Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/*
    comedi/drivers/s526.c
    Sensoray s526 Comedi driver

    COMEDI - Linux Control and Measurement Device Interface
    Copyright (C) 2000 David A. Schleef <ds@schleef.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/
/*
Driver: s526
Description: Sensoray 526 driver
Devices: [Sensoray] 526 (s526)
Author: Richie
	Everett Wang <everett.wang@everteq.com>
Updated: Thu, 14 Sep. 2006
Status: experimental

Encoder works
Analog input works
Analog output works
PWM output works
Commands are not supported yet.

Configuration Options:

comedi_config /dev/comedi0 s526 0x2C0,0x3

*/

#include "../comedidev.h"
#include <linux/ioport.h>
#include <asm/byteorder.h>

#define S526_SIZE 64

#define S526_START_AI_CONV	0
#define S526_AI_READ		0

/* Ports */
#define S526_IOSIZE 0x40
#define S526_NUM_PORTS 27

/* registers */
#define REG_TCR 0x00
#define REG_WDC 0x02
#define REG_DAC 0x04
#define REG_ADC 0x06
#define REG_ADD 0x08
#define REG_DIO 0x0A
#define REG_IER 0x0C
#define REG_ISR 0x0E
#define REG_MSC 0x10
#define REG_C0L 0x12
#define REG_C0H 0x14
#define REG_C0M 0x16
#define REG_C0C 0x18
#define REG_C1L 0x1A
#define REG_C1H 0x1C
#define REG_C1M 0x1E
#define REG_C1C 0x20
#define REG_C2L 0x22
#define REG_C2H 0x24
#define REG_C2M 0x26
#define REG_C2C 0x28
#define REG_C3L 0x2A
#define REG_C3H 0x2C
#define REG_C3M 0x2E
#define REG_C3C 0x30
#define REG_EED 0x32
#define REG_EEC 0x34

static const int s526_ports[] = {
	REG_TCR,
	REG_WDC,
	REG_DAC,
	REG_ADC,
	REG_ADD,
	REG_DIO,
	REG_IER,
	REG_ISR,
	REG_MSC,
	REG_C0L,
	REG_C0H,
	REG_C0M,
	REG_C0C,
	REG_C1L,
	REG_C1H,
	REG_C1M,
	REG_C1C,
	REG_C2L,
	REG_C2H,
	REG_C2M,
	REG_C2C,
	REG_C3L,
	REG_C3H,
	REG_C3M,
	REG_C3C,
	REG_EED,
	REG_EEC
};

struct counter_mode_register_t {
#if defined(__LITTLE_ENDIAN_BITFIELD)
	unsigned short coutSource:1;
	unsigned short coutPolarity:1;
	unsigned short autoLoadResetRcap:3;
	unsigned short hwCtEnableSource:2;
	unsigned short ctEnableCtrl:2;
	unsigned short clockSource:2;
	unsigned short countDir:1;
	unsigned short countDirCtrl:1;
	unsigned short outputRegLatchCtrl:1;
	unsigned short preloadRegSel:1;
	unsigned short reserved:1;
 #elif defined(__BIG_ENDIAN_BITFIELD)
	unsigned short reserved:1;
	unsigned short preloadRegSel:1;
	unsigned short outputRegLatchCtrl:1;
	unsigned short countDirCtrl:1;
	unsigned short countDir:1;
	unsigned short clockSource:2;
	unsigned short ctEnableCtrl:2;
	unsigned short hwCtEnableSource:2;
	unsigned short autoLoadResetRcap:3;
	unsigned short coutPolarity:1;
	unsigned short coutSource:1;
#else
#error Unknown bit field order
#endif
};

union cmReg {
	struct counter_mode_register_t reg;
	unsigned short value;
};

#define MAX_GPCT_CONFIG_DATA 6

/* Different Application Classes for GPCT Subdevices */
/* The list is not exhaustive and needs discussion! */
enum S526_GPCT_APP_CLASS {
	CountingAndTimeMeasurement,
	SinglePulseGeneration,
	PulseTrainGeneration,
	PositionMeasurement,
	Miscellaneous
};

/* Config struct for different GPCT subdevice Application Classes and
   their options
*/
struct s526GPCTConfig {
	enum S526_GPCT_APP_CLASS app;
	int data[MAX_GPCT_CONFIG_DATA];
};

/*
 * Board descriptions for two imaginary boards.  Describing the
 * boards in this way is optional, and completely driver-dependent.
 * Some drivers use arrays such as this, other do not.
 */
struct s526_board {
	const char *name;
	int gpct_chans;
	int gpct_bits;
	int ad_chans;
	int ad_bits;
	int da_chans;
	int da_bits;
	int have_dio;
};

static const struct s526_board s526_boards[] = {
	{
	 .name = "s526",
	 .gpct_chans = 4,
	 .gpct_bits = 24,
	 .ad_chans = 8,
	 .ad_bits = 16,
	 .da_chans = 4,
	 .da_bits = 16,
	 .have_dio = 1,
	 }
};

#define ADDR_REG(reg) (dev->iobase + (reg))
#define ADDR_CHAN_REG(reg, chan) (dev->iobase + (reg) + (chan) * 8)

/*
 * Useful for shorthand access to the particular board structure
 */
#define thisboard ((const struct s526_board *)dev->board_ptr)

/* this structure is for data unique to this hardware driver.  If
   several hardware drivers keep similar information in this structure,
   feel free to suggest moving the variable to the struct comedi_device
   struct.
*/
struct s526_private {

	int data;

	/* would be useful for a PCI device */
	struct pci_dev *pci_dev;

	/* Used for AO readback */
	unsigned int ao_readback[2];

	struct s526GPCTConfig s526_gpct_config[4];
	unsigned short s526_ai_config;
};

/*
 * most drivers define the following macro to make it easy to
 * access the private structure.
 */
#define devpriv ((struct s526_private *)dev->private)

/*
 * The struct comedi_driver structure tells the Comedi core module
 * which functions to call to configure/deconfigure (attach/detach)
 * the board, and also about the kernel module that contains
 * the device code.
 */
static int s526_attach(struct comedi_device *dev, struct comedi_devconfig *it);
static int s526_detach(struct comedi_device *dev);
static struct comedi_driver driver_s526 = {
	.driver_name = "s526",
	.module = THIS_MODULE,
	.attach = s526_attach,
	.detach = s526_detach,
/* It is not necessary to implement the following members if you are
 * writing a driver for a ISA PnP or PCI card */
	/* Most drivers will support multiple types of boards by
	 * having an array of board structures.  These were defined
	 * in s526_boards[] above.  Note that the element 'name'
	 * was first in the structure -- Comedi uses this fact to
	 * extract the name of the board without knowing any details
	 * about the structure except for its length.
	 * When a device is attached (by comedi_config), the name
	 * of the device is given to Comedi, and Comedi tries to
	 * match it by going through the list of board names.  If
	 * there is a match, the address of the pointer is put
	 * into dev->board_ptr and driver->attach() is called.
	 *
	 * Note that these are not necessary if you can determine
	 * the type of board in software.  ISA PnP, PCI, and PCMCIA
	 * devices are such boards.
	 */
	.board_name = &s526_boards[0].name,
	.offset = sizeof(struct s526_board),
	.num_names = ARRAY_SIZE(s526_boards),
};

static int s526_gpct_rinsn(struct comedi_device *dev,
			   struct comedi_subdevice *s, struct comedi_insn *insn,
			   unsigned int *data);
static int s526_gpct_insn_config(struct comedi_device *dev,
				 struct comedi_subdevice *s,
				 struct comedi_insn *insn, unsigned int *data);
static int s526_gpct_winsn(struct comedi_device *dev,
			   struct comedi_subdevice *s, struct comedi_insn *insn,
			   unsigned int *data);
static int s526_ai_insn_config(struct comedi_device *dev,
			       struct comedi_subdevice *s,
			       struct comedi_insn *insn, unsigned int *data);
static int s526_ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_insn *insn, unsigned int *data);
static int s526_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_insn *insn, unsigned int *data);
static int s526_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_insn *insn, unsigned int *data);
static int s526_dio_insn_bits(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      struct comedi_insn *insn, unsigned int *data);
static int s526_dio_insn_config(struct comedi_device *dev,
				struct comedi_subdevice *s,
				struct comedi_insn *insn, unsigned int *data);

/*
 * Attach is called by the Comedi core to configure the driver
 * for a particular board.  If you specified a board_name array
 * in the driver structure, dev->board_ptr contains that
 * address.
 */
static int s526_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{
	struct comedi_subdevice *s;
	int iobase;
	int i, n;
/* short value; */
/* int subdev_channel = 0; */
	union cmReg cmReg;

	printk(KERN_INFO "comedi%d: s526: ", dev->minor);

	iobase = it->options[0];
	if (!iobase || !request_region(iobase, S526_IOSIZE, thisboard->name)) {
		comedi_error(dev, "I/O port conflict");
		return -EIO;
	}
	dev->iobase = iobase;

	printk("iobase=0x%lx\n", dev->iobase);

	/*** make it a little quieter, exw, 8/29/06
	for (i = 0; i < S526_NUM_PORTS; i++) {
		printk("0x%02x: 0x%04x\n", ADDR_REG(s526_ports[i]),
				inw(ADDR_REG(s526_ports[i])));
	}
	***/

/*
 * Initialize dev->board_name.  Note that we can use the "thisboard"
 * macro now, since we just initialized it in the last line.
 */
	dev->board_ptr = &s526_boards[0];

	dev->board_name = thisboard->name;

/*
 * Allocate the private structure area.  alloc_private() is a
 * convenient macro defined in comedidev.h.
 */
	if (alloc_private(dev, sizeof(struct s526_private)) < 0)
		return -ENOMEM;

/*
 * Allocate the subdevice structures.  alloc_subdevice() is a
 * convenient macro defined in comedidev.h.
 */
	dev->n_subdevices = 4;
	if (alloc_subdevices(dev, dev->n_subdevices) < 0)
		return -ENOMEM;

	s = dev->subdevices + 0;
	/* GENERAL-PURPOSE COUNTER/TIME (GPCT) */
	s->type = COMEDI_SUBD_COUNTER;
	s->subdev_flags = SDF_READABLE | SDF_WRITABLE | SDF_LSAMPL;
	/* KG: What does SDF_LSAMPL (see multiq3.c) mean? */
	s->n_chan = thisboard->gpct_chans;
	s->maxdata = 0x00ffffff;	/* 24 bit counter */
	s->insn_read = s526_gpct_rinsn;
	s->insn_config = s526_gpct_insn_config;
	s->insn_write = s526_gpct_winsn;

	/* Command are not implemented yet, however they are necessary to
	   allocate the necessary memory for the comedi_async struct (used
	   to trigger the GPCT in case of pulsegenerator function */
	/* s->do_cmd = s526_gpct_cmd; */
	/* s->do_cmdtest = s526_gpct_cmdtest; */
	/* s->cancel = s526_gpct_cancel; */

	s = dev->subdevices + 1;
	/* dev->read_subdev=s; */
	/* analog input subdevice */
	s->type = COMEDI_SUBD_AI;
	/* we support differential */
	s->subdev_flags = SDF_READABLE | SDF_DIFF;
	/* channels 0 to 7 are the regular differential inputs */
	/* channel 8 is "reference 0" (+10V), channel 9 is "reference 1" (0V) */
	s->n_chan = 10;
	s->maxdata = 0xffff;
	s->range_table = &range_bipolar10;
	s->len_chanlist = 16;	/* This is the maximum chanlist length that
				   the board can handle */
	s->insn_read = s526_ai_rinsn;
	s->insn_config = s526_ai_insn_config;

	s = dev->subdevices + 2;
	/* analog output subdevice */
	s->type = COMEDI_SUBD_AO;
	s->subdev_flags = SDF_WRITABLE;
	s->n_chan = 4;
	s->maxdata = 0xffff;
	s->range_table = &range_bipolar10;
	s->insn_write = s526_ao_winsn;
	s->insn_read = s526_ao_rinsn;

	s = dev->subdevices + 3;
	/* digital i/o subdevice */
	if (thisboard->have_dio) {
		s->type = COMEDI_SUBD_DIO;
		s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
		s->n_chan = 8;
		s->maxdata = 1;
		s->range_table = &range_digital;
		s->insn_bits = s526_dio_insn_bits;
		s->insn_config = s526_dio_insn_config;
	} else {
		s->type = COMEDI_SUBD_UNUSED;
	}

	printk(KERN_INFO "attached\n");

	return 1;

#if 0
	/*  Example of Counter Application */
	/* One-shot (software trigger) */
	cmReg.reg.coutSource = 0;	/*  out RCAP */
	cmReg.reg.coutPolarity = 1;	/*  Polarity inverted */
	cmReg.reg.autoLoadResetRcap = 1;/*  Auto load 0:disabled, 1:enabled */
	cmReg.reg.hwCtEnableSource = 3;	/*  NOT RCAP */
	cmReg.reg.ctEnableCtrl = 2;	/*  Hardware */
	cmReg.reg.clockSource = 2;	/*  Internal */
	cmReg.reg.countDir = 1;	/*  Down */
	cmReg.reg.countDirCtrl = 1;	/*  Software */
	cmReg.reg.outputRegLatchCtrl = 0;	/*  latch on read */
	cmReg.reg.preloadRegSel = 0;	/*  PR0 */
	cmReg.reg.reserved = 0;

	outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

	outw(0x0001, ADDR_CHAN_REG(REG_C0H, subdev_channel));
	outw(0x3C68, ADDR_CHAN_REG(REG_C0L, subdev_channel));

	/*  Reset the counter */
	outw(0x8000, ADDR_CHAN_REG(REG_C0C, subdev_channel));
	/*  Load the counter from PR0 */
	outw(0x4000, ADDR_CHAN_REG(REG_C0C, subdev_channel));
	/*  Reset RCAP (fires one-shot) */
	outw(0x0008, ADDR_CHAN_REG(REG_C0C, subdev_channel));

#else

	/*  Set Counter Mode Register */
	cmReg.reg.coutSource = 0;	/*  out RCAP */
	cmReg.reg.coutPolarity = 0;	/*  Polarity inverted */
	cmReg.reg.autoLoadResetRcap = 0;	/*  Auto load disabled */
	cmReg.reg.hwCtEnableSource = 2;	/*  NOT RCAP */
	cmReg.reg.ctEnableCtrl = 1;	/*  1: Software,  >1 : Hardware */
	cmReg.reg.clockSource = 3;	/*  x4 */
	cmReg.reg.countDir = 0;	/*  up */
	cmReg.reg.countDirCtrl = 0;	/*  quadrature */
	cmReg.reg.outputRegLatchCtrl = 0;	/*  latch on read */
	cmReg.reg.preloadRegSel = 0;	/*  PR0 */
	cmReg.reg.reserved = 0;

	n = 0;
	printk(KERN_INFO "Mode reg=0x%04x, 0x%04lx\n",
		cmReg.value, ADDR_CHAN_REG(REG_C0M, n));
	outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, n));
	udelay(1000);
	printk(KERN_INFO "Read back mode reg=0x%04x\n",
		inw(ADDR_CHAN_REG(REG_C0M, n)));

	/*  Load the pre-load register high word */
/* value = (short) (0x55); */
/* outw(value, ADDR_CHAN_REG(REG_C0H, n)); */

	/*  Load the pre-load register low word */
/* value = (short)(0xaa55); */
/* outw(value, ADDR_CHAN_REG(REG_C0L, n)); */

	/*  Write the Counter Control Register */
/* outw(value, ADDR_CHAN_REG(REG_C0C, 0)); */

	/*  Reset the counter if it is software preload */
	if (cmReg.reg.autoLoadResetRcap == 0) {
		/*  Reset the counter */
		outw(0x8000, ADDR_CHAN_REG(REG_C0C, n));
		/*  Load the counter from PR0 */
		outw(0x4000, ADDR_CHAN_REG(REG_C0C, n));
	}

	outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, n));
	udelay(1000);
	printk(KERN_INFO "Read back mode reg=0x%04x\n",
			inw(ADDR_CHAN_REG(REG_C0M, n)));

#endif
	printk(KERN_INFO "Current registres:\n");

	for (i = 0; i < S526_NUM_PORTS; i++) {
		printk(KERN_INFO "0x%02lx: 0x%04x\n",
			ADDR_REG(s526_ports[i]), inw(ADDR_REG(s526_ports[i])));
	}
	return 1;
}

/*
 * _detach is called to deconfigure a device.  It should deallocate
 * resources.
 * This function is also called when _attach() fails, so it should be
 * careful not to release resources that were not necessarily
 * allocated by _attach().  dev->private and dev->subdevices are
 * deallocated automatically by the core.
 */
static int s526_detach(struct comedi_device *dev)
{
	printk(KERN_INFO "comedi%d: s526: remove\n", dev->minor);

	if (dev->iobase > 0)
		release_region(dev->iobase, S526_IOSIZE);

	return 0;
}

static int s526_gpct_rinsn(struct comedi_device *dev,
			   struct comedi_subdevice *s, struct comedi_insn *insn,
			   unsigned int *data)
{
	int i;			/*  counts the Data */
	int counter_channel = CR_CHAN(insn->chanspec);
	unsigned short datalow;
	unsigned short datahigh;

	/*  Check if (n > 0) */
	if (insn->n <= 0) {
		printk(KERN_ERR "s526: INSN_READ: n should be > 0\n");
		return -EINVAL;
	}
	/*  Read the low word first */
	for (i = 0; i < insn->n; i++) {
		datalow = inw(ADDR_CHAN_REG(REG_C0L, counter_channel));
		datahigh = inw(ADDR_CHAN_REG(REG_C0H, counter_channel));
		data[i] = (int)(datahigh & 0x00FF);
		data[i] = (data[i] << 16) | (datalow & 0xFFFF);
		/* printk("s526 GPCT[%d]: %x(0x%04x, 0x%04x)\n",
		   counter_channel, data[i], datahigh, datalow); */
	}
	return i;
}

static int s526_gpct_insn_config(struct comedi_device *dev,
				 struct comedi_subdevice *s,
				 struct comedi_insn *insn, unsigned int *data)
{
	int subdev_channel = CR_CHAN(insn->chanspec);	/*  Unpack chanspec */
	int i;
	short value;
	union cmReg cmReg;

	/* printk("s526: GPCT_INSN_CONFIG: Configuring Channel %d\n",
						subdev_channel); */

	for (i = 0; i < MAX_GPCT_CONFIG_DATA; i++) {
		devpriv->s526_gpct_config[subdev_channel].data[i] =
		    insn->data[i];
/* printk("data[%d]=%x\n", i, insn->data[i]); */
	}

	/*  Check what type of Counter the user requested, data[0] contains */
	/*  the Application type */
	switch (insn->data[0]) {
	case INSN_CONFIG_GPCT_QUADRATURE_ENCODER:
		/*
		   data[0]: Application Type
		   data[1]: Counter Mode Register Value
		   data[2]: Pre-load Register Value
		   data[3]: Conter Control Register
		 */
		printk(KERN_INFO "s526: GPCT_INSN_CONFIG: Configuring Encoder\n");
		devpriv->s526_gpct_config[subdev_channel].app =
		    PositionMeasurement;

#if 0
		/*  Example of Counter Application */
		/* One-shot (software trigger) */
		cmReg.reg.coutSource = 0;	/*  out RCAP */
		cmReg.reg.coutPolarity = 1;	/*  Polarity inverted */
		cmReg.reg.autoLoadResetRcap = 0;/*  Auto load disabled */
		cmReg.reg.hwCtEnableSource = 3;	/*  NOT RCAP */
		cmReg.reg.ctEnableCtrl = 2;	/*  Hardware */
		cmReg.reg.clockSource = 2;	/*  Internal */
		cmReg.reg.countDir = 1;	/*  Down */
		cmReg.reg.countDirCtrl = 1;	/*  Software */
		cmReg.reg.outputRegLatchCtrl = 0;	/*  latch on read */
		cmReg.reg.preloadRegSel = 0;	/*  PR0 */
		cmReg.reg.reserved = 0;

		outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

		outw(0x0001, ADDR_CHAN_REG(REG_C0H, subdev_channel));
		outw(0x3C68, ADDR_CHAN_REG(REG_C0L, subdev_channel));

		/*  Reset the counter */
		outw(0x8000, ADDR_CHAN_REG(REG_C0C, subdev_channel));
		/*  Load the counter from PR0 */
		outw(0x4000, ADDR_CHAN_REG(REG_C0C, subdev_channel));

		/*  Reset RCAP (fires one-shot) */
		outw(0x0008, ADDR_CHAN_REG(REG_C0C, subdev_channel));

#endif

#if 1
		/*  Set Counter Mode Register */
		cmReg.value = insn->data[1] & 0xFFFF;

/* printk("s526: Counter Mode register=%x\n", cmReg.value); */
		outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

		/*  Reset the counter if it is software preload */
		if (cmReg.reg.autoLoadResetRcap == 0) {
			/*  Reset the counter */
			outw(0x8000, ADDR_CHAN_REG(REG_C0C, subdev_channel));
			/* Load the counter from PR0
			 * outw(0x4000, ADDR_CHAN_REG(REG_C0C, subdev_channel));
			 */
		}
#else
		/*  0 quadrature, 1 software control */
		cmReg.reg.countDirCtrl = 0;

		/*  data[1] contains GPCT_X1, GPCT_X2 or GPCT_X4 */
		if (insn->data[1] == GPCT_X2)
			cmReg.reg.clockSource = 1;
		else if (insn->data[1] == GPCT_X4)
			cmReg.reg.clockSource = 2;
		else
			cmReg.reg.clockSource = 0;

		/*  When to take into account the indexpulse: */
		/*if (insn->data[2] == GPCT_IndexPhaseLowLow) {
		} else if (insn->data[2] == GPCT_IndexPhaseLowHigh) {
		} else if (insn->data[2] == GPCT_IndexPhaseHighLow) {
		} else if (insn->data[2] == GPCT_IndexPhaseHighHigh) {
		}*/
		/*  Take into account the index pulse? */
		if (insn->data[3] == GPCT_RESET_COUNTER_ON_INDEX)
			/*  Auto load with INDEX^ */
			cmReg.reg.autoLoadResetRcap = 4;

		/*  Set Counter Mode Register */
		cmReg.value = (short)(insn->data[1] & 0xFFFF);
		outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

		/*  Load the pre-load register high word */
		value = (short)((insn->data[2] >> 16) & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));

		/*  Load the pre-load register low word */
		value = (short)(insn->data[2] & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));

		/*  Write the Counter Control Register */
		if (insn->data[3] != 0) {
			value = (short)(insn->data[3] & 0xFFFF);
			outw(value, ADDR_CHAN_REG(REG_C0C, subdev_channel));
		}
		/*  Reset the counter if it is software preload */
		if (cmReg.reg.autoLoadResetRcap == 0) {
			/*  Reset the counter */
			outw(0x8000, ADDR_CHAN_REG(REG_C0C, subdev_channel));
			/*  Load the counter from PR0 */
			outw(0x4000, ADDR_CHAN_REG(REG_C0C, subdev_channel));
		}
#endif
		break;

	case INSN_CONFIG_GPCT_SINGLE_PULSE_GENERATOR:
		/*
		   data[0]: Application Type
		   data[1]: Counter Mode Register Value
		   data[2]: Pre-load Register 0 Value
		   data[3]: Pre-load Register 1 Value
		   data[4]: Conter Control Register
		 */
		printk(KERN_INFO "s526: GPCT_INSN_CONFIG: Configuring SPG\n");
		devpriv->s526_gpct_config[subdev_channel].app =
		    SinglePulseGeneration;

		/*  Set Counter Mode Register */
		cmReg.value = (short)(insn->data[1] & 0xFFFF);
		cmReg.reg.preloadRegSel = 0;	/*  PR0 */
		outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

		/*  Load the pre-load register 0 high word */
		value = (short)((insn->data[2] >> 16) & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));

		/*  Load the pre-load register 0 low word */
		value = (short)(insn->data[2] & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));

		/*  Set Counter Mode Register */
		cmReg.value = (short)(insn->data[1] & 0xFFFF);
		cmReg.reg.preloadRegSel = 1;	/*  PR1 */
		outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

		/*  Load the pre-load register 1 high word */
		value = (short)((insn->data[3] >> 16) & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));

		/*  Load the pre-load register 1 low word */
		value = (short)(insn->data[3] & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));

		/*  Write the Counter Control Register */
		if (insn->data[4] != 0) {
			value = (short)(insn->data[4] & 0xFFFF);
			outw(value, ADDR_CHAN_REG(REG_C0C, subdev_channel));
		}
		break;

	case INSN_CONFIG_GPCT_PULSE_TRAIN_GENERATOR:
		/*
		   data[0]: Application Type
		   data[1]: Counter Mode Register Value
		   data[2]: Pre-load Register 0 Value
		   data[3]: Pre-load Register 1 Value
		   data[4]: Conter Control Register
		 */
		printk(KERN_INFO "s526: GPCT_INSN_CONFIG: Configuring PTG\n");
		devpriv->s526_gpct_config[subdev_channel].app =
		    PulseTrainGeneration;

		/*  Set Counter Mode Register */
		cmReg.value = (short)(insn->data[1] & 0xFFFF);
		cmReg.reg.preloadRegSel = 0;	/*  PR0 */
		outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

		/*  Load the pre-load register 0 high word */
		value = (short)((insn->data[2] >> 16) & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));

		/*  Load the pre-load register 0 low word */
		value = (short)(insn->data[2] & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));

		/*  Set Counter Mode Register */
		cmReg.value = (short)(insn->data[1] & 0xFFFF);
		cmReg.reg.preloadRegSel = 1;	/*  PR1 */
		outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));

		/*  Load the pre-load register 1 high word */
		value = (short)((insn->data[3] >> 16) & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));

		/*  Load the pre-load register 1 low word */
		value = (short)(insn->data[3] & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));

		/*  Write the Counter Control Register */
		if (insn->data[4] != 0) {
			value = (short)(insn->data[4] & 0xFFFF);
			outw(value, ADDR_CHAN_REG(REG_C0C, subdev_channel));
		}
		break;

	default:
		printk(KERN_ERR "s526: unsupported GPCT_insn_config\n");
		return -EINVAL;
		break;
	}

	return insn->n;
}

static int s526_gpct_winsn(struct comedi_device *dev,
			   struct comedi_subdevice *s, struct comedi_insn *insn,
			   unsigned int *data)
{
	int subdev_channel = CR_CHAN(insn->chanspec);	/*  Unpack chanspec */
	short value;
	union cmReg cmReg;

	printk(KERN_INFO "s526: GPCT_INSN_WRITE on channel %d\n",
					subdev_channel);
	cmReg.value = inw(ADDR_CHAN_REG(REG_C0M, subdev_channel));
	printk(KERN_INFO "s526: Counter Mode Register: %x\n", cmReg.value);
	/*  Check what Application of Counter this channel is configured for */
	switch (devpriv->s526_gpct_config[subdev_channel].app) {
	case PositionMeasurement:
		printk(KERN_INFO "S526: INSN_WRITE: PM\n");
		outw(0xFFFF & ((*data) >> 16), ADDR_CHAN_REG(REG_C0H,
							     subdev_channel));
		outw(0xFFFF & (*data), ADDR_CHAN_REG(REG_C0L, subdev_channel));
		break;

	case SinglePulseGeneration:
		printk(KERN_INFO "S526: INSN_WRITE: SPG\n");
		outw(0xFFFF & ((*data) >> 16), ADDR_CHAN_REG(REG_C0H,
							     subdev_channel));
		outw(0xFFFF & (*data), ADDR_CHAN_REG(REG_C0L, subdev_channel));
		break;

	case PulseTrainGeneration:
		/* data[0] contains the PULSE_WIDTH
		   data[1] contains the PULSE_PERIOD
		   @pre PULSE_PERIOD > PULSE_WIDTH > 0
		   The above periods must be expressed as a multiple of the
		   pulse frequency on the selected source
		 */
		printk(KERN_INFO "S526: INSN_WRITE: PTG\n");
		if ((insn->data[1] > insn->data[0]) && (insn->data[0] > 0)) {
			(devpriv->s526_gpct_config[subdev_channel]).data[0] =
			    insn->data[0];
			(devpriv->s526_gpct_config[subdev_channel]).data[1] =
			    insn->data[1];
		} else {
			printk(KERN_ERR "s526: INSN_WRITE: PTG: Problem with Pulse params -> %d %d\n",
				insn->data[0], insn->data[1]);
			return -EINVAL;
		}

		value = (short)((*data >> 16) & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));
		value = (short)(*data & 0xFFFF);
		outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));
		break;
	default:		/*  Impossible */
		printk
		    ("s526: INSN_WRITE: Functionality %d not implemented yet\n",
		     devpriv->s526_gpct_config[subdev_channel].app);
		return -EINVAL;
		break;
	}
	/*  return the number of samples written */
	return insn->n;
}

#define ISR_ADC_DONE 0x4
static int s526_ai_insn_config(struct comedi_device *dev,
			       struct comedi_subdevice *s,
			       struct comedi_insn *insn, unsigned int *data)
{
	int result = -EINVAL;

	if (insn->n < 1)
		return result;

	result = insn->n;

	/* data[0] : channels was set in relevant bits.
	   data[1] : delay
	 */
	/* COMMENT: abbotti 2008-07-24: I don't know why you'd want to
	 * enable channels here.  The channel should be enabled in the
	 * INSN_READ handler. */

	/*  Enable ADC interrupt */
	outw(ISR_ADC_DONE, ADDR_REG(REG_IER));
/* printk("s526: ADC current value: 0x%04x\n", inw(ADDR_REG(REG_ADC))); */
	devpriv->s526_ai_config = (data[0] & 0x3FF) << 5;
	if (data[1] > 0)
		devpriv->s526_ai_config |= 0x8000;	/* set the delay */

	devpriv->s526_ai_config |= 0x0001;	/*  ADC start bit. */

	return result;
}

/*
 * "instructions" read/write data in "one-shot" or "software-triggered"
 * mode.
 */
static int s526_ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_insn *insn, unsigned int *data)
{
	int n, i;
	int chan = CR_CHAN(insn->chanspec);
	unsigned short value;
	unsigned int d;
	unsigned int status;

	/* Set configured delay, enable channel for this channel only,
	 * select "ADC read" channel, set "ADC start" bit. */
	value = (devpriv->s526_ai_config & 0x8000) |
	    ((1 << 5) << chan) | (chan << 1) | 0x0001;

	/* convert n samples */
	for (n = 0; n < insn->n; n++) {
		/* trigger conversion */
		outw(value, ADDR_REG(REG_ADC));
/* printk("s526: Wrote 0x%04x to ADC\n", value); */
/* printk("s526: ADC reg=0x%04x\n", inw(ADDR_REG(REG_ADC))); */

#define TIMEOUT 100
		/* wait for conversion to end */
		for (i = 0; i < TIMEOUT; i++) {
			status = inw(ADDR_REG(REG_ISR));
			if (status & ISR_ADC_DONE) {
				outw(ISR_ADC_DONE, ADDR_REG(REG_ISR));
				break;
			}
		}
		if (i == TIMEOUT) {
			/* printk() should be used instead of printk()
			 * whenever the code can be called from real-time. */
			printk(KERN_ERR "s526: ADC(0x%04x) timeout\n",
			       inw(ADDR_REG(REG_ISR)));
			return -ETIMEDOUT;
		}

		/* read data */
		d = inw(ADDR_REG(REG_ADD));
/* printk("AI[%d]=0x%04x\n", n, (unsigned short)(d & 0xFFFF)); */

		/* munge data */
		data[n] = d ^ 0x8000;
	}

	/* return the number of samples read/written */
	return n;
}

static int s526_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_insn *insn, unsigned int *data)
{
	int i;
	int chan = CR_CHAN(insn->chanspec);
	unsigned short val;

/* printk("s526_ao_winsn\n"); */
	val = chan << 1;
/* outw(val, dev->iobase + REG_DAC); */
	outw(val, ADDR_REG(REG_DAC));

	/* Writing a list of values to an AO channel is probably not
	 * very useful, but that's how the interface is defined. */
	for (i = 0; i < insn->n; i++) {
		/* a typical programming sequence */
		/* write the data to preload register
		 * outw(data[i], dev->iobase + REG_ADD);
		 */
		/* write the data to preload register */
		outw(data[i], ADDR_REG(REG_ADD));
		devpriv->ao_readback[chan] = data[i];
/* outw(val + 1, dev->iobase + REG_DAC);  starts the D/A conversion. */
		outw(val + 1, ADDR_REG(REG_DAC)); /*starts the D/A conversion.*/
	}

	/* return the number of samples read/written */
	return i;
}

/* AO subdevices should have a read insn as well as a write insn.
 * Usually this means copying a value stored in devpriv. */
static int s526_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_insn *insn, unsigned int *data)
{
	int i;
	int chan = CR_CHAN(insn->chanspec);

	for (i = 0; i < insn->n; i++)
		data[i] = devpriv->ao_readback[chan];

	return i;
}

/* DIO devices are slightly special.  Although it is possible to
 * implement the insn_read/insn_write interface, it is much more
 * useful to applications if you implement the insn_bits interface.
 * This allows packed reading/writing of the DIO channels.  The
 * comedi core can convert between insn_bits and insn_read/write */
static int s526_dio_insn_bits(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      struct comedi_insn *insn, unsigned int *data)
{
	if (insn->n != 2)
		return -EINVAL;

	/* The insn data is a mask in data[0] and the new data
	 * in data[1], each channel cooresponding to a bit. */
	if (data[0]) {
		s->state &= ~data[0];
		s->state |= data[0] & data[1];
		/* Write out the new digital output lines */
		outw(s->state, ADDR_REG(REG_DIO));
	}

	/* on return, data[1] contains the value of the digital
	 * input and output lines. */
	data[1] = inw(ADDR_REG(REG_DIO)) & 0xFF; /* low 8 bits are the data */
	/* or we could just return the software copy of the output values if
	 * it was a purely digital output subdevice */
	/* data[1]=s->state & 0xFF; */

	return 2;
}

static int s526_dio_insn_config(struct comedi_device *dev,
				struct comedi_subdevice *s,
				struct comedi_insn *insn, unsigned int *data)
{
	int chan = CR_CHAN(insn->chanspec);
	int group, mask;

	printk(KERN_INFO "S526 DIO insn_config\n");

	/* The input or output configuration of each digital line is
	 * configured by a special insn_config instruction.  chanspec
	 * contains the channel to be changed, and data[0] contains the
	 * value COMEDI_INPUT or COMEDI_OUTPUT. */

	group = chan >> 2;
	mask = 0xF << (group << 2);
	switch (data[0]) {
	case INSN_CONFIG_DIO_OUTPUT:
		/* bit 10/11 set the group 1/2's mode */
		s->state |= 1 << (group + 10);
		s->io_bits |= mask;
		break;
	case INSN_CONFIG_DIO_INPUT:
		s->state &= ~(1 << (group + 10)); /* 1 is output, 0 is input. */
		s->io_bits &= ~mask;
		break;
	case INSN_CONFIG_DIO_QUERY:
		data[1] = (s->io_bits & mask) ? COMEDI_OUTPUT : COMEDI_INPUT;
		return insn->n;
	default:
		return -EINVAL;
	}
	outw(s->state, ADDR_REG(REG_DIO));

	return 1;
}

/*
 * A convenient macro that defines init_module() and cleanup_module(),
 * as necessary.
 */
static int __init driver_s526_init_module(void)
{
	return comedi_driver_register(&driver_s526);
}

static void __exit driver_s526_cleanup_module(void)
{
	comedi_driver_unregister(&driver_s526);
}

module_init(driver_s526_init_module);
module_exit(driver_s526_cleanup_module);

MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");