Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
/*******************************************************************************

  Intel PRO/10GbE Linux driver
  Copyright(c) 1999 - 2008 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* ixgb_hw.c
 * Shared functions for accessing and configuring the adapter
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include "ixgb_hw.h"
#include "ixgb_ids.h"

#include <linux/etherdevice.h>

/*  Local function prototypes */

static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);

static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);

static void ixgb_get_bus_info(struct ixgb_hw *hw);

static bool ixgb_link_reset(struct ixgb_hw *hw);

static void ixgb_optics_reset(struct ixgb_hw *hw);

static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);

static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);

static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);

static void ixgb_clear_vfta(struct ixgb_hw *hw);

static void ixgb_init_rx_addrs(struct ixgb_hw *hw);

static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
				  u32 reg_address,
				  u32 phy_address,
				  u32 device_type);

static bool ixgb_setup_fc(struct ixgb_hw *hw);

static bool mac_addr_valid(u8 *mac_addr);

static u32 ixgb_mac_reset(struct ixgb_hw *hw)
{
	u32 ctrl_reg;

	ctrl_reg =  IXGB_CTRL0_RST |
				IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
				IXGB_CTRL0_SDP2_DIR |
				IXGB_CTRL0_SDP1_DIR |
				IXGB_CTRL0_SDP0_DIR |
				IXGB_CTRL0_SDP3	 |   /* Initial value 1101   */
				IXGB_CTRL0_SDP2	 |
				IXGB_CTRL0_SDP0;

#ifdef HP_ZX1
	/* Workaround for 82597EX reset errata */
	IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
#else
	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
#endif

	/* Delay a few ms just to allow the reset to complete */
	msleep(IXGB_DELAY_AFTER_RESET);
	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
#ifdef DBG
	/* Make sure the self-clearing global reset bit did self clear */
	ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
#endif

	if (hw->subsystem_vendor_id == SUN_SUBVENDOR_ID) {
		ctrl_reg =  /* Enable interrupt from XFP and SerDes */
			   IXGB_CTRL1_GPI0_EN |
			   IXGB_CTRL1_SDP6_DIR |
			   IXGB_CTRL1_SDP7_DIR |
			   IXGB_CTRL1_SDP6 |
			   IXGB_CTRL1_SDP7;
		IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
		ixgb_optics_reset_bcm(hw);
	}

	if (hw->phy_type == ixgb_phy_type_txn17401)
		ixgb_optics_reset(hw);

	return ctrl_reg;
}

/******************************************************************************
 * Reset the transmit and receive units; mask and clear all interrupts.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
bool
ixgb_adapter_stop(struct ixgb_hw *hw)
{
	u32 ctrl_reg;
	u32 icr_reg;

	ENTER();

	/* If we are stopped or resetting exit gracefully and wait to be
	 * started again before accessing the hardware.
	 */
	if (hw->adapter_stopped) {
		pr_debug("Exiting because the adapter is already stopped!!!\n");
		return false;
	}

	/* Set the Adapter Stopped flag so other driver functions stop
	 * touching the Hardware.
	 */
	hw->adapter_stopped = true;

	/* Clear interrupt mask to stop board from generating interrupts */
	pr_debug("Masking off all interrupts\n");
	IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);

	/* Disable the Transmit and Receive units.  Then delay to allow
	 * any pending transactions to complete before we hit the MAC with
	 * the global reset.
	 */
	IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
	IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
	IXGB_WRITE_FLUSH(hw);
	msleep(IXGB_DELAY_BEFORE_RESET);

	/* Issue a global reset to the MAC.  This will reset the chip's
	 * transmit, receive, DMA, and link units.  It will not effect
	 * the current PCI configuration.  The global reset bit is self-
	 * clearing, and should clear within a microsecond.
	 */
	pr_debug("Issuing a global reset to MAC\n");

	ctrl_reg = ixgb_mac_reset(hw);

	/* Clear interrupt mask to stop board from generating interrupts */
	pr_debug("Masking off all interrupts\n");
	IXGB_WRITE_REG(hw, IMC, 0xffffffff);

	/* Clear any pending interrupt events. */
	icr_reg = IXGB_READ_REG(hw, ICR);

	return ctrl_reg & IXGB_CTRL0_RST;
}


/******************************************************************************
 * Identifies the vendor of the optics module on the adapter.  The SR adapters
 * support two different types of XPAK optics, so it is necessary to determine
 * which optics are present before applying any optics-specific workarounds.
 *
 * hw - Struct containing variables accessed by shared code.
 *
 * Returns: the vendor of the XPAK optics module.
 *****************************************************************************/
static ixgb_xpak_vendor
ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
{
	u32 i;
	u16 vendor_name[5];
	ixgb_xpak_vendor xpak_vendor;

	ENTER();

	/* Read the first few bytes of the vendor string from the XPAK NVR
	 * registers.  These are standard XENPAK/XPAK registers, so all XPAK
	 * devices should implement them. */
	for (i = 0; i < 5; i++) {
		vendor_name[i] = ixgb_read_phy_reg(hw,
						   MDIO_PMA_PMD_XPAK_VENDOR_NAME
						   + i, IXGB_PHY_ADDRESS,
						   MDIO_MMD_PMAPMD);
	}

	/* Determine the actual vendor */
	if (vendor_name[0] == 'I' &&
	    vendor_name[1] == 'N' &&
	    vendor_name[2] == 'T' &&
	    vendor_name[3] == 'E' && vendor_name[4] == 'L') {
		xpak_vendor = ixgb_xpak_vendor_intel;
	} else {
		xpak_vendor = ixgb_xpak_vendor_infineon;
	}

	return xpak_vendor;
}

/******************************************************************************
 * Determine the physical layer module on the adapter.
 *
 * hw - Struct containing variables accessed by shared code.  The device_id
 *      field must be (correctly) populated before calling this routine.
 *
 * Returns: the phy type of the adapter.
 *****************************************************************************/
static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw *hw)
{
	ixgb_phy_type phy_type;
	ixgb_xpak_vendor xpak_vendor;

	ENTER();

	/* Infer the transceiver/phy type from the device id */
	switch (hw->device_id) {
	case IXGB_DEVICE_ID_82597EX:
		pr_debug("Identified TXN17401 optics\n");
		phy_type = ixgb_phy_type_txn17401;
		break;

	case IXGB_DEVICE_ID_82597EX_SR:
		/* The SR adapters carry two different types of XPAK optics
		 * modules; read the vendor identifier to determine the exact
		 * type of optics. */
		xpak_vendor = ixgb_identify_xpak_vendor(hw);
		if (xpak_vendor == ixgb_xpak_vendor_intel) {
			pr_debug("Identified TXN17201 optics\n");
			phy_type = ixgb_phy_type_txn17201;
		} else {
			pr_debug("Identified G6005 optics\n");
			phy_type = ixgb_phy_type_g6005;
		}
		break;
	case IXGB_DEVICE_ID_82597EX_LR:
		pr_debug("Identified G6104 optics\n");
		phy_type = ixgb_phy_type_g6104;
		break;
	case IXGB_DEVICE_ID_82597EX_CX4:
		pr_debug("Identified CX4\n");
		xpak_vendor = ixgb_identify_xpak_vendor(hw);
		if (xpak_vendor == ixgb_xpak_vendor_intel) {
			pr_debug("Identified TXN17201 optics\n");
			phy_type = ixgb_phy_type_txn17201;
		} else {
			pr_debug("Identified G6005 optics\n");
			phy_type = ixgb_phy_type_g6005;
		}
		break;
	default:
		pr_debug("Unknown physical layer module\n");
		phy_type = ixgb_phy_type_unknown;
		break;
	}

	/* update phy type for sun specific board */
	if (hw->subsystem_vendor_id == SUN_SUBVENDOR_ID)
		phy_type = ixgb_phy_type_bcm;

	return phy_type;
}

/******************************************************************************
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Resets the controller.
 * Reads and validates the EEPROM.
 * Initializes the receive address registers.
 * Initializes the multicast table.
 * Clears all on-chip counters.
 * Calls routine to setup flow control settings.
 * Leaves the transmit and receive units disabled and uninitialized.
 *
 * Returns:
 *      true if successful,
 *      false if unrecoverable problems were encountered.
 *****************************************************************************/
bool
ixgb_init_hw(struct ixgb_hw *hw)
{
	u32 i;
	u32 ctrl_reg;
	bool status;

	ENTER();

	/* Issue a global reset to the MAC.  This will reset the chip's
	 * transmit, receive, DMA, and link units.  It will not effect
	 * the current PCI configuration.  The global reset bit is self-
	 * clearing, and should clear within a microsecond.
	 */
	pr_debug("Issuing a global reset to MAC\n");

	ctrl_reg = ixgb_mac_reset(hw);

	pr_debug("Issuing an EE reset to MAC\n");
#ifdef HP_ZX1
	/* Workaround for 82597EX reset errata */
	IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
#else
	IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
#endif

	/* Delay a few ms just to allow the reset to complete */
	msleep(IXGB_DELAY_AFTER_EE_RESET);

	if (!ixgb_get_eeprom_data(hw))
		return false;

	/* Use the device id to determine the type of phy/transceiver. */
	hw->device_id = ixgb_get_ee_device_id(hw);
	hw->phy_type = ixgb_identify_phy(hw);

	/* Setup the receive addresses.
	 * Receive Address Registers (RARs 0 - 15).
	 */
	ixgb_init_rx_addrs(hw);

	/*
	 * Check that a valid MAC address has been set.
	 * If it is not valid, we fail hardware init.
	 */
	if (!mac_addr_valid(hw->curr_mac_addr)) {
		pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
		return(false);
	}

	/* tell the routines in this file they can access hardware again */
	hw->adapter_stopped = false;

	/* Fill in the bus_info structure */
	ixgb_get_bus_info(hw);

	/* Zero out the Multicast HASH table */
	pr_debug("Zeroing the MTA\n");
	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);

	/* Zero out the VLAN Filter Table Array */
	ixgb_clear_vfta(hw);

	/* Zero all of the hardware counters */
	ixgb_clear_hw_cntrs(hw);

	/* Call a subroutine to setup flow control. */
	status = ixgb_setup_fc(hw);

	/* 82597EX errata: Call check-for-link in case lane deskew is locked */
	ixgb_check_for_link(hw);

	return status;
}

/******************************************************************************
 * Initializes receive address filters.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Places the MAC address in receive address register 0 and clears the rest
 * of the receive address registers. Clears the multicast table. Assumes
 * the receiver is in reset when the routine is called.
 *****************************************************************************/
static void
ixgb_init_rx_addrs(struct ixgb_hw *hw)
{
	u32 i;

	ENTER();

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
	if (!mac_addr_valid(hw->curr_mac_addr)) {

		/* Get the MAC address from the eeprom for later reference */
		ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);

		pr_debug("Keeping Permanent MAC Addr = %pM\n",
			 hw->curr_mac_addr);
	} else {

		/* Setup the receive address. */
		pr_debug("Overriding MAC Address in RAR[0]\n");
		pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr);

		ixgb_rar_set(hw, hw->curr_mac_addr, 0);
	}

	/* Zero out the other 15 receive addresses. */
	pr_debug("Clearing RAR[1-15]\n");
	for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
		/* Write high reg first to disable the AV bit first */
		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
	}
}

/******************************************************************************
 * Updates the MAC's list of multicast addresses.
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr_list - the list of new multicast addresses
 * mc_addr_count - number of addresses
 * pad - number of bytes between addresses in the list
 *
 * The given list replaces any existing list. Clears the last 15 receive
 * address registers and the multicast table. Uses receive address registers
 * for the first 15 multicast addresses, and hashes the rest into the
 * multicast table.
 *****************************************************************************/
void
ixgb_mc_addr_list_update(struct ixgb_hw *hw,
			  u8 *mc_addr_list,
			  u32 mc_addr_count,
			  u32 pad)
{
	u32 hash_value;
	u32 i;
	u32 rar_used_count = 1;		/* RAR[0] is used for our MAC address */
	u8 *mca;

	ENTER();

	/* Set the new number of MC addresses that we are being requested to use. */
	hw->num_mc_addrs = mc_addr_count;

	/* Clear RAR[1-15] */
	pr_debug("Clearing RAR[1-15]\n");
	for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
	}

	/* Clear the MTA */
	pr_debug("Clearing MTA\n");
	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);

	/* Add the new addresses */
	mca = mc_addr_list;
	for (i = 0; i < mc_addr_count; i++) {
		pr_debug("Adding the multicast addresses:\n");
		pr_debug("MC Addr #%d = %pM\n", i, mca);

		/* Place this multicast address in the RAR if there is room, *
		 * else put it in the MTA
		 */
		if (rar_used_count < IXGB_RAR_ENTRIES) {
			ixgb_rar_set(hw, mca, rar_used_count);
			pr_debug("Added a multicast address to RAR[%d]\n", i);
			rar_used_count++;
		} else {
			hash_value = ixgb_hash_mc_addr(hw, mca);

			pr_debug("Hash value = 0x%03X\n", hash_value);

			ixgb_mta_set(hw, hash_value);
		}

		mca += ETH_ALEN + pad;
	}

	pr_debug("MC Update Complete\n");
}

/******************************************************************************
 * Hashes an address to determine its location in the multicast table
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr - the multicast address to hash
 *
 * Returns:
 *      The hash value
 *****************************************************************************/
static u32
ixgb_hash_mc_addr(struct ixgb_hw *hw,
		   u8 *mc_addr)
{
	u32 hash_value = 0;

	ENTER();

	/* The portion of the address that is used for the hash table is
	 * determined by the mc_filter_type setting.
	 */
	switch (hw->mc_filter_type) {
		/* [0] [1] [2] [3] [4] [5]
		 * 01  AA  00  12  34  56
		 * LSB                 MSB - According to H/W docs */
	case 0:
		/* [47:36] i.e. 0x563 for above example address */
		hash_value =
		    ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
		break;
	case 1:		/* [46:35] i.e. 0xAC6 for above example address */
		hash_value =
		    ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
		break;
	case 2:		/* [45:34] i.e. 0x5D8 for above example address */
		hash_value =
		    ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
		break;
	case 3:		/* [43:32] i.e. 0x634 for above example address */
		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
		break;
	default:
		/* Invalid mc_filter_type, what should we do? */
		pr_debug("MC filter type param set incorrectly\n");
		ASSERT(0);
		break;
	}

	hash_value &= 0xFFF;
	return hash_value;
}

/******************************************************************************
 * Sets the bit in the multicast table corresponding to the hash value.
 *
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 *****************************************************************************/
static void
ixgb_mta_set(struct ixgb_hw *hw,
		  u32 hash_value)
{
	u32 hash_bit, hash_reg;
	u32 mta_reg;

	/* The MTA is a register array of 128 32-bit registers.
	 * It is treated like an array of 4096 bits.  We want to set
	 * bit BitArray[hash_value]. So we figure out what register
	 * the bit is in, read it, OR in the new bit, then write
	 * back the new value.  The register is determined by the
	 * upper 7 bits of the hash value and the bit within that
	 * register are determined by the lower 5 bits of the value.
	 */
	hash_reg = (hash_value >> 5) & 0x7F;
	hash_bit = hash_value & 0x1F;

	mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);

	mta_reg |= (1 << hash_bit);

	IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
}

/******************************************************************************
 * Puts an ethernet address into a receive address register.
 *
 * hw - Struct containing variables accessed by shared code
 * addr - Address to put into receive address register
 * index - Receive address register to write
 *****************************************************************************/
void
ixgb_rar_set(struct ixgb_hw *hw,
		  u8 *addr,
		  u32 index)
{
	u32 rar_low, rar_high;

	ENTER();

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));

	rar_high = ((u32) addr[4] |
			((u32)addr[5] << 8) |
			IXGB_RAH_AV);

	IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
	IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
}

/******************************************************************************
 * Writes a value to the specified offset in the VLAN filter table.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - Offset in VLAN filer table to write
 * value - Value to write into VLAN filter table
 *****************************************************************************/
void
ixgb_write_vfta(struct ixgb_hw *hw,
		 u32 offset,
		 u32 value)
{
	IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
}

/******************************************************************************
 * Clears the VLAN filer table
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_clear_vfta(struct ixgb_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
		IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}

/******************************************************************************
 * Configures the flow control settings based on SW configuration.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/

static bool
ixgb_setup_fc(struct ixgb_hw *hw)
{
	u32 ctrl_reg;
	u32 pap_reg = 0;   /* by default, assume no pause time */
	bool status = true;

	ENTER();

	/* Get the current control reg 0 settings */
	ctrl_reg = IXGB_READ_REG(hw, CTRL0);

	/* Clear the Receive Pause Enable and Transmit Pause Enable bits */
	ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);

	/* The possible values of the "flow_control" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *          but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *          but we do not support receiving pause frames).
	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
	 *  other:  Invalid.
	 */
	switch (hw->fc.type) {
	case ixgb_fc_none:	/* 0 */
		/* Set CMDC bit to disable Rx Flow control */
		ctrl_reg |= (IXGB_CTRL0_CMDC);
		break;
	case ixgb_fc_rx_pause:	/* 1 */
		/* RX Flow control is enabled, and TX Flow control is
		 * disabled.
		 */
		ctrl_reg |= (IXGB_CTRL0_RPE);
		break;
	case ixgb_fc_tx_pause:	/* 2 */
		/* TX Flow control is enabled, and RX Flow control is
		 * disabled, by a software over-ride.
		 */
		ctrl_reg |= (IXGB_CTRL0_TPE);
		pap_reg = hw->fc.pause_time;
		break;
	case ixgb_fc_full:	/* 3 */
		/* Flow control (both RX and TX) is enabled by a software
		 * over-ride.
		 */
		ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
		pap_reg = hw->fc.pause_time;
		break;
	default:
		/* We should never get here.  The value should be 0-3. */
		pr_debug("Flow control param set incorrectly\n");
		ASSERT(0);
		break;
	}

	/* Write the new settings */
	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);

	if (pap_reg != 0)
		IXGB_WRITE_REG(hw, PAP, pap_reg);

	/* Set the flow control receive threshold registers.  Normally,
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames in not enabled, then these
	 * registers will be set to 0.
	 */
	if (!(hw->fc.type & ixgb_fc_tx_pause)) {
		IXGB_WRITE_REG(hw, FCRTL, 0);
		IXGB_WRITE_REG(hw, FCRTH, 0);
	} else {
	   /* We need to set up the Receive Threshold high and low water
	    * marks as well as (optionally) enabling the transmission of XON
	    * frames. */
		if (hw->fc.send_xon) {
			IXGB_WRITE_REG(hw, FCRTL,
				(hw->fc.low_water | IXGB_FCRTL_XONE));
		} else {
			IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
		}
		IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
	}
	return status;
}

/******************************************************************************
 * Reads a word from a device over the Management Data Interface (MDI) bus.
 * This interface is used to manage Physical layer devices.
 *
 * hw          - Struct containing variables accessed by hw code
 * reg_address - Offset of device register being read.
 * phy_address - Address of device on MDI.
 *
 * Returns:  Data word (16 bits) from MDI device.
 *
 * The 82597EX has support for several MDI access methods.  This routine
 * uses the new protocol MDI Single Command and Address Operation.
 * This requires that first an address cycle command is sent, followed by a
 * read command.
 *****************************************************************************/
static u16
ixgb_read_phy_reg(struct ixgb_hw *hw,
		u32 reg_address,
		u32 phy_address,
		u32 device_type)
{
	u32 i;
	u32 data;
	u32 command = 0;

	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);

	/* Setup and write the address cycle command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
		   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

    /**************************************************************
    ** Check every 10 usec to see if the address cycle completed
    ** The COMMAND bit will clear when the operation is complete.
    ** This may take as long as 64 usecs (we'll wait 100 usecs max)
    ** from the CPU Write to the Ready bit assertion.
    **************************************************************/

	for (i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Address cycle complete, setup and write the read command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
		   (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

    /**************************************************************
    ** Check every 10 usec to see if the read command completed
    ** The COMMAND bit will clear when the operation is complete.
    ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
    ** from the CPU Write to the Ready bit assertion.
    **************************************************************/

	for (i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Operation is complete, get the data from the MDIO Read/Write Data
	 * register and return.
	 */
	data = IXGB_READ_REG(hw, MSRWD);
	data >>= IXGB_MSRWD_READ_DATA_SHIFT;
	return((u16) data);
}

/******************************************************************************
 * Writes a word to a device over the Management Data Interface (MDI) bus.
 * This interface is used to manage Physical layer devices.
 *
 * hw          - Struct containing variables accessed by hw code
 * reg_address - Offset of device register being read.
 * phy_address - Address of device on MDI.
 * device_type - Also known as the Device ID or DID.
 * data        - 16-bit value to be written
 *
 * Returns:  void.
 *
 * The 82597EX has support for several MDI access methods.  This routine
 * uses the new protocol MDI Single Command and Address Operation.
 * This requires that first an address cycle command is sent, followed by a
 * write command.
 *****************************************************************************/
static void
ixgb_write_phy_reg(struct ixgb_hw *hw,
			u32 reg_address,
			u32 phy_address,
			u32 device_type,
			u16 data)
{
	u32 i;
	u32 command = 0;

	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);

	/* Put the data in the MDIO Read/Write Data register */
	IXGB_WRITE_REG(hw, MSRWD, (u32)data);

	/* Setup and write the address cycle command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
			   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

	/**************************************************************
	** Check every 10 usec to see if the address cycle completed
	** The COMMAND bit will clear when the operation is complete.
	** This may take as long as 64 usecs (we'll wait 100 usecs max)
	** from the CPU Write to the Ready bit assertion.
	**************************************************************/

	for (i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Address cycle complete, setup and write the write command */
	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
			   (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));

	IXGB_WRITE_REG(hw, MSCA, command);

	/**************************************************************
	** Check every 10 usec to see if the read command completed
	** The COMMAND bit will clear when the operation is complete.
	** The write may take as long as 64 usecs (we'll wait 100 usecs max)
	** from the CPU Write to the Ready bit assertion.
	**************************************************************/

	for (i = 0; i < 10; i++)
	{
		udelay(10);

		command = IXGB_READ_REG(hw, MSCA);

		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
			break;
	}

	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);

	/* Operation is complete, return. */
}

/******************************************************************************
 * Checks to see if the link status of the hardware has changed.
 *
 * hw - Struct containing variables accessed by hw code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
void
ixgb_check_for_link(struct ixgb_hw *hw)
{
	u32 status_reg;
	u32 xpcss_reg;

	ENTER();

	xpcss_reg = IXGB_READ_REG(hw, XPCSS);
	status_reg = IXGB_READ_REG(hw, STATUS);

	if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
	    (status_reg & IXGB_STATUS_LU)) {
		hw->link_up = true;
	} else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
		   (status_reg & IXGB_STATUS_LU)) {
		pr_debug("XPCSS Not Aligned while Status:LU is set\n");
		hw->link_up = ixgb_link_reset(hw);
	} else {
		/*
		 * 82597EX errata.  Since the lane deskew problem may prevent
		 * link, reset the link before reporting link down.
		 */
		hw->link_up = ixgb_link_reset(hw);
	}
	/*  Anything else for 10 Gig?? */
}

/******************************************************************************
 * Check for a bad link condition that may have occurred.
 * The indication is that the RFC / LFC registers may be incrementing
 * continually.  A full adapter reset is required to recover.
 *
 * hw - Struct containing variables accessed by hw code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
{
	u32 newLFC, newRFC;
	bool bad_link_returncode = false;

	if (hw->phy_type == ixgb_phy_type_txn17401) {
		newLFC = IXGB_READ_REG(hw, LFC);
		newRFC = IXGB_READ_REG(hw, RFC);
		if ((hw->lastLFC + 250 < newLFC)
		    || (hw->lastRFC + 250 < newRFC)) {
			pr_debug("BAD LINK! too many LFC/RFC since last check\n");
			bad_link_returncode = true;
		}
		hw->lastLFC = newLFC;
		hw->lastRFC = newRFC;
	}

	return bad_link_returncode;
}

/******************************************************************************
 * Clears all hardware statistics counters.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
{
	volatile u32 temp_reg;

	ENTER();

	/* if we are stopped or resetting exit gracefully */
	if (hw->adapter_stopped) {
		pr_debug("Exiting because the adapter is stopped!!!\n");
		return;
	}

	temp_reg = IXGB_READ_REG(hw, TPRL);
	temp_reg = IXGB_READ_REG(hw, TPRH);
	temp_reg = IXGB_READ_REG(hw, GPRCL);
	temp_reg = IXGB_READ_REG(hw, GPRCH);
	temp_reg = IXGB_READ_REG(hw, BPRCL);
	temp_reg = IXGB_READ_REG(hw, BPRCH);
	temp_reg = IXGB_READ_REG(hw, MPRCL);
	temp_reg = IXGB_READ_REG(hw, MPRCH);
	temp_reg = IXGB_READ_REG(hw, UPRCL);
	temp_reg = IXGB_READ_REG(hw, UPRCH);
	temp_reg = IXGB_READ_REG(hw, VPRCL);
	temp_reg = IXGB_READ_REG(hw, VPRCH);
	temp_reg = IXGB_READ_REG(hw, JPRCL);
	temp_reg = IXGB_READ_REG(hw, JPRCH);
	temp_reg = IXGB_READ_REG(hw, GORCL);
	temp_reg = IXGB_READ_REG(hw, GORCH);
	temp_reg = IXGB_READ_REG(hw, TORL);
	temp_reg = IXGB_READ_REG(hw, TORH);
	temp_reg = IXGB_READ_REG(hw, RNBC);
	temp_reg = IXGB_READ_REG(hw, RUC);
	temp_reg = IXGB_READ_REG(hw, ROC);
	temp_reg = IXGB_READ_REG(hw, RLEC);
	temp_reg = IXGB_READ_REG(hw, CRCERRS);
	temp_reg = IXGB_READ_REG(hw, ICBC);
	temp_reg = IXGB_READ_REG(hw, ECBC);
	temp_reg = IXGB_READ_REG(hw, MPC);
	temp_reg = IXGB_READ_REG(hw, TPTL);
	temp_reg = IXGB_READ_REG(hw, TPTH);
	temp_reg = IXGB_READ_REG(hw, GPTCL);
	temp_reg = IXGB_READ_REG(hw, GPTCH);
	temp_reg = IXGB_READ_REG(hw, BPTCL);
	temp_reg = IXGB_READ_REG(hw, BPTCH);
	temp_reg = IXGB_READ_REG(hw, MPTCL);
	temp_reg = IXGB_READ_REG(hw, MPTCH);
	temp_reg = IXGB_READ_REG(hw, UPTCL);
	temp_reg = IXGB_READ_REG(hw, UPTCH);
	temp_reg = IXGB_READ_REG(hw, VPTCL);
	temp_reg = IXGB_READ_REG(hw, VPTCH);
	temp_reg = IXGB_READ_REG(hw, JPTCL);
	temp_reg = IXGB_READ_REG(hw, JPTCH);
	temp_reg = IXGB_READ_REG(hw, GOTCL);
	temp_reg = IXGB_READ_REG(hw, GOTCH);
	temp_reg = IXGB_READ_REG(hw, TOTL);
	temp_reg = IXGB_READ_REG(hw, TOTH);
	temp_reg = IXGB_READ_REG(hw, DC);
	temp_reg = IXGB_READ_REG(hw, PLT64C);
	temp_reg = IXGB_READ_REG(hw, TSCTC);
	temp_reg = IXGB_READ_REG(hw, TSCTFC);
	temp_reg = IXGB_READ_REG(hw, IBIC);
	temp_reg = IXGB_READ_REG(hw, RFC);
	temp_reg = IXGB_READ_REG(hw, LFC);
	temp_reg = IXGB_READ_REG(hw, PFRC);
	temp_reg = IXGB_READ_REG(hw, PFTC);
	temp_reg = IXGB_READ_REG(hw, MCFRC);
	temp_reg = IXGB_READ_REG(hw, MCFTC);
	temp_reg = IXGB_READ_REG(hw, XONRXC);
	temp_reg = IXGB_READ_REG(hw, XONTXC);
	temp_reg = IXGB_READ_REG(hw, XOFFRXC);
	temp_reg = IXGB_READ_REG(hw, XOFFTXC);
	temp_reg = IXGB_READ_REG(hw, RJC);
}

/******************************************************************************
 * Turns on the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
ixgb_led_on(struct ixgb_hw *hw)
{
	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);

	/* To turn on the LED, clear software-definable pin 0 (SDP0). */
	ctrl0_reg &= ~IXGB_CTRL0_SDP0;
	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
}

/******************************************************************************
 * Turns off the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
ixgb_led_off(struct ixgb_hw *hw)
{
	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);

	/* To turn off the LED, set software-definable pin 0 (SDP0). */
	ctrl0_reg |= IXGB_CTRL0_SDP0;
	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
}

/******************************************************************************
 * Gets the current PCI bus type, speed, and width of the hardware
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_get_bus_info(struct ixgb_hw *hw)
{
	u32 status_reg;

	status_reg = IXGB_READ_REG(hw, STATUS);

	hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
		ixgb_bus_type_pcix : ixgb_bus_type_pci;

	if (hw->bus.type == ixgb_bus_type_pci) {
		hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
			ixgb_bus_speed_66 : ixgb_bus_speed_33;
	} else {
		switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
		case IXGB_STATUS_PCIX_SPD_66:
			hw->bus.speed = ixgb_bus_speed_66;
			break;
		case IXGB_STATUS_PCIX_SPD_100:
			hw->bus.speed = ixgb_bus_speed_100;
			break;
		case IXGB_STATUS_PCIX_SPD_133:
			hw->bus.speed = ixgb_bus_speed_133;
			break;
		default:
			hw->bus.speed = ixgb_bus_speed_reserved;
			break;
		}
	}

	hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
		ixgb_bus_width_64 : ixgb_bus_width_32;
}

/******************************************************************************
 * Tests a MAC address to ensure it is a valid Individual Address
 *
 * mac_addr - pointer to MAC address.
 *
 *****************************************************************************/
static bool
mac_addr_valid(u8 *mac_addr)
{
	bool is_valid = true;
	ENTER();

	/* Make sure it is not a multicast address */
	if (is_multicast_ether_addr(mac_addr)) {
		pr_debug("MAC address is multicast\n");
		is_valid = false;
	}
	/* Not a broadcast address */
	else if (is_broadcast_ether_addr(mac_addr)) {
		pr_debug("MAC address is broadcast\n");
		is_valid = false;
	}
	/* Reject the zero address */
	else if (is_zero_ether_addr(mac_addr)) {
		pr_debug("MAC address is all zeros\n");
		is_valid = false;
	}
	return is_valid;
}

/******************************************************************************
 * Resets the 10GbE link.  Waits the settle time and returns the state of
 * the link.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static bool
ixgb_link_reset(struct ixgb_hw *hw)
{
	bool link_status = false;
	u8 wait_retries = MAX_RESET_ITERATIONS;
	u8 lrst_retries = MAX_RESET_ITERATIONS;

	do {
		/* Reset the link */
		IXGB_WRITE_REG(hw, CTRL0,
			       IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);

		/* Wait for link-up and lane re-alignment */
		do {
			udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
			link_status =
			    ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
			     && (IXGB_READ_REG(hw, XPCSS) &
				 IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
		} while (!link_status && --wait_retries);

	} while (!link_status && --lrst_retries);

	return link_status;
}

/******************************************************************************
 * Resets the 10GbE optics module.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
ixgb_optics_reset(struct ixgb_hw *hw)
{
	if (hw->phy_type == ixgb_phy_type_txn17401) {
		u16 mdio_reg;

		ixgb_write_phy_reg(hw,
				   MDIO_CTRL1,
				   IXGB_PHY_ADDRESS,
				   MDIO_MMD_PMAPMD,
				   MDIO_CTRL1_RESET);

		mdio_reg = ixgb_read_phy_reg(hw,
					     MDIO_CTRL1,
					     IXGB_PHY_ADDRESS,
					     MDIO_MMD_PMAPMD);
	}
}

/******************************************************************************
 * Resets the 10GbE optics module for Sun variant NIC.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/

#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG         0xC803
#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL     0x0164
#define   IXGB_BCM8704_USER_CTRL_REG                0xC800
#define   IXGB_BCM8704_USER_CTRL_REG_VAL            0x7FBF
#define   IXGB_BCM8704_USER_DEV3_ADDR               0x0003
#define   IXGB_SUN_PHY_ADDRESS                      0x0000
#define   IXGB_SUN_PHY_RESET_DELAY                     305

static void
ixgb_optics_reset_bcm(struct ixgb_hw *hw)
{
	u32 ctrl = IXGB_READ_REG(hw, CTRL0);
	ctrl &= ~IXGB_CTRL0_SDP2;
	ctrl |= IXGB_CTRL0_SDP3;
	IXGB_WRITE_REG(hw, CTRL0, ctrl);
	IXGB_WRITE_FLUSH(hw);

	/* SerDes needs extra delay */
	msleep(IXGB_SUN_PHY_RESET_DELAY);

	/* Broadcom 7408L configuration */
	/* Reference clock config */
	ixgb_write_phy_reg(hw,
			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
			   IXGB_SUN_PHY_ADDRESS,
			   IXGB_BCM8704_USER_DEV3_ADDR,
			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
	/*  we must read the registers twice */
	ixgb_read_phy_reg(hw,
			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
			  IXGB_SUN_PHY_ADDRESS,
			  IXGB_BCM8704_USER_DEV3_ADDR);
	ixgb_read_phy_reg(hw,
			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
			  IXGB_SUN_PHY_ADDRESS,
			  IXGB_BCM8704_USER_DEV3_ADDR);

	ixgb_write_phy_reg(hw,
			   IXGB_BCM8704_USER_CTRL_REG,
			   IXGB_SUN_PHY_ADDRESS,
			   IXGB_BCM8704_USER_DEV3_ADDR,
			   IXGB_BCM8704_USER_CTRL_REG_VAL);
	ixgb_read_phy_reg(hw,
			  IXGB_BCM8704_USER_CTRL_REG,
			  IXGB_SUN_PHY_ADDRESS,
			  IXGB_BCM8704_USER_DEV3_ADDR);
	ixgb_read_phy_reg(hw,
			  IXGB_BCM8704_USER_CTRL_REG,
			  IXGB_SUN_PHY_ADDRESS,
			  IXGB_BCM8704_USER_DEV3_ADDR);

	/* SerDes needs extra delay */
	msleep(IXGB_SUN_PHY_RESET_DELAY);
}