Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
/*
 * drv.c
 *
 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
 *
 * DSP/BIOS Bridge resource allocation module.
 *
 * Copyright (C) 2005-2006 Texas Instruments, Inc.
 *
 * This package is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */
#include <linux/types.h>
#include <linux/list.h>

/*  ----------------------------------- Host OS */
#include <dspbridge/host_os.h>

/*  ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/dbdefs.h>

/*  ----------------------------------- This */
#include <dspbridge/drv.h>
#include <dspbridge/dev.h>

#include <dspbridge/node.h>
#include <dspbridge/proc.h>
#include <dspbridge/strm.h>
#include <dspbridge/nodepriv.h>
#include <dspbridge/dspchnl.h>
#include <dspbridge/resourcecleanup.h>

/*  ----------------------------------- Defines, Data Structures, Typedefs */
struct drv_object {
	struct list_head dev_list;
	struct list_head dev_node_string;
};

/*
 *  This is the Device Extension. Named with the Prefix
 *  DRV_ since it is living in this module
 */
struct drv_ext {
	struct list_head link;
	char sz_string[MAXREGPATHLENGTH];
};

/*  ----------------------------------- Globals */
static bool ext_phys_mem_pool_enabled;
struct ext_phys_mem_pool {
	u32 phys_mem_base;
	u32 phys_mem_size;
	u32 virt_mem_base;
	u32 next_phys_alloc_ptr;
};
static struct ext_phys_mem_pool ext_mem_pool;

/*  ----------------------------------- Function Prototypes */
static int request_bridge_resources(struct cfg_hostres *res);


/* GPP PROCESS CLEANUP CODE */

static int drv_proc_free_node_res(int id, void *p, void *data);

/* Allocate and add a node resource element
* This function is called from .Node_Allocate. */
int drv_insert_node_res_element(void *hnode, void *node_resource,
				       void *process_ctxt)
{
	struct node_res_object **node_res_obj =
	    (struct node_res_object **)node_resource;
	struct process_context *ctxt = (struct process_context *)process_ctxt;
	int status = 0;
	int retval;

	*node_res_obj = kzalloc(sizeof(struct node_res_object), GFP_KERNEL);
	if (!*node_res_obj) {
		status = -ENOMEM;
		goto func_end;
	}

	(*node_res_obj)->node = hnode;
	retval = idr_get_new(ctxt->node_id, *node_res_obj,
						&(*node_res_obj)->id);
	if (retval == -EAGAIN) {
		if (!idr_pre_get(ctxt->node_id, GFP_KERNEL)) {
			pr_err("%s: OUT OF MEMORY\n", __func__);
			status = -ENOMEM;
			goto func_end;
		}

		retval = idr_get_new(ctxt->node_id, *node_res_obj,
						&(*node_res_obj)->id);
	}
	if (retval) {
		pr_err("%s: FAILED, IDR is FULL\n", __func__);
		status = -EFAULT;
	}
func_end:
	if (status)
		kfree(*node_res_obj);

	return status;
}

/* Release all Node resources and its context
 * Actual Node De-Allocation */
static int drv_proc_free_node_res(int id, void *p, void *data)
{
	struct process_context *ctxt = data;
	int status;
	struct node_res_object *node_res_obj = p;
	u32 node_state;

	if (node_res_obj->node_allocated) {
		node_state = node_get_state(node_res_obj->node);
		if (node_state <= NODE_DELETING) {
			if ((node_state == NODE_RUNNING) ||
			    (node_state == NODE_PAUSED) ||
			    (node_state == NODE_TERMINATING))
				node_terminate
				    (node_res_obj->node, &status);

			node_delete(node_res_obj, ctxt);
		}
	}

	return 0;
}

/* Release all Mapped and Reserved DMM resources */
int drv_remove_all_dmm_res_elements(void *process_ctxt)
{
	struct process_context *ctxt = (struct process_context *)process_ctxt;
	int status = 0;
	struct dmm_map_object *temp_map, *map_obj;
	struct dmm_rsv_object *temp_rsv, *rsv_obj;

	/* Free DMM mapped memory resources */
	list_for_each_entry_safe(map_obj, temp_map, &ctxt->dmm_map_list, link) {
		status = proc_un_map(ctxt->processor,
				     (void *)map_obj->dsp_addr, ctxt);
		if (status)
			pr_err("%s: proc_un_map failed!"
			       " status = 0x%xn", __func__, status);
	}

	/* Free DMM reserved memory resources */
	list_for_each_entry_safe(rsv_obj, temp_rsv, &ctxt->dmm_rsv_list, link) {
		status = proc_un_reserve_memory(ctxt->processor, (void *)
						rsv_obj->dsp_reserved_addr,
						ctxt);
		if (status)
			pr_err("%s: proc_un_reserve_memory failed!"
			       " status = 0x%xn", __func__, status);
	}
	return status;
}

/* Update Node allocation status */
void drv_proc_node_update_status(void *node_resource, s32 status)
{
	struct node_res_object *node_res_obj =
	    (struct node_res_object *)node_resource;
	node_res_obj->node_allocated = status;
}

/* Update Node Heap status */
void drv_proc_node_update_heap_status(void *node_resource, s32 status)
{
	struct node_res_object *node_res_obj =
	    (struct node_res_object *)node_resource;
	node_res_obj->heap_allocated = status;
}

/* Release all Node resources and its context
* This is called from .bridge_release.
 */
int drv_remove_all_node_res_elements(void *process_ctxt)
{
	struct process_context *ctxt = process_ctxt;

	idr_for_each(ctxt->node_id, drv_proc_free_node_res, ctxt);
	idr_destroy(ctxt->node_id);

	return 0;
}

/* Allocate the STRM resource element
* This is called after the actual resource is allocated
 */
int drv_proc_insert_strm_res_element(void *stream_obj,
					    void *strm_res, void *process_ctxt)
{
	struct strm_res_object **pstrm_res =
	    (struct strm_res_object **)strm_res;
	struct process_context *ctxt = (struct process_context *)process_ctxt;
	int status = 0;
	int retval;

	*pstrm_res = kzalloc(sizeof(struct strm_res_object), GFP_KERNEL);
	if (*pstrm_res == NULL) {
		status = -EFAULT;
		goto func_end;
	}

	(*pstrm_res)->stream = stream_obj;
	retval = idr_get_new(ctxt->stream_id, *pstrm_res,
						&(*pstrm_res)->id);
	if (retval == -EAGAIN) {
		if (!idr_pre_get(ctxt->stream_id, GFP_KERNEL)) {
			pr_err("%s: OUT OF MEMORY\n", __func__);
			status = -ENOMEM;
			goto func_end;
		}

		retval = idr_get_new(ctxt->stream_id, *pstrm_res,
						&(*pstrm_res)->id);
	}
	if (retval) {
		pr_err("%s: FAILED, IDR is FULL\n", __func__);
		status = -EPERM;
	}

func_end:
	return status;
}

static int drv_proc_free_strm_res(int id, void *p, void *process_ctxt)
{
	struct process_context *ctxt = process_ctxt;
	struct strm_res_object *strm_res = p;
	struct stream_info strm_info;
	struct dsp_streaminfo user;
	u8 **ap_buffer = NULL;
	u8 *buf_ptr;
	u32 ul_bytes;
	u32 dw_arg;
	s32 ul_buf_size;

	if (strm_res->num_bufs) {
		ap_buffer = kmalloc((strm_res->num_bufs *
				       sizeof(u8 *)), GFP_KERNEL);
		if (ap_buffer) {
			strm_free_buffer(strm_res,
						  ap_buffer,
						  strm_res->num_bufs,
						  ctxt);
			kfree(ap_buffer);
		}
	}
	strm_info.user_strm = &user;
	user.number_bufs_in_stream = 0;
	strm_get_info(strm_res->stream, &strm_info, sizeof(strm_info));
	while (user.number_bufs_in_stream--)
		strm_reclaim(strm_res->stream, &buf_ptr, &ul_bytes,
			     (u32 *) &ul_buf_size, &dw_arg);
	strm_close(strm_res, ctxt);
	return 0;
}

/* Release all Stream resources and its context
* This is called from .bridge_release.
 */
int drv_remove_all_strm_res_elements(void *process_ctxt)
{
	struct process_context *ctxt = process_ctxt;

	idr_for_each(ctxt->stream_id, drv_proc_free_strm_res, ctxt);
	idr_destroy(ctxt->stream_id);

	return 0;
}

/* Updating the stream resource element */
int drv_proc_update_strm_res(u32 num_bufs, void *strm_resources)
{
	int status = 0;
	struct strm_res_object **strm_res =
	    (struct strm_res_object **)strm_resources;

	(*strm_res)->num_bufs = num_bufs;
	return status;
}

/* GPP PROCESS CLEANUP CODE END */

/*
 *  ======== = drv_create ======== =
 *  Purpose:
 *      DRV Object gets created only once during Driver Loading.
 */
int drv_create(struct drv_object **drv_obj)
{
	int status = 0;
	struct drv_object *pdrv_object = NULL;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);

	pdrv_object = kzalloc(sizeof(struct drv_object), GFP_KERNEL);
	if (pdrv_object) {
		/* Create and Initialize List of device objects */
		INIT_LIST_HEAD(&pdrv_object->dev_list);
		INIT_LIST_HEAD(&pdrv_object->dev_node_string);
	} else {
		status = -ENOMEM;
	}
	/* Store the DRV Object in the driver data */
	if (!status) {
		if (drv_datap) {
			drv_datap->drv_object = (void *)pdrv_object;
		} else {
			status = -EPERM;
			pr_err("%s: Failed to store DRV object\n", __func__);
		}
	}

	if (!status) {
		*drv_obj = pdrv_object;
	} else {
		/* Free the DRV Object */
		kfree(pdrv_object);
	}

	return status;
}

/*
 *  ======== = drv_destroy ======== =
 *  purpose:
 *      Invoked during bridge de-initialization
 */
int drv_destroy(struct drv_object *driver_obj)
{
	int status = 0;
	struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);

	kfree(pdrv_object);
	/* Update the DRV Object in the driver data */
	if (drv_datap) {
		drv_datap->drv_object = NULL;
	} else {
		status = -EPERM;
		pr_err("%s: Failed to store DRV object\n", __func__);
	}

	return status;
}

/*
 *  ======== drv_get_dev_object ========
 *  Purpose:
 *      Given a index, returns a handle to DevObject from the list.
 */
int drv_get_dev_object(u32 index, struct drv_object *hdrv_obj,
			      struct dev_object **device_obj)
{
	int status = 0;
	struct dev_object *dev_obj;
	u32 i;

	dev_obj = (struct dev_object *)drv_get_first_dev_object();
	for (i = 0; i < index; i++) {
		dev_obj =
		    (struct dev_object *)drv_get_next_dev_object((u32) dev_obj);
	}
	if (dev_obj) {
		*device_obj = (struct dev_object *)dev_obj;
	} else {
		*device_obj = NULL;
		status = -EPERM;
	}

	return status;
}

/*
 *  ======== drv_get_first_dev_object ========
 *  Purpose:
 *      Retrieve the first Device Object handle from an internal linked list of
 *      of DEV_OBJECTs maintained by DRV.
 */
u32 drv_get_first_dev_object(void)
{
	u32 dw_dev_object = 0;
	struct drv_object *pdrv_obj;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);

	if (drv_datap && drv_datap->drv_object) {
		pdrv_obj = drv_datap->drv_object;
		if (!list_empty(&pdrv_obj->dev_list))
			dw_dev_object = (u32) pdrv_obj->dev_list.next;
	} else {
		pr_err("%s: Failed to retrieve the object handle\n", __func__);
	}

	return dw_dev_object;
}

/*
 *  ======== DRV_GetFirstDevNodeString ========
 *  Purpose:
 *      Retrieve the first Device Extension from an internal linked list of
 *      of Pointer to dev_node Strings maintained by DRV.
 */
u32 drv_get_first_dev_extension(void)
{
	u32 dw_dev_extension = 0;
	struct drv_object *pdrv_obj;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);

	if (drv_datap && drv_datap->drv_object) {
		pdrv_obj = drv_datap->drv_object;
		if (!list_empty(&pdrv_obj->dev_node_string)) {
			dw_dev_extension =
			    (u32) pdrv_obj->dev_node_string.next;
		}
	} else {
		pr_err("%s: Failed to retrieve the object handle\n", __func__);
	}

	return dw_dev_extension;
}

/*
 *  ======== drv_get_next_dev_object ========
 *  Purpose:
 *      Retrieve the next Device Object handle from an internal linked list of
 *      of DEV_OBJECTs maintained by DRV, after having previously called
 *      drv_get_first_dev_object() and zero or more DRV_GetNext.
 */
u32 drv_get_next_dev_object(u32 hdev_obj)
{
	u32 dw_next_dev_object = 0;
	struct drv_object *pdrv_obj;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);
	struct list_head *curr;

	if (drv_datap && drv_datap->drv_object) {
		pdrv_obj = drv_datap->drv_object;
		if (!list_empty(&pdrv_obj->dev_list)) {
			curr = (struct list_head *)hdev_obj;
			if (list_is_last(curr, &pdrv_obj->dev_list))
				return 0;
			dw_next_dev_object = (u32) curr->next;
		}
	} else {
		pr_err("%s: Failed to retrieve the object handle\n", __func__);
	}

	return dw_next_dev_object;
}

/*
 *  ======== drv_get_next_dev_extension ========
 *  Purpose:
 *      Retrieve the next Device Extension from an internal linked list of
 *      of pointer to DevNodeString maintained by DRV, after having previously
 *      called drv_get_first_dev_extension() and zero or more
 *      drv_get_next_dev_extension().
 */
u32 drv_get_next_dev_extension(u32 dev_extension)
{
	u32 dw_dev_extension = 0;
	struct drv_object *pdrv_obj;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);
	struct list_head *curr;

	if (drv_datap && drv_datap->drv_object) {
		pdrv_obj = drv_datap->drv_object;
		if (!list_empty(&pdrv_obj->dev_node_string)) {
			curr = (struct list_head *)dev_extension;
			if (list_is_last(curr, &pdrv_obj->dev_node_string))
				return 0;
			dw_dev_extension = (u32) curr->next;
		}
	} else {
		pr_err("%s: Failed to retrieve the object handle\n", __func__);
	}

	return dw_dev_extension;
}

/*
 *  ======== drv_insert_dev_object ========
 *  Purpose:
 *      Insert a DevObject into the list of Manager object.
 */
int drv_insert_dev_object(struct drv_object *driver_obj,
				 struct dev_object *hdev_obj)
{
	struct drv_object *pdrv_object = (struct drv_object *)driver_obj;

	list_add_tail((struct list_head *)hdev_obj, &pdrv_object->dev_list);

	return 0;
}

/*
 *  ======== drv_remove_dev_object ========
 *  Purpose:
 *      Search for and remove a DeviceObject from the given list of DRV
 *      objects.
 */
int drv_remove_dev_object(struct drv_object *driver_obj,
				 struct dev_object *hdev_obj)
{
	int status = -EPERM;
	struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
	struct list_head *cur_elem;

	/* Search list for p_proc_object: */
	list_for_each(cur_elem, &pdrv_object->dev_list) {
		/* If found, remove it. */
		if ((struct dev_object *)cur_elem == hdev_obj) {
			list_del(cur_elem);
			status = 0;
			break;
		}
	}

	return status;
}

/*
 *  ======== drv_request_resources ========
 *  Purpose:
 *      Requests  resources from the OS.
 */
int drv_request_resources(u32 dw_context, u32 *dev_node_strg)
{
	int status = 0;
	struct drv_object *pdrv_object;
	struct drv_ext *pszdev_node;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);

	/*
	 *  Allocate memory to hold the string. This will live until
	 *  it is freed in the Release resources. Update the driver object
	 *  list.
	 */

	if (!drv_datap || !drv_datap->drv_object)
		status = -ENODATA;
	else
		pdrv_object = drv_datap->drv_object;

	if (!status) {
		pszdev_node = kzalloc(sizeof(struct drv_ext), GFP_KERNEL);
		if (pszdev_node) {
			strncpy(pszdev_node->sz_string,
				(char *)dw_context, MAXREGPATHLENGTH - 1);
			pszdev_node->sz_string[MAXREGPATHLENGTH - 1] = '\0';
			/* Update the Driver Object List */
			*dev_node_strg = (u32) pszdev_node->sz_string;
			list_add_tail(&pszdev_node->link,
					&pdrv_object->dev_node_string);
		} else {
			status = -ENOMEM;
			*dev_node_strg = 0;
		}
	} else {
		dev_dbg(bridge, "%s: Failed to get Driver Object from Registry",
			__func__);
		*dev_node_strg = 0;
	}

	return status;
}

/*
 *  ======== drv_release_resources ========
 *  Purpose:
 *      Releases  resources from the OS.
 */
int drv_release_resources(u32 dw_context, struct drv_object *hdrv_obj)
{
	int status = 0;
	struct drv_ext *pszdev_node;

	/*
	 *  Irrespective of the status go ahead and clean it
	 *  The following will over write the status.
	 */
	for (pszdev_node = (struct drv_ext *)drv_get_first_dev_extension();
	     pszdev_node != NULL; pszdev_node = (struct drv_ext *)
	     drv_get_next_dev_extension((u32) pszdev_node)) {
		if ((u32) pszdev_node == dw_context) {
			/* Found it */
			/* Delete from the Driver object list */
			list_del(&pszdev_node->link);
			kfree(pszdev_node);
			break;
		}
	}
	return status;
}

/*
 *  ======== request_bridge_resources ========
 *  Purpose:
 *      Reserves shared memory for bridge.
 */
static int request_bridge_resources(struct cfg_hostres *res)
{
	struct cfg_hostres *host_res = res;

	/* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
	host_res->num_mem_windows = 2;

	/* First window is for DSP internal memory */
	dev_dbg(bridge, "mem_base[0] 0x%x\n", host_res->mem_base[0]);
	dev_dbg(bridge, "mem_base[3] 0x%x\n", host_res->mem_base[3]);
	dev_dbg(bridge, "dmmu_base %p\n", host_res->dmmu_base);

	/* for 24xx base port is not mapping the mamory for DSP
	 * internal memory TODO Do a ioremap here */
	/* Second window is for DSP external memory shared with MPU */

	/* These are hard-coded values */
	host_res->birq_registers = 0;
	host_res->birq_attrib = 0;
	host_res->offset_for_monitor = 0;
	host_res->chnl_offset = 0;
	/* CHNL_MAXCHANNELS */
	host_res->num_chnls = CHNL_MAXCHANNELS;
	host_res->chnl_buf_size = 0x400;

	return 0;
}

/*
 *  ======== drv_request_bridge_res_dsp ========
 *  Purpose:
 *      Reserves shared memory for bridge.
 */
int drv_request_bridge_res_dsp(void **phost_resources)
{
	int status = 0;
	struct cfg_hostres *host_res;
	u32 dw_buff_size;
	u32 dma_addr;
	u32 shm_size;
	struct drv_data *drv_datap = dev_get_drvdata(bridge);

	dw_buff_size = sizeof(struct cfg_hostres);

	host_res = kzalloc(dw_buff_size, GFP_KERNEL);

	if (host_res != NULL) {
		request_bridge_resources(host_res);
		/* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
		host_res->num_mem_windows = 4;

		host_res->mem_base[0] = 0;
		host_res->mem_base[2] = (u32) ioremap(OMAP_DSP_MEM1_BASE,
							 OMAP_DSP_MEM1_SIZE);
		host_res->mem_base[3] = (u32) ioremap(OMAP_DSP_MEM2_BASE,
							 OMAP_DSP_MEM2_SIZE);
		host_res->mem_base[4] = (u32) ioremap(OMAP_DSP_MEM3_BASE,
							 OMAP_DSP_MEM3_SIZE);
		host_res->per_base = ioremap(OMAP_PER_CM_BASE,
						OMAP_PER_CM_SIZE);
		host_res->per_pm_base = ioremap(OMAP_PER_PRM_BASE,
						OMAP_PER_PRM_SIZE);
		host_res->core_pm_base = ioremap(OMAP_CORE_PRM_BASE,
							OMAP_CORE_PRM_SIZE);
		host_res->dmmu_base = ioremap(OMAP_DMMU_BASE,
						 OMAP_DMMU_SIZE);

		dev_dbg(bridge, "mem_base[0] 0x%x\n",
			host_res->mem_base[0]);
		dev_dbg(bridge, "mem_base[1] 0x%x\n",
			host_res->mem_base[1]);
		dev_dbg(bridge, "mem_base[2] 0x%x\n",
			host_res->mem_base[2]);
		dev_dbg(bridge, "mem_base[3] 0x%x\n",
			host_res->mem_base[3]);
		dev_dbg(bridge, "mem_base[4] 0x%x\n",
			host_res->mem_base[4]);
		dev_dbg(bridge, "dmmu_base %p\n", host_res->dmmu_base);

		shm_size = drv_datap->shm_size;
		if (shm_size >= 0x10000) {
			/* Allocate Physically contiguous,
			 * non-cacheable  memory */
			host_res->mem_base[1] =
			    (u32) mem_alloc_phys_mem(shm_size, 0x100000,
						     &dma_addr);
			if (host_res->mem_base[1] == 0) {
				status = -ENOMEM;
				pr_err("shm reservation Failed\n");
			} else {
				host_res->mem_length[1] = shm_size;
				host_res->mem_phys[1] = dma_addr;

				dev_dbg(bridge, "%s: Bridge shm address 0x%x "
					"dma_addr %x size %x\n", __func__,
					host_res->mem_base[1],
					dma_addr, shm_size);
			}
		}
		if (!status) {
			/* These are hard-coded values */
			host_res->birq_registers = 0;
			host_res->birq_attrib = 0;
			host_res->offset_for_monitor = 0;
			host_res->chnl_offset = 0;
			/* CHNL_MAXCHANNELS */
			host_res->num_chnls = CHNL_MAXCHANNELS;
			host_res->chnl_buf_size = 0x400;
			dw_buff_size = sizeof(struct cfg_hostres);
		}
		*phost_resources = host_res;
	}
	/* End Mem alloc */
	return status;
}

void mem_ext_phys_pool_init(u32 pool_phys_base, u32 pool_size)
{
	u32 pool_virt_base;

	/* get the virtual address for the physical memory pool passed */
	pool_virt_base = (u32) ioremap(pool_phys_base, pool_size);

	if ((void **)pool_virt_base == NULL) {
		pr_err("%s: external physical memory map failed\n", __func__);
		ext_phys_mem_pool_enabled = false;
	} else {
		ext_mem_pool.phys_mem_base = pool_phys_base;
		ext_mem_pool.phys_mem_size = pool_size;
		ext_mem_pool.virt_mem_base = pool_virt_base;
		ext_mem_pool.next_phys_alloc_ptr = pool_phys_base;
		ext_phys_mem_pool_enabled = true;
	}
}

void mem_ext_phys_pool_release(void)
{
	if (ext_phys_mem_pool_enabled) {
		iounmap((void *)(ext_mem_pool.virt_mem_base));
		ext_phys_mem_pool_enabled = false;
	}
}

/*
 *  ======== mem_ext_phys_mem_alloc ========
 *  Purpose:
 *     Allocate physically contiguous, uncached memory from external memory pool
 */

static void *mem_ext_phys_mem_alloc(u32 bytes, u32 align, u32 * phys_addr)
{
	u32 new_alloc_ptr;
	u32 offset;
	u32 virt_addr;

	if (align == 0)
		align = 1;

	if (bytes > ((ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)
		     - ext_mem_pool.next_phys_alloc_ptr)) {
		phys_addr = NULL;
		return NULL;
	} else {
		offset = (ext_mem_pool.next_phys_alloc_ptr & (align - 1));
		if (offset == 0)
			new_alloc_ptr = ext_mem_pool.next_phys_alloc_ptr;
		else
			new_alloc_ptr = (ext_mem_pool.next_phys_alloc_ptr) +
			    (align - offset);
		if ((new_alloc_ptr + bytes) <=
		    (ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)) {
			/* we can allocate */
			*phys_addr = new_alloc_ptr;
			ext_mem_pool.next_phys_alloc_ptr =
			    new_alloc_ptr + bytes;
			virt_addr =
			    ext_mem_pool.virt_mem_base + (new_alloc_ptr -
							  ext_mem_pool.
							  phys_mem_base);
			return (void *)virt_addr;
		} else {
			*phys_addr = 0;
			return NULL;
		}
	}
}

/*
 *  ======== mem_alloc_phys_mem ========
 *  Purpose:
 *      Allocate physically contiguous, uncached memory
 */
void *mem_alloc_phys_mem(u32 byte_size, u32 align_mask,
				u32 *physical_address)
{
	void *va_mem = NULL;
	dma_addr_t pa_mem;

	if (byte_size > 0) {
		if (ext_phys_mem_pool_enabled) {
			va_mem = mem_ext_phys_mem_alloc(byte_size, align_mask,
							(u32 *) &pa_mem);
		} else
			va_mem = dma_alloc_coherent(NULL, byte_size, &pa_mem,
								GFP_KERNEL);
		if (va_mem == NULL)
			*physical_address = 0;
		else
			*physical_address = pa_mem;
	}
	return va_mem;
}

/*
 *  ======== mem_free_phys_mem ========
 *  Purpose:
 *      Free the given block of physically contiguous memory.
 */
void mem_free_phys_mem(void *virtual_address, u32 physical_address,
		       u32 byte_size)
{
	if (!ext_phys_mem_pool_enabled)
		dma_free_coherent(NULL, byte_size, virtual_address,
				  physical_address);
}