Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
 * Kernel-based Virtual Machine -- Performane Monitoring Unit support
 *
 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
 *
 * Authors:
 *   Avi Kivity   <avi@redhat.com>
 *   Gleb Natapov <gleb@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

#include <linux/types.h>
#include <linux/kvm_host.h>
#include <linux/perf_event.h>
#include "x86.h"
#include "cpuid.h"
#include "lapic.h"

static struct kvm_arch_event_perf_mapping {
	u8 eventsel;
	u8 unit_mask;
	unsigned event_type;
	bool inexact;
} arch_events[] = {
	/* Index must match CPUID 0x0A.EBX bit vector */
	[0] = { 0x3c, 0x00, PERF_COUNT_HW_CPU_CYCLES },
	[1] = { 0xc0, 0x00, PERF_COUNT_HW_INSTRUCTIONS },
	[2] = { 0x3c, 0x01, PERF_COUNT_HW_BUS_CYCLES  },
	[3] = { 0x2e, 0x4f, PERF_COUNT_HW_CACHE_REFERENCES },
	[4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES },
	[5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
	[6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES },
	[7] = { 0x00, 0x30, PERF_COUNT_HW_REF_CPU_CYCLES },
};

/* mapping between fixed pmc index and arch_events array */
int fixed_pmc_events[] = {1, 0, 7};

static bool pmc_is_gp(struct kvm_pmc *pmc)
{
	return pmc->type == KVM_PMC_GP;
}

static inline u64 pmc_bitmask(struct kvm_pmc *pmc)
{
	struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;

	return pmu->counter_bitmask[pmc->type];
}

static inline bool pmc_enabled(struct kvm_pmc *pmc)
{
	struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
	return test_bit(pmc->idx, (unsigned long *)&pmu->global_ctrl);
}

static inline struct kvm_pmc *get_gp_pmc(struct kvm_pmu *pmu, u32 msr,
					 u32 base)
{
	if (msr >= base && msr < base + pmu->nr_arch_gp_counters)
		return &pmu->gp_counters[msr - base];
	return NULL;
}

static inline struct kvm_pmc *get_fixed_pmc(struct kvm_pmu *pmu, u32 msr)
{
	int base = MSR_CORE_PERF_FIXED_CTR0;
	if (msr >= base && msr < base + pmu->nr_arch_fixed_counters)
		return &pmu->fixed_counters[msr - base];
	return NULL;
}

static inline struct kvm_pmc *get_fixed_pmc_idx(struct kvm_pmu *pmu, int idx)
{
	return get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + idx);
}

static struct kvm_pmc *global_idx_to_pmc(struct kvm_pmu *pmu, int idx)
{
	if (idx < X86_PMC_IDX_FIXED)
		return get_gp_pmc(pmu, MSR_P6_EVNTSEL0 + idx, MSR_P6_EVNTSEL0);
	else
		return get_fixed_pmc_idx(pmu, idx - X86_PMC_IDX_FIXED);
}

void kvm_deliver_pmi(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.apic)
		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
}

static void trigger_pmi(struct irq_work *irq_work)
{
	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu,
			irq_work);
	struct kvm_vcpu *vcpu = container_of(pmu, struct kvm_vcpu,
			arch.pmu);

	kvm_deliver_pmi(vcpu);
}

static void kvm_perf_overflow(struct perf_event *perf_event,
			      struct perf_sample_data *data,
			      struct pt_regs *regs)
{
	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
	struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
	__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
}

static void kvm_perf_overflow_intr(struct perf_event *perf_event,
		struct perf_sample_data *data, struct pt_regs *regs)
{
	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
	struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
	if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) {
		kvm_perf_overflow(perf_event, data, regs);
		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
		/*
		 * Inject PMI. If vcpu was in a guest mode during NMI PMI
		 * can be ejected on a guest mode re-entry. Otherwise we can't
		 * be sure that vcpu wasn't executing hlt instruction at the
		 * time of vmexit and is not going to re-enter guest mode until,
		 * woken up. So we should wake it, but this is impossible from
		 * NMI context. Do it from irq work instead.
		 */
		if (!kvm_is_in_guest())
			irq_work_queue(&pmc->vcpu->arch.pmu.irq_work);
		else
			kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
	}
}

static u64 read_pmc(struct kvm_pmc *pmc)
{
	u64 counter, enabled, running;

	counter = pmc->counter;

	if (pmc->perf_event)
		counter += perf_event_read_value(pmc->perf_event,
						 &enabled, &running);

	/* FIXME: Scaling needed? */

	return counter & pmc_bitmask(pmc);
}

static void stop_counter(struct kvm_pmc *pmc)
{
	if (pmc->perf_event) {
		pmc->counter = read_pmc(pmc);
		perf_event_release_kernel(pmc->perf_event);
		pmc->perf_event = NULL;
	}
}

static void reprogram_counter(struct kvm_pmc *pmc, u32 type,
		unsigned config, bool exclude_user, bool exclude_kernel,
		bool intr)
{
	struct perf_event *event;
	struct perf_event_attr attr = {
		.type = type,
		.size = sizeof(attr),
		.pinned = true,
		.exclude_idle = true,
		.exclude_host = 1,
		.exclude_user = exclude_user,
		.exclude_kernel = exclude_kernel,
		.config = config,
	};

	attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);

	event = perf_event_create_kernel_counter(&attr, -1, current,
						 intr ? kvm_perf_overflow_intr :
						 kvm_perf_overflow, pmc);
	if (IS_ERR(event)) {
		printk_once("kvm: pmu event creation failed %ld\n",
				PTR_ERR(event));
		return;
	}

	pmc->perf_event = event;
	clear_bit(pmc->idx, (unsigned long*)&pmc->vcpu->arch.pmu.reprogram_pmi);
}

static unsigned find_arch_event(struct kvm_pmu *pmu, u8 event_select,
		u8 unit_mask)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(arch_events); i++)
		if (arch_events[i].eventsel == event_select
				&& arch_events[i].unit_mask == unit_mask
				&& (pmu->available_event_types & (1 << i)))
			break;

	if (i == ARRAY_SIZE(arch_events))
		return PERF_COUNT_HW_MAX;

	return arch_events[i].event_type;
}

static void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
{
	unsigned config, type = PERF_TYPE_RAW;
	u8 event_select, unit_mask;

	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
		printk_once("kvm pmu: pin control bit is ignored\n");

	pmc->eventsel = eventsel;

	stop_counter(pmc);

	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_enabled(pmc))
		return;

	event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
	unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;

	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
				ARCH_PERFMON_EVENTSEL_INV |
				ARCH_PERFMON_EVENTSEL_CMASK))) {
		config = find_arch_event(&pmc->vcpu->arch.pmu, event_select,
				unit_mask);
		if (config != PERF_COUNT_HW_MAX)
			type = PERF_TYPE_HARDWARE;
	}

	if (type == PERF_TYPE_RAW)
		config = eventsel & X86_RAW_EVENT_MASK;

	reprogram_counter(pmc, type, config,
			!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
			!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
			eventsel & ARCH_PERFMON_EVENTSEL_INT);
}

static void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 en_pmi, int idx)
{
	unsigned en = en_pmi & 0x3;
	bool pmi = en_pmi & 0x8;

	stop_counter(pmc);

	if (!en || !pmc_enabled(pmc))
		return;

	reprogram_counter(pmc, PERF_TYPE_HARDWARE,
			arch_events[fixed_pmc_events[idx]].event_type,
			!(en & 0x2), /* exclude user */
			!(en & 0x1), /* exclude kernel */
			pmi);
}

static inline u8 fixed_en_pmi(u64 ctrl, int idx)
{
	return (ctrl >> (idx * 4)) & 0xf;
}

static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data)
{
	int i;

	for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
		u8 en_pmi = fixed_en_pmi(data, i);
		struct kvm_pmc *pmc = get_fixed_pmc_idx(pmu, i);

		if (fixed_en_pmi(pmu->fixed_ctr_ctrl, i) == en_pmi)
			continue;

		reprogram_fixed_counter(pmc, en_pmi, i);
	}

	pmu->fixed_ctr_ctrl = data;
}

static void reprogram_idx(struct kvm_pmu *pmu, int idx)
{
	struct kvm_pmc *pmc = global_idx_to_pmc(pmu, idx);

	if (!pmc)
		return;

	if (pmc_is_gp(pmc))
		reprogram_gp_counter(pmc, pmc->eventsel);
	else {
		int fidx = idx - X86_PMC_IDX_FIXED;
		reprogram_fixed_counter(pmc,
				fixed_en_pmi(pmu->fixed_ctr_ctrl, fidx), fidx);
	}
}

static void global_ctrl_changed(struct kvm_pmu *pmu, u64 data)
{
	int bit;
	u64 diff = pmu->global_ctrl ^ data;

	pmu->global_ctrl = data;

	for_each_set_bit(bit, (unsigned long *)&diff, X86_PMC_IDX_MAX)
		reprogram_idx(pmu, bit);
}

bool kvm_pmu_msr(struct kvm_vcpu *vcpu, u32 msr)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	int ret;

	switch (msr) {
	case MSR_CORE_PERF_FIXED_CTR_CTRL:
	case MSR_CORE_PERF_GLOBAL_STATUS:
	case MSR_CORE_PERF_GLOBAL_CTRL:
	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
		ret = pmu->version > 1;
		break;
	default:
		ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)
			|| get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0)
			|| get_fixed_pmc(pmu, msr);
		break;
	}
	return ret;
}

int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc;

	switch (index) {
	case MSR_CORE_PERF_FIXED_CTR_CTRL:
		*data = pmu->fixed_ctr_ctrl;
		return 0;
	case MSR_CORE_PERF_GLOBAL_STATUS:
		*data = pmu->global_status;
		return 0;
	case MSR_CORE_PERF_GLOBAL_CTRL:
		*data = pmu->global_ctrl;
		return 0;
	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
		*data = pmu->global_ovf_ctrl;
		return 0;
	default:
		if ((pmc = get_gp_pmc(pmu, index, MSR_IA32_PERFCTR0)) ||
				(pmc = get_fixed_pmc(pmu, index))) {
			*data = read_pmc(pmc);
			return 0;
		} else if ((pmc = get_gp_pmc(pmu, index, MSR_P6_EVNTSEL0))) {
			*data = pmc->eventsel;
			return 0;
		}
	}
	return 1;
}

int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc;

	switch (index) {
	case MSR_CORE_PERF_FIXED_CTR_CTRL:
		if (pmu->fixed_ctr_ctrl == data)
			return 0;
		if (!(data & 0xfffffffffffff444ull)) {
			reprogram_fixed_counters(pmu, data);
			return 0;
		}
		break;
	case MSR_CORE_PERF_GLOBAL_STATUS:
		break; /* RO MSR */
	case MSR_CORE_PERF_GLOBAL_CTRL:
		if (pmu->global_ctrl == data)
			return 0;
		if (!(data & pmu->global_ctrl_mask)) {
			global_ctrl_changed(pmu, data);
			return 0;
		}
		break;
	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
		if (!(data & (pmu->global_ctrl_mask & ~(3ull<<62)))) {
			pmu->global_status &= ~data;
			pmu->global_ovf_ctrl = data;
			return 0;
		}
		break;
	default:
		if ((pmc = get_gp_pmc(pmu, index, MSR_IA32_PERFCTR0)) ||
				(pmc = get_fixed_pmc(pmu, index))) {
			data = (s64)(s32)data;
			pmc->counter += data - read_pmc(pmc);
			return 0;
		} else if ((pmc = get_gp_pmc(pmu, index, MSR_P6_EVNTSEL0))) {
			if (data == pmc->eventsel)
				return 0;
			if (!(data & 0xffffffff00200000ull)) {
				reprogram_gp_counter(pmc, data);
				return 0;
			}
		}
	}
	return 1;
}

int kvm_pmu_read_pmc(struct kvm_vcpu *vcpu, unsigned pmc, u64 *data)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	bool fast_mode = pmc & (1u << 31);
	bool fixed = pmc & (1u << 30);
	struct kvm_pmc *counters;
	u64 ctr;

	pmc &= ~(3u << 30);
	if (!fixed && pmc >= pmu->nr_arch_gp_counters)
		return 1;
	if (fixed && pmc >= pmu->nr_arch_fixed_counters)
		return 1;
	counters = fixed ? pmu->fixed_counters : pmu->gp_counters;
	ctr = read_pmc(&counters[pmc]);
	if (fast_mode)
		ctr = (u32)ctr;
	*data = ctr;

	return 0;
}

void kvm_pmu_cpuid_update(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_cpuid_entry2 *entry;
	unsigned bitmap_len;

	pmu->nr_arch_gp_counters = 0;
	pmu->nr_arch_fixed_counters = 0;
	pmu->counter_bitmask[KVM_PMC_GP] = 0;
	pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
	pmu->version = 0;

	entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
	if (!entry)
		return;

	pmu->version = entry->eax & 0xff;
	if (!pmu->version)
		return;

	pmu->nr_arch_gp_counters = min((int)(entry->eax >> 8) & 0xff,
			X86_PMC_MAX_GENERIC);
	pmu->counter_bitmask[KVM_PMC_GP] =
		((u64)1 << ((entry->eax >> 16) & 0xff)) - 1;
	bitmap_len = (entry->eax >> 24) & 0xff;
	pmu->available_event_types = ~entry->ebx & ((1ull << bitmap_len) - 1);

	if (pmu->version == 1) {
		pmu->nr_arch_fixed_counters = 0;
	} else {
		pmu->nr_arch_fixed_counters = min((int)(entry->edx & 0x1f),
				X86_PMC_MAX_FIXED);
		pmu->counter_bitmask[KVM_PMC_FIXED] =
			((u64)1 << ((entry->edx >> 5) & 0xff)) - 1;
	}

	pmu->global_ctrl = ((1 << pmu->nr_arch_gp_counters) - 1) |
		(((1ull << pmu->nr_arch_fixed_counters) - 1) << X86_PMC_IDX_FIXED);
	pmu->global_ctrl_mask = ~pmu->global_ctrl;
}

void kvm_pmu_init(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;

	memset(pmu, 0, sizeof(*pmu));
	for (i = 0; i < X86_PMC_MAX_GENERIC; i++) {
		pmu->gp_counters[i].type = KVM_PMC_GP;
		pmu->gp_counters[i].vcpu = vcpu;
		pmu->gp_counters[i].idx = i;
	}
	for (i = 0; i < X86_PMC_MAX_FIXED; i++) {
		pmu->fixed_counters[i].type = KVM_PMC_FIXED;
		pmu->fixed_counters[i].vcpu = vcpu;
		pmu->fixed_counters[i].idx = i + X86_PMC_IDX_FIXED;
	}
	init_irq_work(&pmu->irq_work, trigger_pmi);
	kvm_pmu_cpuid_update(vcpu);
}

void kvm_pmu_reset(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	int i;

	irq_work_sync(&pmu->irq_work);
	for (i = 0; i < X86_PMC_MAX_GENERIC; i++) {
		struct kvm_pmc *pmc = &pmu->gp_counters[i];
		stop_counter(pmc);
		pmc->counter = pmc->eventsel = 0;
	}

	for (i = 0; i < X86_PMC_MAX_FIXED; i++)
		stop_counter(&pmu->fixed_counters[i]);

	pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status =
		pmu->global_ovf_ctrl = 0;
}

void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_pmu_reset(vcpu);
}

void kvm_handle_pmu_event(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	u64 bitmask;
	int bit;

	bitmask = pmu->reprogram_pmi;

	for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
		struct kvm_pmc *pmc = global_idx_to_pmc(pmu, bit);

		if (unlikely(!pmc || !pmc->perf_event)) {
			clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
			continue;
		}

		reprogram_idx(pmu, bit);
	}
}