, struct page *);
int f2fs_add_link(struct dentry *, struct inode *);
void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
int f2fs_make_empty(struct inode *, struct inode *);
bool f2fs_empty_dir(struct inode *);

/*
 * super.c
 */
int f2fs_sync_fs(struct super_block *, int);
extern __printf(3, 4)
void f2fs_msg(struct super_block *, const char *, const char *, ...);

/*
 * hash.c
 */
f2fs_hash_t f2fs_dentry_hash(const char *, size_t);

/*
 * node.c
 */
struct dnode_of_data;
struct node_info;

int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
int truncate_inode_blocks(struct inode *, pgoff_t);
int remove_inode_page(struct inode *);
int new_inode_page(struct inode *, struct dentry *);
struct page *new_node_page(struct dnode_of_data *, unsigned int);
void ra_node_page(struct f2fs_sb_info *, nid_t);
struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_node_page_ra(struct page *, int);
void sync_inode_page(struct dnode_of_data *);
int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
bool alloc_nid(struct f2fs_sb_info *, nid_t *);
void alloc_nid_done(struct f2fs_sb_info *, nid_t);
void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
void recover_node_page(struct f2fs_sb_info *, struct page *,
		struct f2fs_summary *, struct node_info *, block_t);
int recover_inode_page(struct f2fs_sb_info *, struct page *);
int restore_node_summary(struct f2fs_sb_info *, unsigned int,
				struct f2fs_summary_block *);
void flush_nat_entries(struct f2fs_sb_info *);
int build_node_manager(struct f2fs_sb_info *);
void destroy_node_manager(struct f2fs_sb_info *);
int __init create_node_manager_caches(void);
void destroy_node_manager_caches(void);

/*
 * segment.c
 */
void f2fs_balance_fs(struct f2fs_sb_info *);
void invalidate_blocks(struct f2fs_sb_info *, block_t);
void locate_dirty_segment(struct f2fs_sb_info *, unsigned int);
void clear_prefree_segments(struct f2fs_sb_info *);
int npages_for_summary_flush(struct f2fs_sb_info *);
void allocate_new_segments(struct f2fs_sb_info *);
struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
struct bio *f2fs_bio_alloc(struct block_device *, int);
void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync);
int write_meta_page(struct f2fs_sb_info *, struct page *,
					struct writeback_control *);
void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int,
					block_t, block_t *);
void write_data_page(struct inode *, struct page *, struct dnode_of_data*,
					block_t, block_t *);
void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t);
void recover_data_page(struct f2fs_sb_info *, struct page *,
				struct f2fs_summary *, block_t, block_t);
void rewrite_node_page(struct f2fs_sb_info *, struct page *,
				struct f2fs_summary *, block_t, block_t);
void write_data_summaries(struct f2fs_sb_info *, block_t);
void write_node_summaries(struct f2fs_sb_info *, block_t);
int lookup_journal_in_cursum(struct f2fs_summary_block *,
					int, unsigned int, int);
void flush_sit_entries(struct f2fs_sb_info *);
int build_segment_manager(struct f2fs_sb_info *);
void reset_victim_segmap(struct f2fs_sb_info *);
void destroy_segment_manager(struct f2fs_sb_info *);

/*
 * checkpoint.c
 */
struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
int check_orphan_space(struct f2fs_sb_info *);
void add_orphan_inode(struct f2fs_sb_info *, nid_t);
void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
int recover_orphan_inodes(struct f2fs_sb_info *);
int get_valid_checkpoint(struct f2fs_sb_info *);
void set_dirty_dir_page(struct inode *, struct page *);
void remove_dirty_dir_inode(struct inode *);
void sync_dirty_dir_inodes(struct f2fs_sb_info *);
void block_operations(struct f2fs_sb_info *);
void write_checkpoint(struct f2fs_sb_info *, bool, bool);
void init_orphan_info(struct f2fs_sb_info *);
int __init create_checkpoint_caches(void);
void destroy_checkpoint_caches(void);

/*
 * data.c
 */
int reserve_new_block(struct dnode_of_data *);
void update_extent_cache(block_t, struct dnode_of_data *);
struct page *find_data_page(struct inode *, pgoff_t);
struct page *get_lock_data_page(struct inode *, pgoff_t);
struct page *get_new_data_page(struct inode *, pgoff_t, bool);
int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int);
int do_write_data_page(struct page *);

/*
 * gc.c
 */
int start_gc_thread(struct f2fs_sb_info *);
void stop_gc_thread(struct f2fs_sb_info *);
block_t start_bidx_of_node(unsigned int);
int f2fs_gc(struct f2fs_sb_info *);
void build_gc_manager(struct f2fs_sb_info *);
int __init create_gc_caches(void);
void destroy_gc_caches(void);

/*
 * recovery.c
 */
void recover_fsync_data(struct f2fs_sb_info *);
bool space_for_roll_forward(struct f2fs_sb_info *);

/*
 * debug.c
 */
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info {
	struct list_head stat_list;
	struct f2fs_sb_info *sbi;
	struct mutex stat_lock;
	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
	int main_area_segs, main_area_sections, main_area_zones;
	int hit_ext, total_ext;
	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
	int nats, sits, fnids;
	int total_count, utilization;
	int bg_gc;
	unsigned int valid_count, valid_node_count, valid_inode_count;
	unsigned int bimodal, avg_vblocks;
	int util_free, util_valid, util_invalid;
	int rsvd_segs, overp_segs;
	int dirty_count, node_pages, meta_pages;
	int prefree_count, call_count;
	int tot_segs, node_segs, data_segs, free_segs, free_secs;
	int tot_blks, data_blks, node_blks;
	int curseg[NR_CURSEG_TYPE];
	int cursec[NR_CURSEG_TYPE];
	int curzone[NR_CURSEG_TYPE];

	unsigned int segment_count[2];
	unsigned int block_count[2];
	unsigned base_mem, cache_mem;
};

#define stat_inc_call_count(si)	((si)->call_count++)

#define stat_inc_seg_count(sbi, type)					\
	do {								\
		struct f2fs_stat_info *si = sbi->stat_info;		\
		(si)->tot_segs++;					\
		if (type == SUM_TYPE_DATA)				\
			si->data_segs++;				\
		else							\
			si->node_segs++;				\
	} while (0)

#define stat_inc_tot_blk_count(si, blks)				\
	(si->tot_blks += (blks))

#define stat_inc_data_blk_count(sbi, blks)				\
	do {								\
		struct f2fs_stat_info *si = sbi->stat_info;		\
		stat_inc_tot_blk_count(si, blks);			\
		si->data_blks += (blks);				\
	} while (0)

#define stat_inc_node_blk_count(sbi, blks)				\
	do {								\
		struct f2fs_stat_info *si = sbi->stat_info;		\
		stat_inc_tot_blk_count(si, blks);			\
		si->node_blks += (blks);				\
	} while (0)

int f2fs_build_stats(struct f2fs_sb_info *);
void f2fs_destroy_stats(struct f2fs_sb_info *);
void __init f2fs_create_root_stats(void);
void f2fs_destroy_root_stats(void);
#else
#define stat_inc_call_count(si)
#define stat_inc_seg_count(si, type)
#define stat_inc_tot_blk_count(si, blks)
#define stat_inc_data_blk_count(si, blks)
#define stat_inc_node_blk_count(sbi, blks)

static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
static inline void __init f2fs_create_root_stats(void) { }
static inline void f2fs_destroy_root_stats(void) { }
#endif

extern const struct file_operations f2fs_dir_operations;
extern const struct file_operations f2fs_file_operations;
extern const struct inode_operations f2fs_file_inode_operations;
extern const struct address_space_operations f2fs_dblock_aops;
extern const struct address_space_operations f2fs_node_aops;
extern const struct address_space_operations f2fs_meta_aops;
extern const struct inode_operations f2fs_dir_inode_operations;
extern const struct inode_operations f2fs_symlink_inode_operations;
extern const struct inode_operations f2fs_special_inode_operations;
#endif