Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
/*
 * drivers/mtd/nand/fsmc_nand.c
 *
 * ST Microelectronics
 * Flexible Static Memory Controller (FSMC)
 * Driver for NAND portions
 *
 * Copyright © 2010 ST Microelectronics
 * Vipin Kumar <vipin.kumar@st.com>
 * Ashish Priyadarshi
 *
 * Based on drivers/mtd/nand/nomadik_nand.c
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/resource.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/mtd/fsmc.h>
#include <linux/amba/bus.h>
#include <mtd/mtd-abi.h>

static struct nand_ecclayout fsmc_ecc1_128_layout = {
	.eccbytes = 24,
	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
	.oobfree = {
		{.offset = 8, .length = 8},
		{.offset = 24, .length = 8},
		{.offset = 40, .length = 8},
		{.offset = 56, .length = 8},
		{.offset = 72, .length = 8},
		{.offset = 88, .length = 8},
		{.offset = 104, .length = 8},
		{.offset = 120, .length = 8}
	}
};

static struct nand_ecclayout fsmc_ecc1_64_layout = {
	.eccbytes = 12,
	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
	.oobfree = {
		{.offset = 8, .length = 8},
		{.offset = 24, .length = 8},
		{.offset = 40, .length = 8},
		{.offset = 56, .length = 8},
	}
};

static struct nand_ecclayout fsmc_ecc1_16_layout = {
	.eccbytes = 3,
	.eccpos = {2, 3, 4},
	.oobfree = {
		{.offset = 8, .length = 8},
	}
};

/*
 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
 * bytes are free for use.
 */
static struct nand_ecclayout fsmc_ecc4_256_layout = {
	.eccbytes = 208,
	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
		9,  10,  11,  12,  13,  14,
		18,  19,  20,  21,  22,  23,  24,
		25,  26,  27,  28,  29,  30,
		34,  35,  36,  37,  38,  39,  40,
		41,  42,  43,  44,  45,  46,
		50,  51,  52,  53,  54,  55,  56,
		57,  58,  59,  60,  61,  62,
		66,  67,  68,  69,  70,  71,  72,
		73,  74,  75,  76,  77,  78,
		82,  83,  84,  85,  86,  87,  88,
		89,  90,  91,  92,  93,  94,
		98,  99, 100, 101, 102, 103, 104,
		105, 106, 107, 108, 109, 110,
		114, 115, 116, 117, 118, 119, 120,
		121, 122, 123, 124, 125, 126,
		130, 131, 132, 133, 134, 135, 136,
		137, 138, 139, 140, 141, 142,
		146, 147, 148, 149, 150, 151, 152,
		153, 154, 155, 156, 157, 158,
		162, 163, 164, 165, 166, 167, 168,
		169, 170, 171, 172, 173, 174,
		178, 179, 180, 181, 182, 183, 184,
		185, 186, 187, 188, 189, 190,
		194, 195, 196, 197, 198, 199, 200,
		201, 202, 203, 204, 205, 206,
		210, 211, 212, 213, 214, 215, 216,
		217, 218, 219, 220, 221, 222,
		226, 227, 228, 229, 230, 231, 232,
		233, 234, 235, 236, 237, 238,
		242, 243, 244, 245, 246, 247, 248,
		249, 250, 251, 252, 253, 254
	},
	.oobfree = {
		{.offset = 15, .length = 3},
		{.offset = 31, .length = 3},
		{.offset = 47, .length = 3},
		{.offset = 63, .length = 3},
		{.offset = 79, .length = 3},
		{.offset = 95, .length = 3},
		{.offset = 111, .length = 3},
		{.offset = 127, .length = 3},
		{.offset = 143, .length = 3},
		{.offset = 159, .length = 3},
		{.offset = 175, .length = 3},
		{.offset = 191, .length = 3},
		{.offset = 207, .length = 3},
		{.offset = 223, .length = 3},
		{.offset = 239, .length = 3},
		{.offset = 255, .length = 1}
	}
};

/*
 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
 * bytes are free for use.
 */
static struct nand_ecclayout fsmc_ecc4_224_layout = {
	.eccbytes = 104,
	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
		9,  10,  11,  12,  13,  14,
		18,  19,  20,  21,  22,  23,  24,
		25,  26,  27,  28,  29,  30,
		34,  35,  36,  37,  38,  39,  40,
		41,  42,  43,  44,  45,  46,
		50,  51,  52,  53,  54,  55,  56,
		57,  58,  59,  60,  61,  62,
		66,  67,  68,  69,  70,  71,  72,
		73,  74,  75,  76,  77,  78,
		82,  83,  84,  85,  86,  87,  88,
		89,  90,  91,  92,  93,  94,
		98,  99, 100, 101, 102, 103, 104,
		105, 106, 107, 108, 109, 110,
		114, 115, 116, 117, 118, 119, 120,
		121, 122, 123, 124, 125, 126
	},
	.oobfree = {
		{.offset = 15, .length = 3},
		{.offset = 31, .length = 3},
		{.offset = 47, .length = 3},
		{.offset = 63, .length = 3},
		{.offset = 79, .length = 3},
		{.offset = 95, .length = 3},
		{.offset = 111, .length = 3},
		{.offset = 127, .length = 97}
	}
};

/*
 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
 * bytes are free for use.
 */
static struct nand_ecclayout fsmc_ecc4_128_layout = {
	.eccbytes = 104,
	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
		9,  10,  11,  12,  13,  14,
		18,  19,  20,  21,  22,  23,  24,
		25,  26,  27,  28,  29,  30,
		34,  35,  36,  37,  38,  39,  40,
		41,  42,  43,  44,  45,  46,
		50,  51,  52,  53,  54,  55,  56,
		57,  58,  59,  60,  61,  62,
		66,  67,  68,  69,  70,  71,  72,
		73,  74,  75,  76,  77,  78,
		82,  83,  84,  85,  86,  87,  88,
		89,  90,  91,  92,  93,  94,
		98,  99, 100, 101, 102, 103, 104,
		105, 106, 107, 108, 109, 110,
		114, 115, 116, 117, 118, 119, 120,
		121, 122, 123, 124, 125, 126
	},
	.oobfree = {
		{.offset = 15, .length = 3},
		{.offset = 31, .length = 3},
		{.offset = 47, .length = 3},
		{.offset = 63, .length = 3},
		{.offset = 79, .length = 3},
		{.offset = 95, .length = 3},
		{.offset = 111, .length = 3},
		{.offset = 127, .length = 1}
	}
};

/*
 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
 * bytes are free for use.
 */
static struct nand_ecclayout fsmc_ecc4_64_layout = {
	.eccbytes = 52,
	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
		9,  10,  11,  12,  13,  14,
		18,  19,  20,  21,  22,  23,  24,
		25,  26,  27,  28,  29,  30,
		34,  35,  36,  37,  38,  39,  40,
		41,  42,  43,  44,  45,  46,
		50,  51,  52,  53,  54,  55,  56,
		57,  58,  59,  60,  61,  62,
	},
	.oobfree = {
		{.offset = 15, .length = 3},
		{.offset = 31, .length = 3},
		{.offset = 47, .length = 3},
		{.offset = 63, .length = 1},
	}
};

/*
 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
 * byte is free for use.
 */
static struct nand_ecclayout fsmc_ecc4_16_layout = {
	.eccbytes = 13,
	.eccpos = { 0,  1,  2,  3,  6,  7, 8,
		9, 10, 11, 12, 13, 14
	},
	.oobfree = {
		{.offset = 15, .length = 1},
	}
};

/*
 * ECC placement definitions in oobfree type format.
 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 * consecutively and immediately after the 512 byte data block for hardware to
 * generate the error bit offsets in 512 byte data.
 * Managing the ecc bytes in the following way makes it easier for software to
 * read ecc bytes consecutive to data bytes. This way is similar to
 * oobfree structure maintained already in generic nand driver
 */
static struct fsmc_eccplace fsmc_ecc4_lp_place = {
	.eccplace = {
		{.offset = 2, .length = 13},
		{.offset = 18, .length = 13},
		{.offset = 34, .length = 13},
		{.offset = 50, .length = 13},
		{.offset = 66, .length = 13},
		{.offset = 82, .length = 13},
		{.offset = 98, .length = 13},
		{.offset = 114, .length = 13}
	}
};

static struct fsmc_eccplace fsmc_ecc4_sp_place = {
	.eccplace = {
		{.offset = 0, .length = 4},
		{.offset = 6, .length = 9}
	}
};

/**
 * struct fsmc_nand_data - structure for FSMC NAND device state
 *
 * @pid:		Part ID on the AMBA PrimeCell format
 * @mtd:		MTD info for a NAND flash.
 * @nand:		Chip related info for a NAND flash.
 * @partitions:		Partition info for a NAND Flash.
 * @nr_partitions:	Total number of partition of a NAND flash.
 *
 * @ecc_place:		ECC placing locations in oobfree type format.
 * @bank:		Bank number for probed device.
 * @clk:		Clock structure for FSMC.
 *
 * @read_dma_chan:	DMA channel for read access
 * @write_dma_chan:	DMA channel for write access to NAND
 * @dma_access_complete: Completion structure
 *
 * @data_pa:		NAND Physical port for Data.
 * @data_va:		NAND port for Data.
 * @cmd_va:		NAND port for Command.
 * @addr_va:		NAND port for Address.
 * @regs_va:		FSMC regs base address.
 */
struct fsmc_nand_data {
	u32			pid;
	struct mtd_info		mtd;
	struct nand_chip	nand;
	struct mtd_partition	*partitions;
	unsigned int		nr_partitions;

	struct fsmc_eccplace	*ecc_place;
	unsigned int		bank;
	struct device		*dev;
	enum access_mode	mode;
	struct clk		*clk;

	/* DMA related objects */
	struct dma_chan		*read_dma_chan;
	struct dma_chan		*write_dma_chan;
	struct completion	dma_access_complete;

	struct fsmc_nand_timings *dev_timings;

	dma_addr_t		data_pa;
	void __iomem		*data_va;
	void __iomem		*cmd_va;
	void __iomem		*addr_va;
	void __iomem		*regs_va;

	void			(*select_chip)(uint32_t bank, uint32_t busw);
};

/* Assert CS signal based on chipnr */
static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct nand_chip *chip = mtd->priv;
	struct fsmc_nand_data *host;

	host = container_of(mtd, struct fsmc_nand_data, mtd);

	switch (chipnr) {
	case -1:
		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
		break;
	case 0:
	case 1:
	case 2:
	case 3:
		if (host->select_chip)
			host->select_chip(chipnr,
					chip->options & NAND_BUSWIDTH_16);
		break;

	default:
		BUG();
	}
}

/*
 * fsmc_cmd_ctrl - For facilitaing Hardware access
 * This routine allows hardware specific access to control-lines(ALE,CLE)
 */
static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct nand_chip *this = mtd->priv;
	struct fsmc_nand_data *host = container_of(mtd,
					struct fsmc_nand_data, mtd);
	void *__iomem *regs = host->regs_va;
	unsigned int bank = host->bank;

	if (ctrl & NAND_CTRL_CHANGE) {
		u32 pc;

		if (ctrl & NAND_CLE) {
			this->IO_ADDR_R = host->cmd_va;
			this->IO_ADDR_W = host->cmd_va;
		} else if (ctrl & NAND_ALE) {
			this->IO_ADDR_R = host->addr_va;
			this->IO_ADDR_W = host->addr_va;
		} else {
			this->IO_ADDR_R = host->data_va;
			this->IO_ADDR_W = host->data_va;
		}

		pc = readl(FSMC_NAND_REG(regs, bank, PC));
		if (ctrl & NAND_NCE)
			pc |= FSMC_ENABLE;
		else
			pc &= ~FSMC_ENABLE;
		writel(pc, FSMC_NAND_REG(regs, bank, PC));
	}

	mb();

	if (cmd != NAND_CMD_NONE)
		writeb(cmd, this->IO_ADDR_W);
}

/*
 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 *
 * This routine initializes timing parameters related to NAND memory access in
 * FSMC registers
 */
static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
			   uint32_t busw, struct fsmc_nand_timings *timings)
{
	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
	uint32_t tclr, tar, thiz, thold, twait, tset;
	struct fsmc_nand_timings *tims;
	struct fsmc_nand_timings default_timings = {
		.tclr	= FSMC_TCLR_1,
		.tar	= FSMC_TAR_1,
		.thiz	= FSMC_THIZ_1,
		.thold	= FSMC_THOLD_4,
		.twait	= FSMC_TWAIT_6,
		.tset	= FSMC_TSET_0,
	};

	if (timings)
		tims = timings;
	else
		tims = &default_timings;

	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;

	if (busw)
		writel(value | FSMC_DEVWID_16, FSMC_NAND_REG(regs, bank, PC));
	else
		writel(value | FSMC_DEVWID_8, FSMC_NAND_REG(regs, bank, PC));

	writel(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
			FSMC_NAND_REG(regs, bank, PC));
	writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, COMM));
	writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, ATTRIB));
}

/*
 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 */
static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct fsmc_nand_data *host = container_of(mtd,
					struct fsmc_nand_data, mtd);
	void __iomem *regs = host->regs_va;
	uint32_t bank = host->bank;

	writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
			FSMC_NAND_REG(regs, bank, PC));
	writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
			FSMC_NAND_REG(regs, bank, PC));
	writel(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
			FSMC_NAND_REG(regs, bank, PC));
}

/*
 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 * max of 8-bits)
 */
static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
				uint8_t *ecc)
{
	struct fsmc_nand_data *host = container_of(mtd,
					struct fsmc_nand_data, mtd);
	void __iomem *regs = host->regs_va;
	uint32_t bank = host->bank;
	uint32_t ecc_tmp;
	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;

	do {
		if (readl(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
			break;
		else
			cond_resched();
	} while (!time_after_eq(jiffies, deadline));

	if (time_after_eq(jiffies, deadline)) {
		dev_err(host->dev, "calculate ecc timed out\n");
		return -ETIMEDOUT;
	}

	ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1));
	ecc[0] = (uint8_t) (ecc_tmp >> 0);
	ecc[1] = (uint8_t) (ecc_tmp >> 8);
	ecc[2] = (uint8_t) (ecc_tmp >> 16);
	ecc[3] = (uint8_t) (ecc_tmp >> 24);

	ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC2));
	ecc[4] = (uint8_t) (ecc_tmp >> 0);
	ecc[5] = (uint8_t) (ecc_tmp >> 8);
	ecc[6] = (uint8_t) (ecc_tmp >> 16);
	ecc[7] = (uint8_t) (ecc_tmp >> 24);

	ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC3));
	ecc[8] = (uint8_t) (ecc_tmp >> 0);
	ecc[9] = (uint8_t) (ecc_tmp >> 8);
	ecc[10] = (uint8_t) (ecc_tmp >> 16);
	ecc[11] = (uint8_t) (ecc_tmp >> 24);

	ecc_tmp = readl(FSMC_NAND_REG(regs, bank, STS));
	ecc[12] = (uint8_t) (ecc_tmp >> 16);

	return 0;
}

/*
 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 * max of 1-bit)
 */
static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
				uint8_t *ecc)
{
	struct fsmc_nand_data *host = container_of(mtd,
					struct fsmc_nand_data, mtd);
	void __iomem *regs = host->regs_va;
	uint32_t bank = host->bank;
	uint32_t ecc_tmp;

	ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1));
	ecc[0] = (uint8_t) (ecc_tmp >> 0);
	ecc[1] = (uint8_t) (ecc_tmp >> 8);
	ecc[2] = (uint8_t) (ecc_tmp >> 16);

	return 0;
}

/* Count the number of 0's in buff upto a max of max_bits */
static int count_written_bits(uint8_t *buff, int size, int max_bits)
{
	int k, written_bits = 0;

	for (k = 0; k < size; k++) {
		written_bits += hweight8(~buff[k]);
		if (written_bits > max_bits)
			break;
	}

	return written_bits;
}

static void dma_complete(void *param)
{
	struct fsmc_nand_data *host = param;

	complete(&host->dma_access_complete);
}

static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
		enum dma_data_direction direction)
{
	struct dma_chan *chan;
	struct dma_device *dma_dev;
	struct dma_async_tx_descriptor *tx;
	dma_addr_t dma_dst, dma_src, dma_addr;
	dma_cookie_t cookie;
	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	int ret;

	if (direction == DMA_TO_DEVICE)
		chan = host->write_dma_chan;
	else if (direction == DMA_FROM_DEVICE)
		chan = host->read_dma_chan;
	else
		return -EINVAL;

	dma_dev = chan->device;
	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);

	if (direction == DMA_TO_DEVICE) {
		dma_src = dma_addr;
		dma_dst = host->data_pa;
		flags |= DMA_COMPL_SRC_UNMAP_SINGLE | DMA_COMPL_SKIP_DEST_UNMAP;
	} else {
		dma_src = host->data_pa;
		dma_dst = dma_addr;
		flags |= DMA_COMPL_DEST_UNMAP_SINGLE | DMA_COMPL_SKIP_SRC_UNMAP;
	}

	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
			len, flags);

	if (!tx) {
		dev_err(host->dev, "device_prep_dma_memcpy error\n");
		dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
		return -EIO;
	}

	tx->callback = dma_complete;
	tx->callback_param = host;
	cookie = tx->tx_submit(tx);

	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(host->dev, "dma_submit_error %d\n", cookie);
		return ret;
	}

	dma_async_issue_pending(chan);

	ret =
	wait_for_completion_interruptible_timeout(&host->dma_access_complete,
				msecs_to_jiffies(3000));
	if (ret <= 0) {
		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
		dev_err(host->dev, "wait_for_completion_timeout\n");
		return ret ? ret : -ETIMEDOUT;
	}

	return 0;
}

/*
 * fsmc_write_buf - write buffer to chip
 * @mtd:	MTD device structure
 * @buf:	data buffer
 * @len:	number of bytes to write
 */
static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;

	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
			IS_ALIGNED(len, sizeof(uint32_t))) {
		uint32_t *p = (uint32_t *)buf;
		len = len >> 2;
		for (i = 0; i < len; i++)
			writel(p[i], chip->IO_ADDR_W);
	} else {
		for (i = 0; i < len; i++)
			writeb(buf[i], chip->IO_ADDR_W);
	}
}

/*
 * fsmc_read_buf - read chip data into buffer
 * @mtd:	MTD device structure
 * @buf:	buffer to store date
 * @len:	number of bytes to read
 */
static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;

	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
			IS_ALIGNED(len, sizeof(uint32_t))) {
		uint32_t *p = (uint32_t *)buf;
		len = len >> 2;
		for (i = 0; i < len; i++)
			p[i] = readl(chip->IO_ADDR_R);
	} else {
		for (i = 0; i < len; i++)
			buf[i] = readb(chip->IO_ADDR_R);
	}
}

/*
 * fsmc_read_buf_dma - read chip data into buffer
 * @mtd:	MTD device structure
 * @buf:	buffer to store date
 * @len:	number of bytes to read
 */
static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct fsmc_nand_data *host;

	host = container_of(mtd, struct fsmc_nand_data, mtd);
	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
}

/*
 * fsmc_write_buf_dma - write buffer to chip
 * @mtd:	MTD device structure
 * @buf:	data buffer
 * @len:	number of bytes to write
 */
static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
		int len)
{
	struct fsmc_nand_data *host;

	host = container_of(mtd, struct fsmc_nand_data, mtd);
	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
}

/*
 * fsmc_read_page_hwecc
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 * @page:	page number to read
 *
 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 * performed in a strict sequence as follows:
 * data(512 byte) -> ecc(13 byte)
 * After this read, fsmc hardware generates and reports error data bits(up to a
 * max of 8 bits)
 */
static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int page)
{
	struct fsmc_nand_data *host = container_of(mtd,
					struct fsmc_nand_data, mtd);
	struct fsmc_eccplace *ecc_place = host->ecc_place;
	int i, j, s, stat, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	int off, len, group = 0;
	/*
	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
	 * end up reading 14 bytes (7 words) from oob. The local array is
	 * to maintain word alignment
	 */
	uint16_t ecc_oob[7];
	uint8_t *oob = (uint8_t *)&ecc_oob[0];

	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);

		for (j = 0; j < eccbytes;) {
			off = ecc_place->eccplace[group].offset;
			len = ecc_place->eccplace[group].length;
			group++;

			/*
			 * length is intentionally kept a higher multiple of 2
			 * to read at least 13 bytes even in case of 16 bit NAND
			 * devices
			 */
			if (chip->options & NAND_BUSWIDTH_16)
				len = roundup(len, 2);

			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
			chip->read_buf(mtd, oob + j, len);
			j += len;
		}

		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
	}

	return 0;
}

/*
 * fsmc_bch8_correct_data
 * @mtd:	mtd info structure
 * @dat:	buffer of read data
 * @read_ecc:	ecc read from device spare area
 * @calc_ecc:	ecc calculated from read data
 *
 * calc_ecc is a 104 bit information containing maximum of 8 error
 * offset informations of 13 bits each in 512 bytes of read data.
 */
static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
			     uint8_t *read_ecc, uint8_t *calc_ecc)
{
	struct fsmc_nand_data *host = container_of(mtd,
					struct fsmc_nand_data, mtd);
	struct nand_chip *chip = mtd->priv;
	void __iomem *regs = host->regs_va;
	unsigned int bank = host->bank;
	uint32_t err_idx[8];
	uint32_t num_err, i;
	uint32_t ecc1, ecc2, ecc3, ecc4;

	num_err = (readl(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;

	/* no bit flipping */
	if (likely(num_err == 0))
		return 0;

	/* too many errors */
	if (unlikely(num_err > 8)) {
		/*
		 * This is a temporary erase check. A newly erased page read
		 * would result in an ecc error because the oob data is also
		 * erased to FF and the calculated ecc for an FF data is not
		 * FF..FF.
		 * This is a workaround to skip performing correction in case
		 * data is FF..FF
		 *
		 * Logic:
		 * For every page, each bit written as 0 is counted until these
		 * number of bits are greater than 8 (the maximum correction
		 * capability of FSMC for each 512 + 13 bytes)
		 */

		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
		int bits_data = count_written_bits(dat, chip->ecc.size, 8);

		if ((bits_ecc + bits_data) <= 8) {
			if (bits_data)
				memset(dat, 0xff, chip->ecc.size);
			return bits_data;
		}

		return -EBADMSG;
	}

	/*
	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
	 *
	 * calc_ecc is a 104 bit information containing maximum of 8 error
	 * offset informations of 13 bits each. calc_ecc is copied into a
	 * uint64_t array and error offset indexes are populated in err_idx
	 * array
	 */
	ecc1 = readl(FSMC_NAND_REG(regs, bank, ECC1));
	ecc2 = readl(FSMC_NAND_REG(regs, bank, ECC2));
	ecc3 = readl(FSMC_NAND_REG(regs, bank, ECC3));
	ecc4 = readl(FSMC_NAND_REG(regs, bank, STS));

	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);

	i = 0;
	while (num_err--) {
		change_bit(0, (unsigned long *)&err_idx[i]);
		change_bit(1, (unsigned long *)&err_idx[i]);

		if (err_idx[i] < chip->ecc.size * 8) {
			change_bit(err_idx[i], (unsigned long *)dat);
			i++;
		}
	}
	return i;
}

static bool filter(struct dma_chan *chan, void *slave)
{
	chan->private = slave;
	return true;
}

#ifdef CONFIG_OF
static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev,
					       struct device_node *np)
{
	struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
	u32 val;

	/* Set default NAND width to 8 bits */
	pdata->width = 8;
	if (!of_property_read_u32(np, "bank-width", &val)) {
		if (val == 2) {
			pdata->width = 16;
		} else if (val != 1) {
			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
			return -EINVAL;
		}
	}
	of_property_read_u32(np, "st,ale-off", &pdata->ale_off);
	of_property_read_u32(np, "st,cle-off", &pdata->cle_off);
	if (of_get_property(np, "nand-skip-bbtscan", NULL))
		pdata->options = NAND_SKIP_BBTSCAN;

	return 0;
}
#else
static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev,
					       struct device_node *np)
{
	return -ENOSYS;
}
#endif

/*
 * fsmc_nand_probe - Probe function
 * @pdev:       platform device structure
 */
static int __init fsmc_nand_probe(struct platform_device *pdev)
{
	struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
	struct device_node __maybe_unused *np = pdev->dev.of_node;
	struct mtd_part_parser_data ppdata = {};
	struct fsmc_nand_data *host;
	struct mtd_info *mtd;
	struct nand_chip *nand;
	struct resource *res;
	dma_cap_mask_t mask;
	int ret = 0;
	u32 pid;
	int i;

	if (np) {
		pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
		pdev->dev.platform_data = pdata;
		ret = fsmc_nand_probe_config_dt(pdev, np);
		if (ret) {
			dev_err(&pdev->dev, "no platform data\n");
			return -ENODEV;
		}
	}

	if (!pdata) {
		dev_err(&pdev->dev, "platform data is NULL\n");
		return -EINVAL;
	}

	/* Allocate memory for the device structure (and zero it) */
	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
	if (!host) {
		dev_err(&pdev->dev, "failed to allocate device structure\n");
		return -ENOMEM;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
	if (!res)
		return -EINVAL;

	if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
				pdev->name)) {
		dev_err(&pdev->dev, "Failed to get memory data resourse\n");
		return -ENOENT;
	}

	host->data_pa = (dma_addr_t)res->start;
	host->data_va = devm_ioremap(&pdev->dev, res->start,
			resource_size(res));
	if (!host->data_va) {
		dev_err(&pdev->dev, "data ioremap failed\n");
		return -ENOMEM;
	}

	if (!devm_request_mem_region(&pdev->dev, res->start + pdata->ale_off,
			resource_size(res), pdev->name)) {
		dev_err(&pdev->dev, "Failed to get memory ale resourse\n");
		return -ENOENT;
	}

	host->addr_va = devm_ioremap(&pdev->dev, res->start + pdata->ale_off,
			resource_size(res));
	if (!host->addr_va) {
		dev_err(&pdev->dev, "ale ioremap failed\n");
		return -ENOMEM;
	}

	if (!devm_request_mem_region(&pdev->dev, res->start + pdata->cle_off,
			resource_size(res), pdev->name)) {
		dev_err(&pdev->dev, "Failed to get memory cle resourse\n");
		return -ENOENT;
	}

	host->cmd_va = devm_ioremap(&pdev->dev, res->start + pdata->cle_off,
			resource_size(res));
	if (!host->cmd_va) {
		dev_err(&pdev->dev, "ale ioremap failed\n");
		return -ENOMEM;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
	if (!res)
		return -EINVAL;

	if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
			pdev->name)) {
		dev_err(&pdev->dev, "Failed to get memory regs resourse\n");
		return -ENOENT;
	}

	host->regs_va = devm_ioremap(&pdev->dev, res->start,
			resource_size(res));
	if (!host->regs_va) {
		dev_err(&pdev->dev, "regs ioremap failed\n");
		return -ENOMEM;
	}

	host->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(host->clk)) {
		dev_err(&pdev->dev, "failed to fetch block clock\n");
		return PTR_ERR(host->clk);
	}

	ret = clk_enable(host->clk);
	if (ret)
		goto err_clk_enable;

	/*
	 * This device ID is actually a common AMBA ID as used on the
	 * AMBA PrimeCell bus. However it is not a PrimeCell.
	 */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
	host->pid = pid;
	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
		 "revision %02x, config %02x\n",
		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));

	host->bank = pdata->bank;
	host->select_chip = pdata->select_bank;
	host->partitions = pdata->partitions;
	host->nr_partitions = pdata->nr_partitions;
	host->dev = &pdev->dev;
	host->dev_timings = pdata->nand_timings;
	host->mode = pdata->mode;

	if (host->mode == USE_DMA_ACCESS)
		init_completion(&host->dma_access_complete);

	/* Link all private pointers */
	mtd = &host->mtd;
	nand = &host->nand;
	mtd->priv = nand;
	nand->priv = host;

	host->mtd.owner = THIS_MODULE;
	nand->IO_ADDR_R = host->data_va;
	nand->IO_ADDR_W = host->data_va;
	nand->cmd_ctrl = fsmc_cmd_ctrl;
	nand->chip_delay = 30;

	nand->ecc.mode = NAND_ECC_HW;
	nand->ecc.hwctl = fsmc_enable_hwecc;
	nand->ecc.size = 512;
	nand->options = pdata->options;
	nand->select_chip = fsmc_select_chip;
	nand->badblockbits = 7;

	if (pdata->width == FSMC_NAND_BW16)
		nand->options |= NAND_BUSWIDTH_16;

	switch (host->mode) {
	case USE_DMA_ACCESS:
		dma_cap_zero(mask);
		dma_cap_set(DMA_MEMCPY, mask);
		host->read_dma_chan = dma_request_channel(mask, filter,
				pdata->read_dma_priv);
		if (!host->read_dma_chan) {
			dev_err(&pdev->dev, "Unable to get read dma channel\n");
			goto err_req_read_chnl;
		}
		host->write_dma_chan = dma_request_channel(mask, filter,
				pdata->write_dma_priv);
		if (!host->write_dma_chan) {
			dev_err(&pdev->dev, "Unable to get write dma channel\n");
			goto err_req_write_chnl;
		}
		nand->read_buf = fsmc_read_buf_dma;
		nand->write_buf = fsmc_write_buf_dma;
		break;

	default:
	case USE_WORD_ACCESS:
		nand->read_buf = fsmc_read_buf;
		nand->write_buf = fsmc_write_buf;
		break;
	}

	fsmc_nand_setup(host->regs_va, host->bank,
			nand->options & NAND_BUSWIDTH_16,
			host->dev_timings);

	if (AMBA_REV_BITS(host->pid) >= 8) {
		nand->ecc.read_page = fsmc_read_page_hwecc;
		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
		nand->ecc.correct = fsmc_bch8_correct_data;
		nand->ecc.bytes = 13;
		nand->ecc.strength = 8;
	} else {
		nand->ecc.calculate = fsmc_read_hwecc_ecc1;
		nand->ecc.correct = nand_correct_data;
		nand->ecc.bytes = 3;
		nand->ecc.strength = 1;
	}

	/*
	 * Scan to find existence of the device
	 */
	if (nand_scan_ident(&host->mtd, 1, NULL)) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "No NAND Device found!\n");
		goto err_scan_ident;
	}

	if (AMBA_REV_BITS(host->pid) >= 8) {
		switch (host->mtd.oobsize) {
		case 16:
			nand->ecc.layout = &fsmc_ecc4_16_layout;
			host->ecc_place = &fsmc_ecc4_sp_place;
			break;
		case 64:
			nand->ecc.layout = &fsmc_ecc4_64_layout;
			host->ecc_place = &fsmc_ecc4_lp_place;
			break;
		case 128:
			nand->ecc.layout = &fsmc_ecc4_128_layout;
			host->ecc_place = &fsmc_ecc4_lp_place;
			break;
		case 224:
			nand->ecc.layout = &fsmc_ecc4_224_layout;
			host->ecc_place = &fsmc_ecc4_lp_place;
			break;
		case 256:
			nand->ecc.layout = &fsmc_ecc4_256_layout;
			host->ecc_place = &fsmc_ecc4_lp_place;
			break;
		default:
			printk(KERN_WARNING "No oob scheme defined for "
			       "oobsize %d\n", mtd->oobsize);
			BUG();
		}
	} else {
		switch (host->mtd.oobsize) {
		case 16:
			nand->ecc.layout = &fsmc_ecc1_16_layout;
			break;
		case 64:
			nand->ecc.layout = &fsmc_ecc1_64_layout;
			break;
		case 128:
			nand->ecc.layout = &fsmc_ecc1_128_layout;
			break;
		default:
			printk(KERN_WARNING "No oob scheme defined for "
			       "oobsize %d\n", mtd->oobsize);
			BUG();
		}
	}

	/* Second stage of scan to fill MTD data-structures */
	if (nand_scan_tail(&host->mtd)) {
		ret = -ENXIO;
		goto err_probe;
	}

	/*
	 * The partition information can is accessed by (in the same precedence)
	 *
	 * command line through Bootloader,
	 * platform data,
	 * default partition information present in driver.
	 */
	/*
	 * Check for partition info passed
	 */
	host->mtd.name = "nand";
	ppdata.of_node = np;
	ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata,
					host->partitions, host->nr_partitions);
	if (ret)
		goto err_probe;

	platform_set_drvdata(pdev, host);
	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
	return 0;

err_probe:
err_scan_ident:
	if (host->mode == USE_DMA_ACCESS)
		dma_release_channel(host->write_dma_chan);
err_req_write_chnl:
	if (host->mode == USE_DMA_ACCESS)
		dma_release_channel(host->read_dma_chan);
err_req_read_chnl:
	clk_disable(host->clk);
err_clk_enable:
	clk_put(host->clk);
	return ret;
}

/*
 * Clean up routine
 */
static int fsmc_nand_remove(struct platform_device *pdev)
{
	struct fsmc_nand_data *host = platform_get_drvdata(pdev);

	platform_set_drvdata(pdev, NULL);

	if (host) {
		nand_release(&host->mtd);

		if (host->mode == USE_DMA_ACCESS) {
			dma_release_channel(host->write_dma_chan);
			dma_release_channel(host->read_dma_chan);
		}
		clk_disable(host->clk);
		clk_put(host->clk);
	}

	return 0;
}

#ifdef CONFIG_PM
static int fsmc_nand_suspend(struct device *dev)
{
	struct fsmc_nand_data *host = dev_get_drvdata(dev);
	if (host)
		clk_disable(host->clk);
	return 0;
}

static int fsmc_nand_resume(struct device *dev)
{
	struct fsmc_nand_data *host = dev_get_drvdata(dev);
	if (host) {
		clk_enable(host->clk);
		fsmc_nand_setup(host->regs_va, host->bank,
				host->nand.options & NAND_BUSWIDTH_16,
				host->dev_timings);
	}
	return 0;
}

static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
#endif

#ifdef CONFIG_OF
static const struct of_device_id fsmc_nand_id_table[] = {
	{ .compatible = "st,spear600-fsmc-nand" },
	{}
};
MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
#endif

static struct platform_driver fsmc_nand_driver = {
	.remove = fsmc_nand_remove,
	.driver = {
		.owner = THIS_MODULE,
		.name = "fsmc-nand",
		.of_match_table = of_match_ptr(fsmc_nand_id_table),
#ifdef CONFIG_PM
		.pm = &fsmc_nand_pm_ops,
#endif
	},
};

static int __init fsmc_nand_init(void)
{
	return platform_driver_probe(&fsmc_nand_driver,
				     fsmc_nand_probe);
}
module_init(fsmc_nand_init);

static void __exit fsmc_nand_exit(void)
{
	platform_driver_unregister(&fsmc_nand_driver);
}
module_exit(fsmc_nand_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");