Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/*
 * SuperH On-Chip RTC Support
 *
 * Copyright (C) 2006 - 2009  Paul Mundt
 * Copyright (C) 2006  Jamie Lenehan
 * Copyright (C) 2008  Angelo Castello
 *
 * Based on the old arch/sh/kernel/cpu/rtc.c by:
 *
 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/log2.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <asm/rtc.h>

#define DRV_NAME	"sh-rtc"
#define DRV_VERSION	"0.2.3"

#define RTC_REG(r)	((r) * rtc_reg_size)

#define R64CNT		RTC_REG(0)

#define RSECCNT		RTC_REG(1)	/* RTC sec */
#define RMINCNT		RTC_REG(2)	/* RTC min */
#define RHRCNT		RTC_REG(3)	/* RTC hour */
#define RWKCNT		RTC_REG(4)	/* RTC week */
#define RDAYCNT		RTC_REG(5)	/* RTC day */
#define RMONCNT		RTC_REG(6)	/* RTC month */
#define RYRCNT		RTC_REG(7)	/* RTC year */
#define RSECAR		RTC_REG(8)	/* ALARM sec */
#define RMINAR		RTC_REG(9)	/* ALARM min */
#define RHRAR		RTC_REG(10)	/* ALARM hour */
#define RWKAR		RTC_REG(11)	/* ALARM week */
#define RDAYAR		RTC_REG(12)	/* ALARM day */
#define RMONAR		RTC_REG(13)	/* ALARM month */
#define RCR1		RTC_REG(14)	/* Control */
#define RCR2		RTC_REG(15)	/* Control */

/*
 * Note on RYRAR and RCR3: Up until this point most of the register
 * definitions are consistent across all of the available parts. However,
 * the placement of the optional RYRAR and RCR3 (the RYRAR control
 * register used to control RYRCNT/RYRAR compare) varies considerably
 * across various parts, occasionally being mapped in to a completely
 * unrelated address space. For proper RYRAR support a separate resource
 * would have to be handed off, but as this is purely optional in
 * practice, we simply opt not to support it, thereby keeping the code
 * quite a bit more simplified.
 */

/* ALARM Bits - or with BCD encoded value */
#define AR_ENB		0x80	/* Enable for alarm cmp   */

/* Period Bits */
#define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
#define PF_COUNT	0x200	/* Half periodic counter */
#define PF_OXS		0x400	/* Periodic One x Second */
#define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
#define PF_MASK		0xf00

/* RCR1 Bits */
#define RCR1_CF		0x80	/* Carry Flag             */
#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
#define RCR1_AF		0x01	/* Alarm Flag             */

/* RCR2 Bits */
#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
#define RCR2_RTCEN	0x08	/* ENable RTC              */
#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
#define RCR2_RESET	0x02	/* Reset bit               */
#define RCR2_START	0x01	/* Start bit               */

struct sh_rtc {
	void __iomem		*regbase;
	unsigned long		regsize;
	struct resource		*res;
	int			alarm_irq;
	int			periodic_irq;
	int			carry_irq;
	struct clk		*clk;
	struct rtc_device	*rtc_dev;
	spinlock_t		lock;
	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
	unsigned short		periodic_freq;
};

static int __sh_rtc_interrupt(struct sh_rtc *rtc)
{
	unsigned int tmp, pending;

	tmp = readb(rtc->regbase + RCR1);
	pending = tmp & RCR1_CF;
	tmp &= ~RCR1_CF;
	writeb(tmp, rtc->regbase + RCR1);

	/* Users have requested One x Second IRQ */
	if (pending && rtc->periodic_freq & PF_OXS)
		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);

	return pending;
}

static int __sh_rtc_alarm(struct sh_rtc *rtc)
{
	unsigned int tmp, pending;

	tmp = readb(rtc->regbase + RCR1);
	pending = tmp & RCR1_AF;
	tmp &= ~(RCR1_AF | RCR1_AIE);
	writeb(tmp, rtc->regbase + RCR1);

	if (pending)
		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);

	return pending;
}

static int __sh_rtc_periodic(struct sh_rtc *rtc)
{
	struct rtc_device *rtc_dev = rtc->rtc_dev;
	struct rtc_task *irq_task;
	unsigned int tmp, pending;

	tmp = readb(rtc->regbase + RCR2);
	pending = tmp & RCR2_PEF;
	tmp &= ~RCR2_PEF;
	writeb(tmp, rtc->regbase + RCR2);

	if (!pending)
		return 0;

	/* Half period enabled than one skipped and the next notified */
	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
		rtc->periodic_freq &= ~PF_COUNT;
	else {
		if (rtc->periodic_freq & PF_HP)
			rtc->periodic_freq |= PF_COUNT;
		if (rtc->periodic_freq & PF_KOU) {
			spin_lock(&rtc_dev->irq_task_lock);
			irq_task = rtc_dev->irq_task;
			if (irq_task)
				irq_task->func(irq_task->private_data);
			spin_unlock(&rtc_dev->irq_task_lock);
		} else
			rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
	}

	return pending;
}

static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
{
	struct sh_rtc *rtc = dev_id;
	int ret;

	spin_lock(&rtc->lock);
	ret = __sh_rtc_interrupt(rtc);
	spin_unlock(&rtc->lock);

	return IRQ_RETVAL(ret);
}

static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
{
	struct sh_rtc *rtc = dev_id;
	int ret;

	spin_lock(&rtc->lock);
	ret = __sh_rtc_alarm(rtc);
	spin_unlock(&rtc->lock);

	return IRQ_RETVAL(ret);
}

static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
{
	struct sh_rtc *rtc = dev_id;
	int ret;

	spin_lock(&rtc->lock);
	ret = __sh_rtc_periodic(rtc);
	spin_unlock(&rtc->lock);

	return IRQ_RETVAL(ret);
}

static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
{
	struct sh_rtc *rtc = dev_id;
	int ret;

	spin_lock(&rtc->lock);
	ret = __sh_rtc_interrupt(rtc);
	ret |= __sh_rtc_alarm(rtc);
	ret |= __sh_rtc_periodic(rtc);
	spin_unlock(&rtc->lock);

	return IRQ_RETVAL(ret);
}

static int sh_rtc_irq_set_state(struct device *dev, int enable)
{
	struct sh_rtc *rtc = dev_get_drvdata(dev);
	unsigned int tmp;

	spin_lock_irq(&rtc->lock);

	tmp = readb(rtc->regbase + RCR2);

	if (enable) {
		rtc->periodic_freq |= PF_KOU;
		tmp &= ~RCR2_PEF;	/* Clear PES bit */
		tmp |= (rtc->periodic_freq & ~PF_HP);	/* Set PES2-0 */
	} else {
		rtc->periodic_freq &= ~PF_KOU;
		tmp &= ~(RCR2_PESMASK | RCR2_PEF);
	}

	writeb(tmp, rtc->regbase + RCR2);

	spin_unlock_irq(&rtc->lock);

	return 0;
}

static int sh_rtc_irq_set_freq(struct device *dev, int freq)
{
	struct sh_rtc *rtc = dev_get_drvdata(dev);
	int tmp, ret = 0;

	spin_lock_irq(&rtc->lock);
	tmp = rtc->periodic_freq & PF_MASK;

	switch (freq) {
	case 0:
		rtc->periodic_freq = 0x00;
		break;
	case 1:
		rtc->periodic_freq = 0x60;
		break;
	case 2:
		rtc->periodic_freq = 0x50;
		break;
	case 4:
		rtc->periodic_freq = 0x40;
		break;
	case 8:
		rtc->periodic_freq = 0x30 | PF_HP;
		break;
	case 16:
		rtc->periodic_freq = 0x30;
		break;
	case 32:
		rtc->periodic_freq = 0x20 | PF_HP;
		break;
	case 64:
		rtc->periodic_freq = 0x20;
		break;
	case 128:
		rtc->periodic_freq = 0x10 | PF_HP;
		break;
	case 256:
		rtc->periodic_freq = 0x10;
		break;
	default:
		ret = -ENOTSUPP;
	}

	if (ret == 0)
		rtc->periodic_freq |= tmp;

	spin_unlock_irq(&rtc->lock);
	return ret;
}

static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
{
	struct sh_rtc *rtc = dev_get_drvdata(dev);
	unsigned int tmp;

	spin_lock_irq(&rtc->lock);

	tmp = readb(rtc->regbase + RCR1);

	if (enable)
		tmp |= RCR1_AIE;
	else
		tmp &= ~RCR1_AIE;

	writeb(tmp, rtc->regbase + RCR1);

	spin_unlock_irq(&rtc->lock);
}

static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
{
	struct sh_rtc *rtc = dev_get_drvdata(dev);
	unsigned int tmp;

	tmp = readb(rtc->regbase + RCR1);
	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");

	tmp = readb(rtc->regbase + RCR2);
	seq_printf(seq, "periodic_IRQ\t: %s\n",
		   (tmp & RCR2_PESMASK) ? "yes" : "no");

	return 0;
}

static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
{
	struct sh_rtc *rtc = dev_get_drvdata(dev);
	unsigned int tmp;

	spin_lock_irq(&rtc->lock);

	tmp = readb(rtc->regbase + RCR1);

	if (!enable)
		tmp &= ~RCR1_CIE;
	else
		tmp |= RCR1_CIE;

	writeb(tmp, rtc->regbase + RCR1);

	spin_unlock_irq(&rtc->lock);
}

static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	sh_rtc_setaie(dev, enabled);
	return 0;
}

static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sh_rtc *rtc = platform_get_drvdata(pdev);
	unsigned int sec128, sec2, yr, yr100, cf_bit;

	do {
		unsigned int tmp;

		spin_lock_irq(&rtc->lock);

		tmp = readb(rtc->regbase + RCR1);
		tmp &= ~RCR1_CF; /* Clear CF-bit */
		tmp |= RCR1_CIE;
		writeb(tmp, rtc->regbase + RCR1);

		sec128 = readb(rtc->regbase + R64CNT);

		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;

		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
			yr  = readw(rtc->regbase + RYRCNT);
			yr100 = bcd2bin(yr >> 8);
			yr &= 0xff;
		} else {
			yr  = readb(rtc->regbase + RYRCNT);
			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
		}

		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;

		sec2 = readb(rtc->regbase + R64CNT);
		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;

		spin_unlock_irq(&rtc->lock);
	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);

#if RTC_BIT_INVERTED != 0
	if ((sec128 & RTC_BIT_INVERTED))
		tm->tm_sec--;
#endif

	/* only keep the carry interrupt enabled if UIE is on */
	if (!(rtc->periodic_freq & PF_OXS))
		sh_rtc_setcie(dev, 0);

	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
		"mday=%d, mon=%d, year=%d, wday=%d\n",
		__func__,
		tm->tm_sec, tm->tm_min, tm->tm_hour,
		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);

	return rtc_valid_tm(tm);
}

static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sh_rtc *rtc = platform_get_drvdata(pdev);
	unsigned int tmp;
	int year;

	spin_lock_irq(&rtc->lock);

	/* Reset pre-scaler & stop RTC */
	tmp = readb(rtc->regbase + RCR2);
	tmp |= RCR2_RESET;
	tmp &= ~RCR2_START;
	writeb(tmp, rtc->regbase + RCR2);

	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);

	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
			bin2bcd(tm->tm_year % 100);
		writew(year, rtc->regbase + RYRCNT);
	} else {
		year = tm->tm_year % 100;
		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
	}

	/* Start RTC */
	tmp = readb(rtc->regbase + RCR2);
	tmp &= ~RCR2_RESET;
	tmp |= RCR2_RTCEN | RCR2_START;
	writeb(tmp, rtc->regbase + RCR2);

	spin_unlock_irq(&rtc->lock);

	return 0;
}

static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
{
	unsigned int byte;
	int value = 0xff;	/* return 0xff for ignored values */

	byte = readb(rtc->regbase + reg_off);
	if (byte & AR_ENB) {
		byte &= ~AR_ENB;	/* strip the enable bit */
		value = bcd2bin(byte);
	}

	return value;
}

static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sh_rtc *rtc = platform_get_drvdata(pdev);
	struct rtc_time *tm = &wkalrm->time;

	spin_lock_irq(&rtc->lock);

	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
	if (tm->tm_mon > 0)
		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
	tm->tm_year     = 0xffff;

	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;

	spin_unlock_irq(&rtc->lock);

	return 0;
}

static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
					    int value, int reg_off)
{
	/* < 0 for a value that is ignored */
	if (value < 0)
		writeb(0, rtc->regbase + reg_off);
	else
		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
}

static int sh_rtc_check_alarm(struct rtc_time *tm)
{
	/*
	 * The original rtc says anything > 0xc0 is "don't care" or "match
	 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
	 * The original rtc doesn't support years - some things use -1 and
	 * some 0xffff. We use -1 to make out tests easier.
	 */
	if (tm->tm_year == 0xffff)
		tm->tm_year = -1;
	if (tm->tm_mon >= 0xff)
		tm->tm_mon = -1;
	if (tm->tm_mday >= 0xff)
		tm->tm_mday = -1;
	if (tm->tm_wday >= 0xff)
		tm->tm_wday = -1;
	if (tm->tm_hour >= 0xff)
		tm->tm_hour = -1;
	if (tm->tm_min >= 0xff)
		tm->tm_min = -1;
	if (tm->tm_sec >= 0xff)
		tm->tm_sec = -1;

	if (tm->tm_year > 9999 ||
		tm->tm_mon >= 12 ||
		tm->tm_mday == 0 || tm->tm_mday >= 32 ||
		tm->tm_wday >= 7 ||
		tm->tm_hour >= 24 ||
		tm->tm_min >= 60 ||
		tm->tm_sec >= 60)
		return -EINVAL;

	return 0;
}

static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sh_rtc *rtc = platform_get_drvdata(pdev);
	unsigned int rcr1;
	struct rtc_time *tm = &wkalrm->time;
	int mon, err;

	err = sh_rtc_check_alarm(tm);
	if (unlikely(err < 0))
		return err;

	spin_lock_irq(&rtc->lock);

	/* disable alarm interrupt and clear the alarm flag */
	rcr1 = readb(rtc->regbase + RCR1);
	rcr1 &= ~(RCR1_AF | RCR1_AIE);
	writeb(rcr1, rtc->regbase + RCR1);

	/* set alarm time */
	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
	mon = tm->tm_mon;
	if (mon >= 0)
		mon += 1;
	sh_rtc_write_alarm_value(rtc, mon, RMONAR);

	if (wkalrm->enabled) {
		rcr1 |= RCR1_AIE;
		writeb(rcr1, rtc->regbase + RCR1);
	}

	spin_unlock_irq(&rtc->lock);

	return 0;
}

static struct rtc_class_ops sh_rtc_ops = {
	.read_time	= sh_rtc_read_time,
	.set_time	= sh_rtc_set_time,
	.read_alarm	= sh_rtc_read_alarm,
	.set_alarm	= sh_rtc_set_alarm,
	.proc		= sh_rtc_proc,
	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
};

static int __init sh_rtc_probe(struct platform_device *pdev)
{
	struct sh_rtc *rtc;
	struct resource *res;
	struct rtc_time r;
	char clk_name[6];
	int clk_id, ret;

	rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
	if (unlikely(!rtc))
		return -ENOMEM;

	spin_lock_init(&rtc->lock);

	/* get periodic/carry/alarm irqs */
	ret = platform_get_irq(pdev, 0);
	if (unlikely(ret <= 0)) {
		ret = -ENOENT;
		dev_err(&pdev->dev, "No IRQ resource\n");
		goto err_badres;
	}

	rtc->periodic_irq = ret;
	rtc->carry_irq = platform_get_irq(pdev, 1);
	rtc->alarm_irq = platform_get_irq(pdev, 2);

	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (unlikely(res == NULL)) {
		ret = -ENOENT;
		dev_err(&pdev->dev, "No IO resource\n");
		goto err_badres;
	}

	rtc->regsize = resource_size(res);

	rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
	if (unlikely(!rtc->res)) {
		ret = -EBUSY;
		goto err_badres;
	}

	rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
	if (unlikely(!rtc->regbase)) {
		ret = -EINVAL;
		goto err_badmap;
	}

	clk_id = pdev->id;
	/* With a single device, the clock id is still "rtc0" */
	if (clk_id < 0)
		clk_id = 0;

	snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);

	rtc->clk = clk_get(&pdev->dev, clk_name);
	if (IS_ERR(rtc->clk)) {
		/*
		 * No error handling for rtc->clk intentionally, not all
		 * platforms will have a unique clock for the RTC, and
		 * the clk API can handle the struct clk pointer being
		 * NULL.
		 */
		rtc->clk = NULL;
	}

	clk_enable(rtc->clk);

	rtc->capabilities = RTC_DEF_CAPABILITIES;
	if (pdev->dev.platform_data) {
		struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;

		/*
		 * Some CPUs have special capabilities in addition to the
		 * default set. Add those in here.
		 */
		rtc->capabilities |= pinfo->capabilities;
	}

	if (rtc->carry_irq <= 0) {
		/* register shared periodic/carry/alarm irq */
		ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
				  IRQF_DISABLED, "sh-rtc", rtc);
		if (unlikely(ret)) {
			dev_err(&pdev->dev,
				"request IRQ failed with %d, IRQ %d\n", ret,
				rtc->periodic_irq);
			goto err_unmap;
		}
	} else {
		/* register periodic/carry/alarm irqs */
		ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
				  IRQF_DISABLED, "sh-rtc period", rtc);
		if (unlikely(ret)) {
			dev_err(&pdev->dev,
				"request period IRQ failed with %d, IRQ %d\n",
				ret, rtc->periodic_irq);
			goto err_unmap;
		}

		ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
				  IRQF_DISABLED, "sh-rtc carry", rtc);
		if (unlikely(ret)) {
			dev_err(&pdev->dev,
				"request carry IRQ failed with %d, IRQ %d\n",
				ret, rtc->carry_irq);
			free_irq(rtc->periodic_irq, rtc);
			goto err_unmap;
		}

		ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
				  IRQF_DISABLED, "sh-rtc alarm", rtc);
		if (unlikely(ret)) {
			dev_err(&pdev->dev,
				"request alarm IRQ failed with %d, IRQ %d\n",
				ret, rtc->alarm_irq);
			free_irq(rtc->carry_irq, rtc);
			free_irq(rtc->periodic_irq, rtc);
			goto err_unmap;
		}
	}

	platform_set_drvdata(pdev, rtc);

	/* everything disabled by default */
	sh_rtc_irq_set_freq(&pdev->dev, 0);
	sh_rtc_irq_set_state(&pdev->dev, 0);
	sh_rtc_setaie(&pdev->dev, 0);
	sh_rtc_setcie(&pdev->dev, 0);

	rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
					   &sh_rtc_ops, THIS_MODULE);
	if (IS_ERR(rtc->rtc_dev)) {
		ret = PTR_ERR(rtc->rtc_dev);
		free_irq(rtc->periodic_irq, rtc);
		free_irq(rtc->carry_irq, rtc);
		free_irq(rtc->alarm_irq, rtc);
		goto err_unmap;
	}

	rtc->rtc_dev->max_user_freq = 256;

	/* reset rtc to epoch 0 if time is invalid */
	if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
		rtc_time_to_tm(0, &r);
		rtc_set_time(rtc->rtc_dev, &r);
	}

	device_init_wakeup(&pdev->dev, 1);
	return 0;

err_unmap:
	clk_disable(rtc->clk);
	clk_put(rtc->clk);
	iounmap(rtc->regbase);
err_badmap:
	release_mem_region(rtc->res->start, rtc->regsize);
err_badres:
	kfree(rtc);

	return ret;
}

static int __exit sh_rtc_remove(struct platform_device *pdev)
{
	struct sh_rtc *rtc = platform_get_drvdata(pdev);

	rtc_device_unregister(rtc->rtc_dev);
	sh_rtc_irq_set_state(&pdev->dev, 0);

	sh_rtc_setaie(&pdev->dev, 0);
	sh_rtc_setcie(&pdev->dev, 0);

	free_irq(rtc->periodic_irq, rtc);

	if (rtc->carry_irq > 0) {
		free_irq(rtc->carry_irq, rtc);
		free_irq(rtc->alarm_irq, rtc);
	}

	iounmap(rtc->regbase);
	release_mem_region(rtc->res->start, rtc->regsize);

	clk_disable(rtc->clk);
	clk_put(rtc->clk);

	platform_set_drvdata(pdev, NULL);

	kfree(rtc);

	return 0;
}

static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sh_rtc *rtc = platform_get_drvdata(pdev);

	irq_set_irq_wake(rtc->periodic_irq, enabled);

	if (rtc->carry_irq > 0) {
		irq_set_irq_wake(rtc->carry_irq, enabled);
		irq_set_irq_wake(rtc->alarm_irq, enabled);
	}
}

static int sh_rtc_suspend(struct device *dev)
{
	if (device_may_wakeup(dev))
		sh_rtc_set_irq_wake(dev, 1);

	return 0;
}

static int sh_rtc_resume(struct device *dev)
{
	if (device_may_wakeup(dev))
		sh_rtc_set_irq_wake(dev, 0);

	return 0;
}

static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
	.suspend = sh_rtc_suspend,
	.resume = sh_rtc_resume,
};

static struct platform_driver sh_rtc_platform_driver = {
	.driver		= {
		.name	= DRV_NAME,
		.owner	= THIS_MODULE,
		.pm	= &sh_rtc_dev_pm_ops,
	},
	.remove		= __exit_p(sh_rtc_remove),
};

static int __init sh_rtc_init(void)
{
	return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
}

static void __exit sh_rtc_exit(void)
{
	platform_driver_unregister(&sh_rtc_platform_driver);
}

module_init(sh_rtc_init);
module_exit(sh_rtc_exit);

MODULE_DESCRIPTION("SuperH on-chip RTC driver");
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
	      "Jamie Lenehan <lenehan@twibble.org>, "
	      "Angelo Castello <angelo.castello@st.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRV_NAME);