Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
#include "headers.h"

#define STATUS_IMAGE_CHECKSUM_MISMATCH -199
#define EVENT_SIGNALED 1

static B_UINT16 CFG_CalculateChecksum(B_UINT8 *pu8Buffer, B_UINT32 u32Size)
{
	B_UINT16 u16CheckSum = 0;
	while (u32Size--) {
		u16CheckSum += (B_UINT8)~(*pu8Buffer);
		pu8Buffer++;
	}
	return u16CheckSum;
}

BOOLEAN IsReqGpioIsLedInNVM(PMINI_ADAPTER Adapter, UINT gpios)
{
	INT Status;
	Status = (Adapter->gpioBitMap & gpios) ^ gpios;
	if (Status)
		return FALSE;
	else
		return TRUE;
}

static INT LED_Blink(PMINI_ADAPTER Adapter, UINT GPIO_Num, UCHAR uiLedIndex,
		ULONG timeout, INT num_of_time, LedEventInfo_t currdriverstate)
{
	int Status = STATUS_SUCCESS;
	BOOLEAN bInfinite = FALSE;

	/* Check if num_of_time is -ve. If yes, blink led in infinite loop */
	if (num_of_time < 0) {
		bInfinite = TRUE;
		num_of_time = 1;
	}
	while (num_of_time) {
		if (currdriverstate == Adapter->DriverState)
			TURN_ON_LED(GPIO_Num, uiLedIndex);

		/* Wait for timeout after setting on the LED */
		Status = wait_event_interruptible_timeout(
				Adapter->LEDInfo.notify_led_event,
				currdriverstate != Adapter->DriverState ||
					kthread_should_stop(),
				msecs_to_jiffies(timeout));

		if (kthread_should_stop()) {
			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
				DBG_LVL_ALL,
				"Led thread got signal to exit..hence exiting");
			Adapter->LEDInfo.led_thread_running =
					BCM_LED_THREAD_DISABLED;
			TURN_OFF_LED(GPIO_Num, uiLedIndex);
			Status = EVENT_SIGNALED;
			break;
		}
		if (Status) {
			TURN_OFF_LED(GPIO_Num, uiLedIndex);
			Status = EVENT_SIGNALED;
			break;
		}

		TURN_OFF_LED(GPIO_Num, uiLedIndex);
		Status = wait_event_interruptible_timeout(
				Adapter->LEDInfo.notify_led_event,
				currdriverstate != Adapter->DriverState ||
					kthread_should_stop(),
				msecs_to_jiffies(timeout));
		if (bInfinite == FALSE)
			num_of_time--;
	}
	return Status;
}

static INT ScaleRateofTransfer(ULONG rate)
{
	if (rate <= 3)
		return rate;
	else if ((rate > 3) && (rate <= 100))
		return 5;
	else if ((rate > 100) && (rate <= 200))
		return 6;
	else if ((rate > 200) && (rate <= 300))
		return 7;
	else if ((rate > 300) && (rate <= 400))
		return 8;
	else if ((rate > 400) && (rate <= 500))
		return 9;
	else if ((rate > 500) && (rate <= 600))
		return 10;
	else
		return MAX_NUM_OF_BLINKS;
}



static INT LED_Proportional_Blink(PMINI_ADAPTER Adapter, UCHAR GPIO_Num_tx,
		UCHAR uiTxLedIndex, UCHAR GPIO_Num_rx, UCHAR uiRxLedIndex,
		LedEventInfo_t currdriverstate)
{
	/* Initial values of TX and RX packets */
	ULONG64 Initial_num_of_packts_tx = 0, Initial_num_of_packts_rx = 0;
	/* values of TX and RX packets after 1 sec */
	ULONG64 Final_num_of_packts_tx = 0, Final_num_of_packts_rx = 0;
	/* Rate of transfer of Tx and Rx in 1 sec */
	ULONG64 rate_of_transfer_tx = 0, rate_of_transfer_rx = 0;
	int Status = STATUS_SUCCESS;
	INT num_of_time = 0, num_of_time_tx = 0, num_of_time_rx = 0;
	UINT remDelay = 0;
	BOOLEAN bBlinkBothLED = TRUE;
	/* UINT GPIO_num = DISABLE_GPIO_NUM; */
	ulong timeout = 0;

	/* Read initial value of packets sent/received */
	Initial_num_of_packts_tx = Adapter->dev->stats.tx_packets;
	Initial_num_of_packts_rx = Adapter->dev->stats.rx_packets;

	/* Scale the rate of transfer to no of blinks. */
	num_of_time_tx = ScaleRateofTransfer((ULONG)rate_of_transfer_tx);
	num_of_time_rx = ScaleRateofTransfer((ULONG)rate_of_transfer_rx);

	while ((Adapter->device_removed == FALSE)) {
		timeout = 50;
		/*
		 * Blink Tx and Rx LED when both Tx and Rx is
		 * in normal bandwidth
		 */
		if (bBlinkBothLED) {
			/*
			 * Assign minimum number of blinks of
			 * either Tx or Rx.
			 */
			if (num_of_time_tx > num_of_time_rx)
				num_of_time = num_of_time_rx;
			else
				num_of_time = num_of_time_tx;
			if (num_of_time > 0) {
				/* Blink both Tx and Rx LEDs */
				if (LED_Blink(Adapter, 1 << GPIO_Num_tx,
						uiTxLedIndex, timeout,
						num_of_time, currdriverstate)
							== EVENT_SIGNALED)
					return EVENT_SIGNALED;

				if (LED_Blink(Adapter, 1 << GPIO_Num_rx,
						uiRxLedIndex, timeout,
						num_of_time, currdriverstate)
							== EVENT_SIGNALED)
					return EVENT_SIGNALED;

			}

			if (num_of_time == num_of_time_tx) {
				/* Blink pending rate of Rx */
				if (LED_Blink(Adapter, (1 << GPIO_Num_rx),
						uiRxLedIndex, timeout,
						num_of_time_rx-num_of_time,
						currdriverstate)
							== EVENT_SIGNALED)
					return EVENT_SIGNALED;

				num_of_time = num_of_time_rx;
			} else {
				/* Blink pending rate of Tx */
				if (LED_Blink(Adapter, 1 << GPIO_Num_tx,
						uiTxLedIndex, timeout,
						num_of_time_tx-num_of_time,
						currdriverstate)
							== EVENT_SIGNALED)
					return EVENT_SIGNALED;

				num_of_time = num_of_time_tx;
			}
		} else {
			if (num_of_time == num_of_time_tx) {
				/* Blink pending rate of Rx */
				if (LED_Blink(Adapter, 1 << GPIO_Num_tx,
						uiTxLedIndex, timeout,
						num_of_time, currdriverstate)
							== EVENT_SIGNALED)
					return EVENT_SIGNALED;
			} else {
				/* Blink pending rate of Tx */
				if (LED_Blink(Adapter, 1 << GPIO_Num_rx,
						uiRxLedIndex, timeout,
						num_of_time, currdriverstate)
							== EVENT_SIGNALED)
					return EVENT_SIGNALED;
			}
		}

		/*
		 * If Tx/Rx rate is less than maximum blinks per second,
		 * wait till delay completes to 1 second
		 */
		remDelay = MAX_NUM_OF_BLINKS - num_of_time;
		if (remDelay > 0) {
			timeout = 100 * remDelay;
			Status = wait_event_interruptible_timeout(
					Adapter->LEDInfo.notify_led_event,
					currdriverstate != Adapter->DriverState
						|| kthread_should_stop(),
					msecs_to_jiffies(timeout));

			if (kthread_should_stop()) {
				BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS,
					LED_DUMP_INFO, DBG_LVL_ALL,
					"Led thread got signal to exit..hence exiting");
				Adapter->LEDInfo.led_thread_running =
						BCM_LED_THREAD_DISABLED;
				return EVENT_SIGNALED;
			}
			if (Status)
				return EVENT_SIGNALED;
		}

		/* Turn off both Tx and Rx LEDs before next second */
		TURN_OFF_LED(1 << GPIO_Num_tx, uiTxLedIndex);
		TURN_OFF_LED(1 << GPIO_Num_rx, uiTxLedIndex);

		/*
		 * Read the Tx & Rx packets transmission after 1 second and
		 * calculate rate of transfer
		 */
		Final_num_of_packts_tx = Adapter->dev->stats.tx_packets;
		Final_num_of_packts_rx = Adapter->dev->stats.rx_packets;

		rate_of_transfer_tx = Final_num_of_packts_tx -
						Initial_num_of_packts_tx;
		rate_of_transfer_rx = Final_num_of_packts_rx -
						Initial_num_of_packts_rx;

		/* Read initial value of packets sent/received */
		Initial_num_of_packts_tx = Final_num_of_packts_tx;
		Initial_num_of_packts_rx = Final_num_of_packts_rx;

		/* Scale the rate of transfer to no of blinks. */
		num_of_time_tx =
			ScaleRateofTransfer((ULONG)rate_of_transfer_tx);
		num_of_time_rx =
			ScaleRateofTransfer((ULONG)rate_of_transfer_rx);

	}
	return Status;
}

/*
 * -----------------------------------------------------------------------------
 * Procedure:   ValidateDSDParamsChecksum
 *
 * Description: Reads DSD Params and validates checkusm.
 *
 * Arguments:
 *      Adapter - Pointer to Adapter structure.
 *      ulParamOffset - Start offset of the DSD parameter to be read and
 *			validated.
 *      usParamLen - Length of the DSD Parameter.
 *
 * Returns:
 *  <OSAL_STATUS_CODE>
 * -----------------------------------------------------------------------------
 */
static INT ValidateDSDParamsChecksum(PMINI_ADAPTER Adapter, ULONG ulParamOffset,
					USHORT usParamLen)
{
	INT Status = STATUS_SUCCESS;
	PUCHAR puBuffer = NULL;
	USHORT usChksmOrg = 0;
	USHORT usChecksumCalculated = 0;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"LED Thread:ValidateDSDParamsChecksum: 0x%lx 0x%X",
		ulParamOffset, usParamLen);

	puBuffer = kmalloc(usParamLen, GFP_KERNEL);
	if (!puBuffer) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL,
			"LED Thread: ValidateDSDParamsChecksum Allocation failed");
		return -ENOMEM;

	}

	/* Read the DSD data from the parameter offset. */
	if (STATUS_SUCCESS != BeceemNVMRead(Adapter, (PUINT)puBuffer,
			ulParamOffset, usParamLen)) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL,
			"LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed");
		Status = STATUS_IMAGE_CHECKSUM_MISMATCH;
		goto exit;
	}

	/* Calculate the checksum of the data read from the DSD parameter. */
	usChecksumCalculated = CFG_CalculateChecksum(puBuffer, usParamLen);
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"LED Thread: usCheckSumCalculated = 0x%x\n",
		usChecksumCalculated);

	/*
	 * End of the DSD parameter will have a TWO bytes checksum stored in it.
	 * Read it and compare with the calculated Checksum.
	 */
	if (STATUS_SUCCESS != BeceemNVMRead(Adapter, (PUINT)&usChksmOrg,
			ulParamOffset+usParamLen, 2)) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL,
			"LED Thread: ValidateDSDParamsChecksum BeceemNVMRead failed");
		Status = STATUS_IMAGE_CHECKSUM_MISMATCH;
		goto exit;
	}
	usChksmOrg = ntohs(usChksmOrg);
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"LED Thread: usChksmOrg = 0x%x", usChksmOrg);

	/*
	 * Compare the checksum calculated with the checksum read
	 * from DSD section
	 */
	if (usChecksumCalculated ^ usChksmOrg) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL,
			"LED Thread: ValidateDSDParamsChecksum: Checksums don't match");
		Status = STATUS_IMAGE_CHECKSUM_MISMATCH;
		goto exit;
	}

exit:
	kfree(puBuffer);
	return Status;
}


/*
 * -----------------------------------------------------------------------------
 * Procedure:   ValidateHWParmStructure
 *
 * Description: Validates HW Parameters.
 *
 * Arguments:
 *      Adapter - Pointer to Adapter structure.
 *      ulHwParamOffset - Start offset of the HW parameter Section to be read
 *				and validated.
 *
 * Returns:
 *  <OSAL_STATUS_CODE>
 * -----------------------------------------------------------------------------
 */
static INT ValidateHWParmStructure(PMINI_ADAPTER Adapter, ULONG ulHwParamOffset)
{

	INT Status = STATUS_SUCCESS;
	USHORT HwParamLen = 0;
	/*
	 * Add DSD start offset to the hwParamOffset to get
	 * the actual address.
	 */
	ulHwParamOffset += DSD_START_OFFSET;

	/* Read the Length of HW_PARAM structure */
	BeceemNVMRead(Adapter, (PUINT)&HwParamLen, ulHwParamOffset, 2);
	HwParamLen = ntohs(HwParamLen);
	if (0 == HwParamLen || HwParamLen > Adapter->uiNVMDSDSize)
		return STATUS_IMAGE_CHECKSUM_MISMATCH;

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"LED Thread:HwParamLen = 0x%x", HwParamLen);
	Status = ValidateDSDParamsChecksum(Adapter, ulHwParamOffset,
						HwParamLen);
	return Status;
} /* ValidateHWParmStructure() */

static int ReadLEDInformationFromEEPROM(PMINI_ADAPTER Adapter,
					UCHAR GPIO_Array[])
{
	int Status = STATUS_SUCCESS;

	ULONG  dwReadValue	= 0;
	USHORT usHwParamData	= 0;
	USHORT usEEPROMVersion	= 0;
	UCHAR  ucIndex		= 0;
	UCHAR  ucGPIOInfo[32]	= {0};

	BeceemNVMRead(Adapter, (PUINT)&usEEPROMVersion,
			EEPROM_VERSION_OFFSET, 2);

	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"usEEPROMVersion: Minor:0x%X Major:0x%x",
		usEEPROMVersion&0xFF, ((usEEPROMVersion>>8)&0xFF));


	if (((usEEPROMVersion>>8)&0xFF) < EEPROM_MAP5_MAJORVERSION) {
		BeceemNVMRead(Adapter, (PUINT)&usHwParamData,
			EEPROM_HW_PARAM_POINTER_ADDRESS, 2);
		usHwParamData = ntohs(usHwParamData);
		dwReadValue   = usHwParamData;
	} else {
		/*
		 * Validate Compatibility section and then read HW param
		 * if compatibility section is valid.
		 */
		Status = ValidateDSDParamsChecksum(Adapter,
				DSD_START_OFFSET,
				COMPATIBILITY_SECTION_LENGTH_MAP5);

		if (Status != STATUS_SUCCESS)
			return Status;

		BeceemNVMRead(Adapter, (PUINT)&dwReadValue,
			EEPROM_HW_PARAM_POINTER_ADDRRES_MAP5, 4);
		dwReadValue = ntohl(dwReadValue);
	}


	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"LED Thread: Start address of HW_PARAM structure = 0x%lx",
		dwReadValue);

	/*
	 * Validate if the address read out is within the DSD.
	 * Adapter->uiNVMDSDSize gives whole DSD size inclusive of Autoinit.
	 * lower limit should be above DSD_START_OFFSET and
	 * upper limit should be below (Adapter->uiNVMDSDSize-DSD_START_OFFSET)
	 */
	if (dwReadValue < DSD_START_OFFSET ||
			dwReadValue > (Adapter->uiNVMDSDSize-DSD_START_OFFSET))
		return STATUS_IMAGE_CHECKSUM_MISMATCH;

	Status = ValidateHWParmStructure(Adapter, dwReadValue);
	if (Status)
		return Status;

	/*
	 * Add DSD_START_OFFSET to the offset read from the EEPROM.
	 * This will give the actual start HW Parameters start address.
	 * To read GPIO section, add GPIO offset further.
	 */

	dwReadValue +=
		DSD_START_OFFSET; /* = start address of hw param section. */
	dwReadValue += GPIO_SECTION_START_OFFSET;
			/* = GPIO start offset within HW Param section. */

	/*
	 * Read the GPIO values for 32 GPIOs from EEPROM and map the function
	 * number to GPIO pin number to GPIO_Array
	 */
	BeceemNVMRead(Adapter, (UINT *)ucGPIOInfo, dwReadValue, 32);
	for (ucIndex = 0; ucIndex < 32; ucIndex++) {

		switch (ucGPIOInfo[ucIndex]) {
		case RED_LED:
			GPIO_Array[RED_LED] = ucIndex;
			Adapter->gpioBitMap |= (1 << ucIndex);
			break;
		case BLUE_LED:
			GPIO_Array[BLUE_LED] = ucIndex;
			Adapter->gpioBitMap |= (1 << ucIndex);
			break;
		case YELLOW_LED:
			GPIO_Array[YELLOW_LED] = ucIndex;
			Adapter->gpioBitMap |= (1 << ucIndex);
			break;
		case GREEN_LED:
			GPIO_Array[GREEN_LED] = ucIndex;
			Adapter->gpioBitMap |= (1 << ucIndex);
			break;
		default:
			break;
		}

	}
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"GPIO's bit map correspond to LED :0x%X", Adapter->gpioBitMap);
	return Status;
}


static int ReadConfigFileStructure(PMINI_ADAPTER Adapter,
					BOOLEAN *bEnableThread)
{
	int Status = STATUS_SUCCESS;
	/* Array to store GPIO numbers from EEPROM */
	UCHAR GPIO_Array[NUM_OF_LEDS+1];
	UINT uiIndex = 0;
	UINT uiNum_of_LED_Type = 0;
	PUCHAR puCFGData	= NULL;
	UCHAR bData = 0;
	memset(GPIO_Array, DISABLE_GPIO_NUM, NUM_OF_LEDS+1);

	if (!Adapter->pstargetparams || IS_ERR(Adapter->pstargetparams)) {
		BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL, "Target Params not Avail.\n");
		return -ENOENT;
	}

	/* Populate GPIO_Array with GPIO numbers for LED functions */
	/* Read the GPIO numbers from EEPROM */
	Status = ReadLEDInformationFromEEPROM(Adapter, GPIO_Array);
	if (Status == STATUS_IMAGE_CHECKSUM_MISMATCH) {
		*bEnableThread = FALSE;
		return STATUS_SUCCESS;
	} else if (Status) {
		*bEnableThread = FALSE;
		return Status;
	}

	/*
	 * CONFIG file read successfully. Deallocate the memory of
	 * uiFileNameBufferSize
	 */
	BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO, DBG_LVL_ALL,
		"LED Thread: Config file read successfully\n");
	puCFGData = (PUCHAR) &Adapter->pstargetparams->HostDrvrConfig1;

	/*
	 * Offset for HostDrvConfig1, HostDrvConfig2, HostDrvConfig3 which
	 * will have the information of LED type, LED on state for different
	 * driver state and LED blink state.
	 */

	for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
		bData = *puCFGData;

		/*
		 * Check Bit 8 for polarity. If it is set,
		 * polarity is reverse polarity
		 */
		if (bData & 0x80) {
			Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 0;
			/* unset the bit 8 */
			bData = bData & 0x7f;
		}

		Adapter->LEDInfo.LEDState[uiIndex].LED_Type = bData;
		if (bData <= NUM_OF_LEDS)
			Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num =
							GPIO_Array[bData];
		else
			Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num =
							DISABLE_GPIO_NUM;

		puCFGData++;
		bData = *puCFGData;
		Adapter->LEDInfo.LEDState[uiIndex].LED_On_State = bData;
		puCFGData++;
		bData = *puCFGData;
		Adapter->LEDInfo.LEDState[uiIndex].LED_Blink_State = bData;
		puCFGData++;
	}

	/*
	 * Check if all the LED settings are disabled. If it is disabled,
	 * dont launch the LED control thread.
	 */
	for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
		if ((Adapter->LEDInfo.LEDState[uiIndex].LED_Type == DISABLE_GPIO_NUM) ||
			(Adapter->LEDInfo.LEDState[uiIndex].LED_Type == 0x7f) ||
			(Adapter->LEDInfo.LEDState[uiIndex].LED_Type == 0))
			uiNum_of_LED_Type++;
	}
	if (uiNum_of_LED_Type >= NUM_OF_LEDS)
		*bEnableThread = FALSE;

	return Status;
}

/*
 * -----------------------------------------------------------------------------
 * Procedure:   LedGpioInit
 *
 * Description: Initializes LED GPIOs. Makes the LED GPIOs to OUTPUT mode
 *			  and make the initial state to be OFF.
 *
 * Arguments:
 *      Adapter - Pointer to MINI_ADAPTER structure.
 *
 * Returns: VOID
 *
 * -----------------------------------------------------------------------------
 */
static VOID LedGpioInit(PMINI_ADAPTER Adapter)
{
	UINT uiResetValue = 0;
	UINT uiIndex      = 0;

	/* Set all LED GPIO Mode to output mode */
	if (rdmalt(Adapter, GPIO_MODE_REGISTER, &uiResetValue,
			sizeof(uiResetValue)) < 0)
		BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL, "LED Thread: RDM Failed\n");
	for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
		if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num !=
				DISABLE_GPIO_NUM)
			uiResetValue |= (1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num);
		TURN_OFF_LED(1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num,
				uiIndex);
	}
	if (wrmalt(Adapter, GPIO_MODE_REGISTER, &uiResetValue,
			sizeof(uiResetValue)) < 0)
		BCM_DEBUG_PRINT (Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL, "LED Thread: WRM Failed\n");

	Adapter->LEDInfo.bIdle_led_off = FALSE;
}

static INT BcmGetGPIOPinInfo(PMINI_ADAPTER Adapter, UCHAR *GPIO_num_tx,
		UCHAR *GPIO_num_rx, UCHAR *uiLedTxIndex, UCHAR *uiLedRxIndex,
		LedEventInfo_t currdriverstate)
{
	UINT uiIndex = 0;

	*GPIO_num_tx = DISABLE_GPIO_NUM;
	*GPIO_num_rx = DISABLE_GPIO_NUM;

	for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {

		if ((currdriverstate == NORMAL_OPERATION) ||
				(currdriverstate == IDLEMODE_EXIT) ||
				(currdriverstate == FW_DOWNLOAD)) {
			if (Adapter->LEDInfo.LEDState[uiIndex].LED_Blink_State &
					currdriverstate) {
				if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num
						!= DISABLE_GPIO_NUM) {
					if (*GPIO_num_tx == DISABLE_GPIO_NUM) {
						*GPIO_num_tx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num;
						*uiLedTxIndex = uiIndex;
					} else {
						*GPIO_num_rx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num;
						*uiLedRxIndex = uiIndex;
					}
				}
			}
		} else {
			if (Adapter->LEDInfo.LEDState[uiIndex].LED_On_State
					& currdriverstate) {
				if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num
						!= DISABLE_GPIO_NUM) {
					*GPIO_num_tx = Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num;
					*uiLedTxIndex = uiIndex;
				}
			}
		}
	}
	return STATUS_SUCCESS;
}
static VOID LEDControlThread(PMINI_ADAPTER Adapter)
{
	UINT uiIndex = 0;
	UCHAR GPIO_num = 0;
	UCHAR uiLedIndex = 0;
	UINT uiResetValue = 0;
	LedEventInfo_t currdriverstate = 0;
	ulong timeout = 0;

	INT Status = 0;

	UCHAR dummyGPIONum = 0;
	UCHAR dummyIndex = 0;

	/* currdriverstate = Adapter->DriverState; */
	Adapter->LEDInfo.bIdleMode_tx_from_host = FALSE;

	/*
	 * Wait till event is triggered
	 *
	 * wait_event(Adapter->LEDInfo.notify_led_event,
	 *	currdriverstate!= Adapter->DriverState);
	 */

	GPIO_num = DISABLE_GPIO_NUM;

	while (TRUE) {
		/* Wait till event is triggered */
		if ((GPIO_num == DISABLE_GPIO_NUM)
						||
				((currdriverstate != FW_DOWNLOAD) &&
				 (currdriverstate != NORMAL_OPERATION) &&
				 (currdriverstate != LOWPOWER_MODE_ENTER))
						||
				(currdriverstate == LED_THREAD_INACTIVE))
			Status = wait_event_interruptible(
					Adapter->LEDInfo.notify_led_event,
					currdriverstate != Adapter->DriverState
						|| kthread_should_stop());

		if (kthread_should_stop() || Adapter->device_removed) {
			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
				DBG_LVL_ALL,
				"Led thread got signal to exit..hence exiting");
			Adapter->LEDInfo.led_thread_running =
						BCM_LED_THREAD_DISABLED;
			TURN_OFF_LED(1 << GPIO_num, uiLedIndex);
			return; /* STATUS_FAILURE; */
		}

		if (GPIO_num != DISABLE_GPIO_NUM)
			TURN_OFF_LED(1 << GPIO_num, uiLedIndex);

		if (Adapter->LEDInfo.bLedInitDone == FALSE) {
			LedGpioInit(Adapter);
			Adapter->LEDInfo.bLedInitDone = TRUE;
		}

		switch (Adapter->DriverState) {
		case DRIVER_INIT:
			currdriverstate = DRIVER_INIT;
					/* Adapter->DriverState; */
			BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum,
				&uiLedIndex, &dummyIndex, currdriverstate);

			if (GPIO_num != DISABLE_GPIO_NUM)
				TURN_ON_LED(1 << GPIO_num, uiLedIndex);

			break;
		case FW_DOWNLOAD:
			/*
			 * BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS,
			 *	LED_DUMP_INFO, DBG_LVL_ALL,
			 *	"LED Thread: FW_DN_DONE called\n");
			 */
			currdriverstate = FW_DOWNLOAD;
			BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum,
				&uiLedIndex, &dummyIndex, currdriverstate);

			if (GPIO_num != DISABLE_GPIO_NUM) {
				timeout = 50;
				LED_Blink(Adapter, 1 << GPIO_num, uiLedIndex,
					timeout, -1, currdriverstate);
			}
			break;
		case FW_DOWNLOAD_DONE:
			currdriverstate = FW_DOWNLOAD_DONE;
			BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum,
				&uiLedIndex, &dummyIndex, currdriverstate);
			if (GPIO_num != DISABLE_GPIO_NUM)
				TURN_ON_LED(1 << GPIO_num, uiLedIndex);
			break;

		case SHUTDOWN_EXIT:
			/*
			 * no break, continue to NO_NETWORK_ENTRY
			 * state as well.
			 */
		case NO_NETWORK_ENTRY:
			currdriverstate = NO_NETWORK_ENTRY;
			BcmGetGPIOPinInfo(Adapter, &GPIO_num, &dummyGPIONum,
				&uiLedIndex, &dummyGPIONum, currdriverstate);
			if (GPIO_num != DISABLE_GPIO_NUM)
				TURN_ON_LED(1 << GPIO_num, uiLedIndex);
			break;
		case NORMAL_OPERATION:
			{
				UCHAR GPIO_num_tx = DISABLE_GPIO_NUM;
				UCHAR GPIO_num_rx = DISABLE_GPIO_NUM;
				UCHAR uiLEDTx = 0;
				UCHAR uiLEDRx = 0;
				currdriverstate = NORMAL_OPERATION;
				Adapter->LEDInfo.bIdle_led_off = FALSE;

				BcmGetGPIOPinInfo(Adapter, &GPIO_num_tx,
					&GPIO_num_rx, &uiLEDTx, &uiLEDRx,
					currdriverstate);
				if ((GPIO_num_tx == DISABLE_GPIO_NUM) &&
						(GPIO_num_rx ==
						 DISABLE_GPIO_NUM)) {
					GPIO_num = DISABLE_GPIO_NUM;
				} else {
					/*
					 * If single LED is selected, use same
					 * for both Tx and Rx
					 */
					if (GPIO_num_tx == DISABLE_GPIO_NUM) {
						GPIO_num_tx = GPIO_num_rx;
						uiLEDTx = uiLEDRx;
					} else if (GPIO_num_rx ==
							DISABLE_GPIO_NUM) {
						GPIO_num_rx = GPIO_num_tx;
						uiLEDRx = uiLEDTx;
					}
					/*
					 * Blink the LED in proportionate
					 * to Tx and Rx transmissions.
					 */
					LED_Proportional_Blink(Adapter,
						GPIO_num_tx, uiLEDTx,
						GPIO_num_rx, uiLEDRx,
						currdriverstate);
				}
			}
			break;
		case LOWPOWER_MODE_ENTER:
			currdriverstate = LOWPOWER_MODE_ENTER;
			if (DEVICE_POWERSAVE_MODE_AS_MANUAL_CLOCK_GATING ==
					Adapter->ulPowerSaveMode) {
				/* Turn OFF all the LED */
				uiResetValue = 0;
				for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
					if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num != DISABLE_GPIO_NUM)
						TURN_OFF_LED((1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num), uiIndex);
				}

			}
			/* Turn off LED And WAKE-UP for Sendinf IDLE mode ACK */
			Adapter->LEDInfo.bLedInitDone = FALSE;
			Adapter->LEDInfo.bIdle_led_off = TRUE;
			wake_up(&Adapter->LEDInfo.idleModeSyncEvent);
			GPIO_num = DISABLE_GPIO_NUM;
			break;
		case IDLEMODE_CONTINUE:
			currdriverstate = IDLEMODE_CONTINUE;
			GPIO_num = DISABLE_GPIO_NUM;
			break;
		case IDLEMODE_EXIT:
			break;
		case DRIVER_HALT:
			currdriverstate = DRIVER_HALT;
			GPIO_num = DISABLE_GPIO_NUM;
			for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
				if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num
						!= DISABLE_GPIO_NUM)
					TURN_OFF_LED((1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num), uiIndex);
			}
			/* Adapter->DriverState = DRIVER_INIT; */
			break;
		case LED_THREAD_INACTIVE:
			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
				DBG_LVL_ALL, "InActivating LED thread...");
			currdriverstate = LED_THREAD_INACTIVE;
			Adapter->LEDInfo.led_thread_running =
					BCM_LED_THREAD_RUNNING_INACTIVELY;
			Adapter->LEDInfo.bLedInitDone = FALSE;
			/* disable ALL LED */
			for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++) {
				if (Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num
						!= DISABLE_GPIO_NUM)
					TURN_OFF_LED((1 << Adapter->LEDInfo.LEDState[uiIndex].GPIO_Num), uiIndex);
			}
			break;
		case LED_THREAD_ACTIVE:
			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
				DBG_LVL_ALL, "Activating LED thread again...");
			if (Adapter->LinkUpStatus == FALSE)
				Adapter->DriverState = NO_NETWORK_ENTRY;
			else
				Adapter->DriverState = NORMAL_OPERATION;

			Adapter->LEDInfo.led_thread_running =
					BCM_LED_THREAD_RUNNING_ACTIVELY;
			break;
			/* return; */
		default:
			break;
		}
	}
	Adapter->LEDInfo.led_thread_running = BCM_LED_THREAD_DISABLED;
}

int InitLedSettings(PMINI_ADAPTER Adapter)
{
	int Status = STATUS_SUCCESS;
	BOOLEAN bEnableThread = TRUE;
	UCHAR uiIndex = 0;

	/*
	 * Initially set BitPolarity to normal polarity. The bit 8 of LED type
	 * is used to change the polarity of the LED.
	 */

	for (uiIndex = 0; uiIndex < NUM_OF_LEDS; uiIndex++)
		Adapter->LEDInfo.LEDState[uiIndex].BitPolarity = 1;

	/*
	 * Read the LED settings of CONFIG file and map it
	 * to GPIO numbers in EEPROM
	 */
	Status = ReadConfigFileStructure(Adapter, &bEnableThread);
	if (STATUS_SUCCESS != Status) {
		BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
			DBG_LVL_ALL,
			"LED Thread: FAILED in ReadConfigFileStructure\n");
		return Status;
	}

	if (Adapter->LEDInfo.led_thread_running) {
		if (bEnableThread) {
			;
		} else {
			Adapter->DriverState = DRIVER_HALT;
			wake_up(&Adapter->LEDInfo.notify_led_event);
			Adapter->LEDInfo.led_thread_running =
						BCM_LED_THREAD_DISABLED;
		}

	} else if (bEnableThread) {
		/* Create secondary thread to handle the LEDs */
		init_waitqueue_head(&Adapter->LEDInfo.notify_led_event);
		init_waitqueue_head(&Adapter->LEDInfo.idleModeSyncEvent);
		Adapter->LEDInfo.led_thread_running =
					BCM_LED_THREAD_RUNNING_ACTIVELY;
		Adapter->LEDInfo.bIdle_led_off = FALSE;
		Adapter->LEDInfo.led_cntrl_threadid =
			kthread_run((int (*)(void *)) LEDControlThread,
			Adapter, "led_control_thread");
		if (IS_ERR(Adapter->LEDInfo.led_cntrl_threadid)) {
			BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, LED_DUMP_INFO,
				DBG_LVL_ALL,
				"Not able to spawn Kernel Thread\n");
			Adapter->LEDInfo.led_thread_running =
				BCM_LED_THREAD_DISABLED;
			return PTR_ERR(Adapter->LEDInfo.led_cntrl_threadid);
		}
	}
	return Status;
}