Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <asm/byteorder.h>
#include <linux/swap.h>
#include <linux/pipe_fs_i.h>
#include <linux/mpage.h>
#include <linux/quotaops.h>

#include <cluster/masklog.h>

#include "ocfs2.h"

#include "alloc.h"
#include "aops.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "file.h"
#include "inode.h"
#include "journal.h"
#include "suballoc.h"
#include "super.h"
#include "symlink.h"
#include "refcounttree.h"
#include "ocfs2_trace.h"

#include "buffer_head_io.h"

static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int err = -EIO;
	int status;
	struct ocfs2_dinode *fe = NULL;
	struct buffer_head *bh = NULL;
	struct buffer_head *buffer_cache_bh = NULL;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	void *kaddr;

	trace_ocfs2_symlink_get_block(
			(unsigned long long)OCFS2_I(inode)->ip_blkno,
			(unsigned long long)iblock, bh_result, create);

	BUG_ON(ocfs2_inode_is_fast_symlink(inode));

	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
		     (unsigned long long)iblock);
		goto bail;
	}

	status = ocfs2_read_inode_block(inode, &bh);
	if (status < 0) {
		mlog_errno(status);
		goto bail;
	}
	fe = (struct ocfs2_dinode *) bh->b_data;

	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
						    le32_to_cpu(fe->i_clusters))) {
		mlog(ML_ERROR, "block offset is outside the allocated size: "
		     "%llu\n", (unsigned long long)iblock);
		goto bail;
	}

	/* We don't use the page cache to create symlink data, so if
	 * need be, copy it over from the buffer cache. */
	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
			    iblock;
		buffer_cache_bh = sb_getblk(osb->sb, blkno);
		if (!buffer_cache_bh) {
			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
			goto bail;
		}

		/* we haven't locked out transactions, so a commit
		 * could've happened. Since we've got a reference on
		 * the bh, even if it commits while we're doing the
		 * copy, the data is still good. */
		if (buffer_jbd(buffer_cache_bh)
		    && ocfs2_inode_is_new(inode)) {
			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
			if (!kaddr) {
				mlog(ML_ERROR, "couldn't kmap!\n");
				goto bail;
			}
			memcpy(kaddr + (bh_result->b_size * iblock),
			       buffer_cache_bh->b_data,
			       bh_result->b_size);
			kunmap_atomic(kaddr, KM_USER0);
			set_buffer_uptodate(bh_result);
		}
		brelse(buffer_cache_bh);
	}

	map_bh(bh_result, inode->i_sb,
	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);

	err = 0;

bail:
	brelse(bh);

	return err;
}

int ocfs2_get_block(struct inode *inode, sector_t iblock,
		    struct buffer_head *bh_result, int create)
{
	int err = 0;
	unsigned int ext_flags;
	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
	u64 p_blkno, count, past_eof;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);

	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
			      (unsigned long long)iblock, bh_result, create);

	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
		     inode, inode->i_ino);

	if (S_ISLNK(inode->i_mode)) {
		/* this always does I/O for some reason. */
		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
		goto bail;
	}

	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
					  &ext_flags);
	if (err) {
		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
		     (unsigned long long)p_blkno);
		goto bail;
	}

	if (max_blocks < count)
		count = max_blocks;

	/*
	 * ocfs2 never allocates in this function - the only time we
	 * need to use BH_New is when we're extending i_size on a file
	 * system which doesn't support holes, in which case BH_New
	 * allows __block_write_begin() to zero.
	 *
	 * If we see this on a sparse file system, then a truncate has
	 * raced us and removed the cluster. In this case, we clear
	 * the buffers dirty and uptodate bits and let the buffer code
	 * ignore it as a hole.
	 */
	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
		clear_buffer_dirty(bh_result);
		clear_buffer_uptodate(bh_result);
		goto bail;
	}

	/* Treat the unwritten extent as a hole for zeroing purposes. */
	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
		map_bh(bh_result, inode->i_sb, p_blkno);

	bh_result->b_size = count << inode->i_blkbits;

	if (!ocfs2_sparse_alloc(osb)) {
		if (p_blkno == 0) {
			err = -EIO;
			mlog(ML_ERROR,
			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
			     (unsigned long long)iblock,
			     (unsigned long long)p_blkno,
			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
			dump_stack();
			goto bail;
		}
	}

	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));

	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
				  (unsigned long long)past_eof);
	if (create && (iblock >= past_eof))
		set_buffer_new(bh_result);

bail:
	if (err < 0)
		err = -EIO;

	return err;
}

int ocfs2_read_inline_data(struct inode *inode, struct page *page,
			   struct buffer_head *di_bh)
{
	void *kaddr;
	loff_t size;
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;

	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
		return -EROFS;
	}

	size = i_size_read(inode);

	if (size > PAGE_CACHE_SIZE ||
	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
		ocfs2_error(inode->i_sb,
			    "Inode %llu has with inline data has bad size: %Lu",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
			    (unsigned long long)size);
		return -EROFS;
	}

	kaddr = kmap_atomic(page, KM_USER0);
	if (size)
		memcpy(kaddr, di->id2.i_data.id_data, size);
	/* Clear the remaining part of the page */
	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
	flush_dcache_page(page);
	kunmap_atomic(kaddr, KM_USER0);

	SetPageUptodate(page);

	return 0;
}

static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
{
	int ret;
	struct buffer_head *di_bh = NULL;

	BUG_ON(!PageLocked(page));
	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));

	ret = ocfs2_read_inode_block(inode, &di_bh);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	ret = ocfs2_read_inline_data(inode, page, di_bh);
out:
	unlock_page(page);

	brelse(di_bh);
	return ret;
}

static int ocfs2_readpage(struct file *file, struct page *page)
{
	struct inode *inode = page->mapping->host;
	struct ocfs2_inode_info *oi = OCFS2_I(inode);
	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
	int ret, unlock = 1;

	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
			     (page ? page->index : 0));

	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
	if (ret != 0) {
		if (ret == AOP_TRUNCATED_PAGE)
			unlock = 0;
		mlog_errno(ret);
		goto out;
	}

	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
		/*
		 * Unlock the page and cycle ip_alloc_sem so that we don't
		 * busyloop waiting for ip_alloc_sem to unlock
		 */
		ret = AOP_TRUNCATED_PAGE;
		unlock_page(page);
		unlock = 0;
		down_read(&oi->ip_alloc_sem);
		up_read(&oi->ip_alloc_sem);
		goto out_inode_unlock;
	}

	/*
	 * i_size might have just been updated as we grabed the meta lock.  We
	 * might now be discovering a truncate that hit on another node.
	 * block_read_full_page->get_block freaks out if it is asked to read
	 * beyond the end of a file, so we check here.  Callers
	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
	 * and notice that the page they just read isn't needed.
	 *
	 * XXX sys_readahead() seems to get that wrong?
	 */
	if (start >= i_size_read(inode)) {
		zero_user(page, 0, PAGE_SIZE);
		SetPageUptodate(page);
		ret = 0;
		goto out_alloc;
	}

	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
		ret = ocfs2_readpage_inline(inode, page);
	else
		ret = block_read_full_page(page, ocfs2_get_block);
	unlock = 0;

out_alloc:
	up_read(&OCFS2_I(inode)->ip_alloc_sem);
out_inode_unlock:
	ocfs2_inode_unlock(inode, 0);
out:
	if (unlock)
		unlock_page(page);
	return ret;
}

/*
 * This is used only for read-ahead. Failures or difficult to handle
 * situations are safe to ignore.
 *
 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 * are quite large (243 extents on 4k blocks), so most inodes don't
 * grow out to a tree. If need be, detecting boundary extents could
 * trivially be added in a future version of ocfs2_get_block().
 */
static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
			   struct list_head *pages, unsigned nr_pages)
{
	int ret, err = -EIO;
	struct inode *inode = mapping->host;
	struct ocfs2_inode_info *oi = OCFS2_I(inode);
	loff_t start;
	struct page *last;

	/*
	 * Use the nonblocking flag for the dlm code to avoid page
	 * lock inversion, but don't bother with retrying.
	 */
	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
	if (ret)
		return err;

	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
		ocfs2_inode_unlock(inode, 0);
		return err;
	}

	/*
	 * Don't bother with inline-data. There isn't anything
	 * to read-ahead in that case anyway...
	 */
	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
		goto out_unlock;

	/*
	 * Check whether a remote node truncated this file - we just
	 * drop out in that case as it's not worth handling here.
	 */
	last = list_entry(pages->prev, struct page, lru);
	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
	if (start >= i_size_read(inode))
		goto out_unlock;

	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);

out_unlock:
	up_read(&oi->ip_alloc_sem);
	ocfs2_inode_unlock(inode, 0);

	return err;
}

/* Note: Because we don't support holes, our allocation has
 * already happened (allocation writes zeros to the file data)
 * so we don't have to worry about ordered writes in
 * ocfs2_writepage.
 *
 * ->writepage is called during the process of invalidating the page cache
 * during blocked lock processing.  It can't block on any cluster locks
 * to during block mapping.  It's relying on the fact that the block
 * mapping can't have disappeared under the dirty pages that it is
 * being asked to write back.
 */
static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
{
	trace_ocfs2_writepage(
		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
		page->index);

	return block_write_full_page(page, ocfs2_get_block, wbc);
}

/* Taken from ext3. We don't necessarily need the full blown
 * functionality yet, but IMHO it's better to cut and paste the whole
 * thing so we can avoid introducing our own bugs (and easily pick up
 * their fixes when they happen) --Mark */
int walk_page_buffers(	handle_t *handle,
			struct buffer_head *head,
			unsigned from,
			unsigned to,
			int *partial,
			int (*fn)(	handle_t *handle,
					struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
	    	block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
{
	sector_t status;
	u64 p_blkno = 0;
	int err = 0;
	struct inode *inode = mapping->host;

	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
			 (unsigned long long)block);

	/* We don't need to lock journal system files, since they aren't
	 * accessed concurrently from multiple nodes.
	 */
	if (!INODE_JOURNAL(inode)) {
		err = ocfs2_inode_lock(inode, NULL, 0);
		if (err) {
			if (err != -ENOENT)
				mlog_errno(err);
			goto bail;
		}
		down_read(&OCFS2_I(inode)->ip_alloc_sem);
	}

	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
						  NULL);

	if (!INODE_JOURNAL(inode)) {
		up_read(&OCFS2_I(inode)->ip_alloc_sem);
		ocfs2_inode_unlock(inode, 0);
	}

	if (err) {
		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
		     (unsigned long long)block);
		mlog_errno(err);
		goto bail;
	}

bail:
	status = err ? 0 : p_blkno;

	return status;
}

/*
 * TODO: Make this into a generic get_blocks function.
 *
 * From do_direct_io in direct-io.c:
 *  "So what we do is to permit the ->get_blocks function to populate
 *   bh.b_size with the size of IO which is permitted at this offset and
 *   this i_blkbits."
 *
 * This function is called directly from get_more_blocks in direct-io.c.
 *
 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 * 					fs_count, map_bh, dio->rw == WRITE);
 *
 * Note that we never bother to allocate blocks here, and thus ignore the
 * create argument.
 */
static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
				     struct buffer_head *bh_result, int create)
{
	int ret;
	u64 p_blkno, inode_blocks, contig_blocks;
	unsigned int ext_flags;
	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;

	/* This function won't even be called if the request isn't all
	 * nicely aligned and of the right size, so there's no need
	 * for us to check any of that. */

	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));

	/* This figures out the size of the next contiguous block, and
	 * our logical offset */
	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
					  &contig_blocks, &ext_flags);
	if (ret) {
		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
		     (unsigned long long)iblock);
		ret = -EIO;
		goto bail;
	}

	/* We should already CoW the refcounted extent in case of create. */
	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));

	/*
	 * get_more_blocks() expects us to describe a hole by clearing
	 * the mapped bit on bh_result().
	 *
	 * Consider an unwritten extent as a hole.
	 */
	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
		map_bh(bh_result, inode->i_sb, p_blkno);
	else
		clear_buffer_mapped(bh_result);

	/* make sure we don't map more than max_blocks blocks here as
	   that's all the kernel will handle at this point. */
	if (max_blocks < contig_blocks)
		contig_blocks = max_blocks;
	bh_result->b_size = contig_blocks << blocksize_bits;
bail:
	return ret;
}

/*
 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 * to protect io on one node from truncation on another.
 */
static void ocfs2_dio_end_io(struct kiocb *iocb,
			     loff_t offset,
			     ssize_t bytes,
			     void *private,
			     int ret,
			     bool is_async)
{
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
	int level;
	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);

	/* this io's submitter should not have unlocked this before we could */
	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));

	if (ocfs2_iocb_is_sem_locked(iocb))
		ocfs2_iocb_clear_sem_locked(iocb);

	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
		ocfs2_iocb_clear_unaligned_aio(iocb);

		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
		    waitqueue_active(wq)) {
			wake_up_all(wq);
		}
	}

	ocfs2_iocb_clear_rw_locked(iocb);

	level = ocfs2_iocb_rw_locked_level(iocb);
	ocfs2_rw_unlock(inode, level);

	if (is_async)
		aio_complete(iocb, ret, 0);
	inode_dio_done(inode);
}

/*
 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 * do journalled data.
 */
static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
{
	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;

	jbd2_journal_invalidatepage(journal, page, offset);
}

static int ocfs2_releasepage(struct page *page, gfp_t wait)
{
	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;

	if (!page_has_buffers(page))
		return 0;
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
}

static ssize_t ocfs2_direct_IO(int rw,
			       struct kiocb *iocb,
			       const struct iovec *iov,
			       loff_t offset,
			       unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;

	/*
	 * Fallback to buffered I/O if we see an inode without
	 * extents.
	 */
	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
		return 0;

	/* Fallback to buffered I/O if we are appending. */
	if (i_size_read(inode) <= offset)
		return 0;

	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
				    iov, offset, nr_segs,
				    ocfs2_direct_IO_get_blocks,
				    ocfs2_dio_end_io, NULL, 0);
}

static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
					    u32 cpos,
					    unsigned int *start,
					    unsigned int *end)
{
	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;

	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
		unsigned int cpp;

		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);

		cluster_start = cpos % cpp;
		cluster_start = cluster_start << osb->s_clustersize_bits;

		cluster_end = cluster_start + osb->s_clustersize;
	}

	BUG_ON(cluster_start > PAGE_SIZE);
	BUG_ON(cluster_end > PAGE_SIZE);

	if (start)
		*start = cluster_start;
	if (end)
		*end = cluster_end;
}

/*
 * 'from' and 'to' are the region in the page to avoid zeroing.
 *
 * If pagesize > clustersize, this function will avoid zeroing outside
 * of the cluster boundary.
 *
 * from == to == 0 is code for "zero the entire cluster region"
 */
static void ocfs2_clear_page_regions(struct page *page,
				     struct ocfs2_super *osb, u32 cpos,
				     unsigned from, unsigned to)
{
	void *kaddr;
	unsigned int cluster_start, cluster_end;

	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);

	kaddr = kmap_atomic(page, KM_USER0);

	if (from || to) {
		if (from > cluster_start)
			memset(kaddr + cluster_start, 0, from - cluster_start);
		if (to < cluster_end)
			memset(kaddr + to, 0, cluster_end - to);
	} else {
		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
	}

	kunmap_atomic(kaddr, KM_USER0);
}

/*
 * Nonsparse file systems fully allocate before we get to the write
 * code. This prevents ocfs2_write() from tagging the write as an
 * allocating one, which means ocfs2_map_page_blocks() might try to
 * read-in the blocks at the tail of our file. Avoid reading them by
 * testing i_size against each block offset.
 */
static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
				 unsigned int block_start)
{
	u64 offset = page_offset(page) + block_start;

	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
		return 1;

	if (i_size_read(inode) > offset)
		return 1;

	return 0;
}

/*
 * Some of this taken from __block_write_begin(). We already have our
 * mapping by now though, and the entire write will be allocating or
 * it won't, so not much need to use BH_New.
 *
 * This will also skip zeroing, which is handled externally.
 */
int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
			  struct inode *inode, unsigned int from,
			  unsigned int to, int new)
{
	int ret = 0;
	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
	unsigned int block_end, block_start;
	unsigned int bsize = 1 << inode->i_blkbits;

	if (!page_has_buffers(page))
		create_empty_buffers(page, bsize, 0);

	head = page_buffers(page);
	for (bh = head, block_start = 0; bh != head || !block_start;
	     bh = bh->b_this_page, block_start += bsize) {
		block_end = block_start + bsize;

		clear_buffer_new(bh);

		/*
		 * Ignore blocks outside of our i/o range -
		 * they may belong to unallocated clusters.
		 */
		if (block_start >= to || block_end <= from) {
			if (PageUptodate(page))
				set_buffer_uptodate(bh);
			continue;
		}

		/*
		 * For an allocating write with cluster size >= page
		 * size, we always write the entire page.
		 */
		if (new)
			set_buffer_new(bh);

		if (!buffer_mapped(bh)) {
			map_bh(bh, inode->i_sb, *p_blkno);
			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
		}

		if (PageUptodate(page)) {
			if (!buffer_uptodate(bh))
				set_buffer_uptodate(bh);
		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
			   !buffer_new(bh) &&
			   ocfs2_should_read_blk(inode, page, block_start) &&
			   (block_start < from || block_end > to)) {
			ll_rw_block(READ, 1, &bh);
			*wait_bh++=bh;
		}

		*p_blkno = *p_blkno + 1;
	}

	/*
	 * If we issued read requests - let them complete.
	 */
	while(wait_bh > wait) {
		wait_on_buffer(*--wait_bh);
		if (!buffer_uptodate(*wait_bh))
			ret = -EIO;
	}

	if (ret == 0 || !new)
		return ret;

	/*
	 * If we get -EIO above, zero out any newly allocated blocks
	 * to avoid exposing stale data.
	 */
	bh = head;
	block_start = 0;
	do {
		block_end = block_start + bsize;
		if (block_end <= from)
			goto next_bh;
		if (block_start >= to)
			break;

		zero_user(page, block_start, bh->b_size);
		set_buffer_uptodate(bh);
		mark_buffer_dirty(bh);

next_bh:
		block_start = block_end;
		bh = bh->b_this_page;
	} while (bh != head);

	return ret;
}

#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
#define OCFS2_MAX_CTXT_PAGES	1
#else
#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
#endif

#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)

/*
 * Describe the state of a single cluster to be written to.
 */
struct ocfs2_write_cluster_desc {
	u32		c_cpos;
	u32		c_phys;
	/*
	 * Give this a unique field because c_phys eventually gets
	 * filled.
	 */
	unsigned	c_new;
	unsigned	c_unwritten;
	unsigned	c_needs_zero;
};

struct ocfs2_write_ctxt {
	/* Logical cluster position / len of write */
	u32				w_cpos;
	u32				w_clen;

	/* First cluster allocated in a nonsparse extend */
	u32				w_first_new_cpos;

	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];

	/*
	 * This is true if page_size > cluster_size.
	 *
	 * It triggers a set of special cases during write which might
	 * have to deal with allocating writes to partial pages.
	 */
	unsigned int			w_large_pages;

	/*
	 * Pages involved in this write.
	 *
	 * w_target_page is the page being written to by the user.
	 *
	 * w_pages is an array of pages which always contains
	 * w_target_page, and in the case of an allocating write with
	 * page_size < cluster size, it will contain zero'd and mapped
	 * pages adjacent to w_target_page which need to be written
	 * out in so that future reads from that region will get
	 * zero's.
	 */
	unsigned int			w_num_pages;
	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
	struct page			*w_target_page;

	/*
	 * w_target_locked is used for page_mkwrite path indicating no unlocking
	 * against w_target_page in ocfs2_write_end_nolock.
	 */
	unsigned int			w_target_locked:1;

	/*
	 * ocfs2_write_end() uses this to know what the real range to
	 * write in the target should be.
	 */
	unsigned int			w_target_from;
	unsigned int			w_target_to;

	/*
	 * We could use journal_current_handle() but this is cleaner,
	 * IMHO -Mark
	 */
	handle_t			*w_handle;

	struct buffer_head		*w_di_bh;

	struct ocfs2_cached_dealloc_ctxt w_dealloc;
};

void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
{
	int i;

	for(i = 0; i < num_pages; i++) {
		if (pages[i]) {
			unlock_page(pages[i]);
			mark_page_accessed(pages[i]);
			page_cache_release(pages[i]);
		}
	}
}

static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
{
	int i;

	/*
	 * w_target_locked is only set to true in the page_mkwrite() case.
	 * The intent is to allow us to lock the target page from write_begin()
	 * to write_end(). The caller must hold a ref on w_target_page.
	 */
	if (wc->w_target_locked) {
		BUG_ON(!wc->w_target_page);
		for (i = 0; i < wc->w_num_pages; i++) {
			if (wc->w_target_page == wc->w_pages[i]) {
				wc->w_pages[i] = NULL;
				break;
			}
		}
		mark_page_accessed(wc->w_target_page);
		page_cache_release(wc->w_target_page);
	}
	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);

	brelse(wc->w_di_bh);
	kfree(wc);
}

static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
				  struct ocfs2_super *osb, loff_t pos,
				  unsigned len, struct buffer_head *di_bh)
{
	u32 cend;
	struct ocfs2_write_ctxt *wc;

	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
	if (!wc)
		return -ENOMEM;

	wc->w_cpos = pos >> osb->s_clustersize_bits;
	wc->w_first_new_cpos = UINT_MAX;
	cend = (pos + len - 1) >> osb->s_clustersize_bits;
	wc->w_clen = cend - wc->w_cpos + 1;
	get_bh(di_bh);
	wc->w_di_bh = di_bh;

	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
		wc->w_large_pages = 1;
	else
		wc->w_large_pages = 0;

	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);

	*wcp = wc;

	return 0;
}

/*
 * If a page has any new buffers, zero them out here, and mark them uptodate
 * and dirty so they'll be written out (in order to prevent uninitialised
 * block data from leaking). And clear the new bit.
 */
static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
{
	unsigned int block_start, block_end;
	struct buffer_head *head, *bh;

	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		return;

	bh = head = page_buffers(page);
	block_start = 0;
	do {
		block_end = block_start + bh->b_size;

		if (buffer_new(bh)) {
			if (block_end > from && block_start < to) {
				if (!PageUptodate(page)) {
					unsigned start, end;

					start = max(from, block_start);
					end = min(to, block_end);

					zero_user_segment(page, start, end);
					set_buffer_uptodate(bh);
				}

				clear_buffer_new(bh);
				mark_buffer_dirty(bh);
			}
		}

		block_start = block_end;
		bh = bh->b_this_page;
	} while (bh != head);
}

/*
 * Only called when we have a failure during allocating write to write
 * zero's to the newly allocated region.
 */
static void ocfs2_write_failure(struct inode *inode,
				struct ocfs2_write_ctxt *wc,
				loff_t user_pos, unsigned user_len)
{
	int i;
	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
		to = user_pos + user_len;
	struct page *tmppage;

	ocfs2_zero_new_buffers(wc->w_target_page, from, to);

	for(i = 0; i < wc->w_num_pages; i++) {
		tmppage = wc->w_pages[i];

		if (page_has_buffers(tmppage)) {
			if (ocfs2_should_order_data(inode))
				ocfs2_jbd2_file_inode(wc->w_handle, inode);

			block_commit_write(tmppage, from, to);
		}
	}
}

static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
					struct ocfs2_write_ctxt *wc,
					struct page *page, u32 cpos,
					loff_t user_pos, unsigned user_len,
					int new)
{
	int ret;
	unsigned int map_from = 0, map_to = 0;
	unsigned int cluster_start, cluster_end;
	unsigned int user_data_from = 0, user_data_to = 0;

	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
					&cluster_start, &cluster_end);

	/* treat the write as new if the a hole/lseek spanned across
	 * the page boundary.
	 */
	new = new | ((i_size_read(inode) <= page_offset(page)) &&
			(page_offset(page) <= user_pos));

	if (page == wc->w_target_page) {
		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
		map_to = map_from + user_len;

		if (new)
			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
						    cluster_start, cluster_end,
						    new);
		else
			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
						    map_from, map_to, new);
		if (ret) {
			mlog_errno(ret);
			goto out;
		}

		user_data_from = map_from;
		user_data_to = map_to;
		if (new) {
			map_from = cluster_start;
			map_to = cluster_end;
		}
	} else {
		/*
		 * If we haven't allocated the new page yet, we
		 * shouldn't be writing it out without copying user
		 * data. This is likely a math error from the caller.
		 */
		BUG_ON(!new);

		map_from = cluster_start;
		map_to = cluster_end;

		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
					    cluster_start, cluster_end, new);
		if (ret) {
			mlog_errno(ret);
			goto out;
		}
	}

	/*
	 * Parts of newly allocated pages need to be zero'd.
	 *
	 * Above, we have also rewritten 'to' and 'from' - as far as
	 * the rest of the function is concerned, the entire cluster
	 * range inside of a page needs to be written.
	 *
	 * We can skip this if the page is up to date - it's already
	 * been zero'd from being read in as a hole.
	 */
	if (new && !PageUptodate(page))
		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
					 cpos, user_data_from, user_data_to);

	flush_dcache_page(page);

out:
	return ret;
}

/*
 * This function will only grab one clusters worth of pages.
 */
static int ocfs2_grab_pages_for_write(struct address_space *mapping,
				      struct ocfs2_write_ctxt *wc,
				      u32 cpos, loff_t user_pos,
				      unsigned user_len, int new,
				      struct page *mmap_page)
{
	int ret = 0, i;
	unsigned long start, target_index, end_index, index;
	struct inode *inode = mapping->host;
	loff_t last_byte;

	target_index = user_pos >> PAGE_CACHE_SHIFT;

	/*
	 * Figure out how many pages we'll be manipulating here. For
	 * non allocating write, we just change the one
	 * page. Otherwise, we'll need a whole clusters worth.  If we're
	 * writing past i_size, we only need enough pages to cover the
	 * last page of the write.
	 */
	if (new) {
		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
		/*
		 * We need the index *past* the last page we could possibly
		 * touch.  This is the page past the end of the write or
		 * i_size, whichever is greater.
		 */
		last_byte = max(user_pos + user_len, i_size_read(inode));
		BUG_ON(last_byte < 1);
		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
		if ((start + wc->w_num_pages) > end_index)
			wc->w_num_pages = end_index - start;
	} else {
		wc->w_num_pages = 1;
		start = target_index;
	}

	for(i = 0; i < wc->w_num_pages; i++) {
		index = start + i;

		if (index == target_index && mmap_page) {
			/*
			 * ocfs2_pagemkwrite() is a little different
			 * and wants us to directly use the page
			 * passed in.
			 */
			lock_page(mmap_page);

			/* Exit and let the caller retry */
			if (mmap_page->mapping != mapping) {
				WARN_ON(mmap_page->mapping);
				unlock_page(mmap_page);
				ret = -EAGAIN;
				goto out;
			}

			page_cache_get(mmap_page);
			wc->w_pages[i] = mmap_page;
			wc->w_target_locked = true;
		} else {
			wc->w_pages[i] = find_or_create_page(mapping, index,
							     GFP_NOFS);
			if (!wc->w_pages[i]) {
				ret = -ENOMEM;
				mlog_errno(ret);
				goto out;
			}
		}

		if (index == target_index)
			wc->w_target_page = wc->w_pages[i];
	}
out:
	if (ret)
		wc->w_target_locked = false;
	return ret;
}

/*
 * Prepare a single cluster for write one cluster into the file.
 */
static int ocfs2_write_cluster(struct address_space *mapping,
			       u32 phys, unsigned int unwritten,
			       unsigned int should_zero,
			       struct ocfs2_alloc_context *data_ac,
			       struct ocfs2_alloc_context *meta_ac,
			       struct ocfs2_write_ctxt *wc, u32 cpos,
			       loff_t user_pos, unsigned user_len)
{
	int ret, i, new;
	u64 v_blkno, p_blkno;
	struct inode *inode = mapping->host;
	struct ocfs2_extent_tree et;

	new = phys == 0 ? 1 : 0;
	if (new) {
		u32 tmp_pos;

		/*
		 * This is safe to call with the page locks - it won't take
		 * any additional semaphores or cluster locks.
		 */
		tmp_pos = cpos;
		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
					   &tmp_pos, 1, 0, wc->w_di_bh,
					   wc->w_handle, data_ac,
					   meta_ac, NULL);
		/*
		 * This shouldn't happen because we must have already
		 * calculated the correct meta data allocation required. The
		 * internal tree allocation code should know how to increase
		 * transaction credits itself.
		 *
		 * If need be, we could handle -EAGAIN for a
		 * RESTART_TRANS here.
		 */
		mlog_bug_on_msg(ret == -EAGAIN,
				"Inode %llu: EAGAIN return during allocation.\n",
				(unsigned long long)OCFS2_I(inode)->ip_blkno);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
	} else if (unwritten) {
		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
					      wc->w_di_bh);
		ret = ocfs2_mark_extent_written(inode, &et,
						wc->w_handle, cpos, 1, phys,
						meta_ac, &wc->w_dealloc);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
	}

	if (should_zero)
		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
	else
		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;

	/*
	 * The only reason this should fail is due to an inability to
	 * find the extent added.
	 */
	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
					  NULL);
	if (ret < 0) {
		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
			    "at logical block %llu",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
			    (unsigned long long)v_blkno);
		goto out;
	}

	BUG_ON(p_blkno == 0);

	for(i = 0; i < wc->w_num_pages; i++) {
		int tmpret;

		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
						      wc->w_pages[i], cpos,
						      user_pos, user_len,
						      should_zero);
		if (tmpret) {
			mlog_errno(tmpret);
			if (ret == 0)
				ret = tmpret;
		}
	}

	/*
	 * We only have cleanup to do in case of allocating write.
	 */
	if (ret && new)
		ocfs2_write_failure(inode, wc, user_pos, user_len);

out:

	return ret;
}

static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
				       struct ocfs2_alloc_context *data_ac,
				       struct ocfs2_alloc_context *meta_ac,
				       struct ocfs2_write_ctxt *wc,
				       loff_t pos, unsigned len)
{
	int ret, i;
	loff_t cluster_off;
	unsigned int local_len = len;
	struct ocfs2_write_cluster_desc *desc;
	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);

	for (i = 0; i < wc->w_clen; i++) {
		desc = &wc->w_desc[i];

		/*
		 * We have to make sure that the total write passed in
		 * doesn't extend past a single cluster.
		 */
		local_len = len;
		cluster_off = pos & (osb->s_clustersize - 1);
		if ((cluster_off + local_len) > osb->s_clustersize)
			local_len = osb->s_clustersize - cluster_off;

		ret = ocfs2_write_cluster(mapping, desc->c_phys,
					  desc->c_unwritten,
					  desc->c_needs_zero,
					  data_ac, meta_ac,
					  wc, desc->c_cpos, pos, local_len);
		if (ret) {
			mlog_errno(ret);
			goto out;
		}

		len -= local_len;
		pos += local_len;
	}

	ret = 0;
out:
	return ret;
}

/*
 * ocfs2_write_end() wants to know which parts of the target page it
 * should complete the write on. It's easiest to compute them ahead of
 * time when a more complete view of the write is available.
 */
static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
					struct ocfs2_write_ctxt *wc,
					loff_t pos, unsigned len, int alloc)
{
	struct ocfs2_write_cluster_desc *desc;

	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
	wc->w_target_to = wc->w_target_from + len;

	if (alloc == 0)
		return;

	/*
	 * Allocating write - we may have different boundaries based
	 * on page size and cluster size.
	 *
	 * NOTE: We can no longer compute one value from the other as
	 * the actual write length and user provided length may be
	 * different.
	 */

	if (wc->w_large_pages) {
		/*
		 * We only care about the 1st and last cluster within
		 * our range and whether they should be zero'd or not. Either
		 * value may be extended out to the start/end of a
		 * newly allocated cluster.
		 */
		desc = &wc->w_desc[0];
		if (desc->c_needs_zero)
			ocfs2_figure_cluster_boundaries(osb,
							desc->c_cpos,
							&wc->w_target_from,
							NULL);

		desc = &wc->w_desc[wc->w_clen - 1];
		if (desc->c_needs_zero)
			ocfs2_figure_cluster_boundaries(osb,
							desc->c_cpos,
							NULL,
							&wc->w_target_to);
	} else {
		wc->w_target_from = 0;
		wc->w_target_to = PAGE_CACHE_SIZE;
	}
}

/*
 * Populate each single-cluster write descriptor in the write context
 * with information about the i/o to be done.
 *
 * Returns the number of clusters that will have to be allocated, as
 * well as a worst case estimate of the number of extent records that
 * would have to be created during a write to an unwritten region.
 */
static int ocfs2_populate_write_desc(struct inode *inode,
				     struct ocfs2_write_ctxt *wc,
				     unsigned int *clusters_to_alloc,
				     unsigned int *extents_to_split)
{
	int ret;
	struct ocfs2_write_cluster_desc *desc;
	unsigned int num_clusters = 0;
	unsigned int ext_flags = 0;
	u32 phys = 0;
	int i;

	*clusters_to_alloc = 0;
	*extents_to_split = 0;

	for (i = 0; i < wc->w_clen; i++) {
		desc = &wc->w_desc[i];
		desc->c_cpos = wc->w_cpos + i;

		if (num_clusters == 0) {
			/*
			 * Need to look up the next extent record.
			 */
			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
						 &num_clusters, &ext_flags);
			if (ret) {
				mlog_errno(ret);
				goto out;
			}

			/* We should already CoW the refcountd extent. */
			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);

			/*
			 * Assume worst case - that we're writing in
			 * the middle of the extent.
			 *
			 * We can assume that the write proceeds from
			 * left to right, in which case the extent
			 * insert code is smart enough to coalesce the
			 * next splits into the previous records created.
			 */
			if (ext_flags & OCFS2_EXT_UNWRITTEN)
				*extents_to_split = *extents_to_split + 2;
		} else if (phys) {
			/*
			 * Only increment phys if it doesn't describe
			 * a hole.
			 */
			phys++;
		}

		/*
		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
		 * file that got extended.  w_first_new_cpos tells us
		 * where the newly allocated clusters are so we can
		 * zero them.
		 */
		if (desc->c_cpos >= wc->w_first_new_cpos) {
			BUG_ON(phys == 0);
			desc->c_needs_zero = 1;
		}

		desc->c_phys = phys;
		if (phys == 0) {
			desc->c_new = 1;
			desc->c_needs_zero = 1;
			*clusters_to_alloc = *clusters_to_alloc + 1;
		}

		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
			desc->c_unwritten = 1;
			desc->c_needs_zero = 1;
		}

		num_clusters--;
	}

	ret = 0;
out:
	return ret;
}

static int ocfs2_write_begin_inline(struct address_space *mapping,
				    struct inode *inode,
				    struct ocfs2_write_ctxt *wc)
{
	int ret;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct page *page;
	handle_t *handle;
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;

	page = find_or_create_page(mapping, 0, GFP_NOFS);
	if (!page) {
		ret = -ENOMEM;
		mlog_errno(ret);
		goto out;
	}
	/*
	 * If we don't set w_num_pages then this page won't get unlocked
	 * and freed on cleanup of the write context.
	 */
	wc->w_pages[0] = wc->w_target_page = page;
	wc->w_num_pages = 1;

	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		mlog_errno(ret);
		goto out;
	}

	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
				      OCFS2_JOURNAL_ACCESS_WRITE);
	if (ret) {
		ocfs2_commit_trans(osb, handle);

		mlog_errno(ret);
		goto out;
	}

	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
		ocfs2_set_inode_data_inline(inode, di);

	if (!PageUptodate(page)) {
		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
		if (ret) {
			ocfs2_commit_trans(osb, handle);

			goto out;
		}
	}

	wc->w_handle = handle;
out:
	return ret;
}

int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
{
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;

	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
		return 1;
	return 0;
}

static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
					  struct inode *inode, loff_t pos,
					  unsigned len, struct page *mmap_page,
					  struct ocfs2_write_ctxt *wc)
{
	int ret, written = 0;
	loff_t end = pos + len;
	struct ocfs2_inode_info *oi = OCFS2_I(inode);
	struct ocfs2_dinode *di = NULL;

	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
					     len, (unsigned long long)pos,
					     oi->ip_dyn_features);

	/*
	 * Handle inodes which already have inline data 1st.
	 */
	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
		if (mmap_page == NULL &&
		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
			goto do_inline_write;

		/*
		 * The write won't fit - we have to give this inode an
		 * inline extent list now.
		 */
		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
		if (ret)
			mlog_errno(ret);
		goto out;
	}

	/*
	 * Check whether the inode can accept inline data.
	 */
	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
		return 0;

	/*
	 * Check whether the write can fit.
	 */
	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
	if (mmap_page ||
	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
		return 0;

do_inline_write:
	ret = ocfs2_write_begin_inline(mapping, inode, wc);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	/*
	 * This signals to the caller that the data can be written
	 * inline.
	 */
	written = 1;
out:
	return written ? written : ret;
}

/*
 * This function only does anything for file systems which can't
 * handle sparse files.
 *
 * What we want to do here is fill in any hole between the current end
 * of allocation and the end of our write. That way the rest of the
 * write path can treat it as an non-allocating write, which has no
 * special case code for sparse/nonsparse files.
 */
static int ocfs2_expand_nonsparse_inode(struct inode *inode,
					struct buffer_head *di_bh,
					loff_t pos, unsigned len,
					struct ocfs2_write_ctxt *wc)
{
	int ret;
	loff_t newsize = pos + len;

	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));

	if (newsize <= i_size_read(inode))
		return 0;

	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
	if (ret)
		mlog_errno(ret);

	wc->w_first_new_cpos =
		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));

	return ret;
}

static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
			   loff_t pos)
{
	int ret = 0;

	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
	if (pos > i_size_read(inode))
		ret = ocfs2_zero_extend(inode, di_bh, pos);

	return ret;
}

/*
 * Try to flush truncate logs if we can free enough clusters from it.
 * As for return value, "< 0" means error, "0" no space and "1" means
 * we have freed enough spaces and let the caller try to allocate again.
 */
static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
					  unsigned int needed)
{
	tid_t target;
	int ret = 0;
	unsigned int truncated_clusters;

	mutex_lock(&osb->osb_tl_inode->i_mutex);
	truncated_clusters = osb->truncated_clusters;
	mutex_unlock(&osb->osb_tl_inode->i_mutex);

	/*
	 * Check whether we can succeed in allocating if we free
	 * the truncate log.
	 */
	if (truncated_clusters < needed)
		goto out;

	ret = ocfs2_flush_truncate_log(osb);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
		jbd2_log_wait_commit(osb->journal->j_journal, target);
		ret = 1;
	}
out:
	return ret;
}

int ocfs2_write_begin_nolock(struct file *filp,
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned flags,
			     struct page **pagep, void **fsdata,
			     struct buffer_head *di_bh, struct page *mmap_page)
{
	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
	struct ocfs2_write_ctxt *wc;
	struct inode *inode = mapping->host;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct ocfs2_dinode *di;
	struct ocfs2_alloc_context *data_ac = NULL;
	struct ocfs2_alloc_context *meta_ac = NULL;
	handle_t *handle;
	struct ocfs2_extent_tree et;
	int try_free = 1, ret1;

try_again:
	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
	if (ret) {
		mlog_errno(ret);
		return ret;
	}

	if (ocfs2_supports_inline_data(osb)) {
		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
						     mmap_page, wc);
		if (ret == 1) {
			ret = 0;
			goto success;
		}
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
	}

	if (ocfs2_sparse_alloc(osb))
		ret = ocfs2_zero_tail(inode, di_bh, pos);
	else
		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
						   wc);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	ret = ocfs2_check_range_for_refcount(inode, pos, len);
	if (ret < 0) {
		mlog_errno(ret);
		goto out;
	} else if (ret == 1) {
		clusters_need = wc->w_clen;
		ret = ocfs2_refcount_cow(inode, filp, di_bh,
					 wc->w_cpos, wc->w_clen, UINT_MAX);
		if (ret) {
			mlog_errno(ret);
			goto out;
		}
	}

	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
					&extents_to_split);
	if (ret) {
		mlog_errno(ret);
		goto out;
	}
	clusters_need += clusters_to_alloc;

	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;

	trace_ocfs2_write_begin_nolock(
			(unsigned long long)OCFS2_I(inode)->ip_blkno,
			(long long)i_size_read(inode),
			le32_to_cpu(di->i_clusters),
			pos, len, flags, mmap_page,
			clusters_to_alloc, extents_to_split);

	/*
	 * We set w_target_from, w_target_to here so that
	 * ocfs2_write_end() knows which range in the target page to
	 * write out. An allocation requires that we write the entire
	 * cluster range.
	 */
	if (clusters_to_alloc || extents_to_split) {
		/*
		 * XXX: We are stretching the limits of
		 * ocfs2_lock_allocators(). It greatly over-estimates
		 * the work to be done.
		 */
		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
					      wc->w_di_bh);
		ret = ocfs2_lock_allocators(inode, &et,
					    clusters_to_alloc, extents_to_split,
					    &data_ac, &meta_ac);
		if (ret) {
			mlog_errno(ret);
			goto out;
		}

		if (data_ac)
			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;

		credits = ocfs2_calc_extend_credits(inode->i_sb,
						    &di->id2.i_list,
						    clusters_to_alloc);

	}

	/*
	 * We have to zero sparse allocated clusters, unwritten extent clusters,
	 * and non-sparse clusters we just extended.  For non-sparse writes,
	 * we know zeros will only be needed in the first and/or last cluster.
	 */
	if (clusters_to_alloc || extents_to_split ||
	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
		cluster_of_pages = 1;
	else
		cluster_of_pages = 0;

	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);

	handle = ocfs2_start_trans(osb, credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		mlog_errno(ret);
		goto out;
	}

	wc->w_handle = handle;

	if (clusters_to_alloc) {
		ret = dquot_alloc_space_nodirty(inode,
			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
		if (ret)
			goto out_commit;
	}
	/*
	 * We don't want this to fail in ocfs2_write_end(), so do it
	 * here.
	 */
	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
				      OCFS2_JOURNAL_ACCESS_WRITE);
	if (ret) {
		mlog_errno(ret);
		goto out_quota;
	}

	/*
	 * Fill our page array first. That way we've grabbed enough so
	 * that we can zero and flush if we error after adding the
	 * extent.
	 */
	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
					 cluster_of_pages, mmap_page);
	if (ret && ret != -EAGAIN) {
		mlog_errno(ret);
		goto out_quota;
	}

	/*
	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
	 * the target page. In this case, we exit with no error and no target
	 * page. This will trigger the caller, page_mkwrite(), to re-try
	 * the operation.
	 */
	if (ret == -EAGAIN) {
		BUG_ON(wc->w_target_page);
		ret = 0;
		goto out_quota;
	}

	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
					  len);
	if (ret) {
		mlog_errno(ret);
		goto out_quota;
	}

	if (data_ac)
		ocfs2_free_alloc_context(data_ac);
	if (meta_ac)
		ocfs2_free_alloc_context(meta_ac);

success:
	*pagep = wc->w_target_page;
	*fsdata = wc;
	return 0;
out_quota:
	if (clusters_to_alloc)
		dquot_free_space(inode,
			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
out_commit:
	ocfs2_commit_trans(osb, handle);

out:
	ocfs2_free_write_ctxt(wc);

	if (data_ac)
		ocfs2_free_alloc_context(data_ac);
	if (meta_ac)
		ocfs2_free_alloc_context(meta_ac);

	if (ret == -ENOSPC && try_free) {
		/*
		 * Try to free some truncate log so that we can have enough
		 * clusters to allocate.
		 */
		try_free = 0;

		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
		if (ret1 == 1)
			goto try_again;

		if (ret1 < 0)
			mlog_errno(ret1);
	}

	return ret;
}

static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned flags,
			     struct page **pagep, void **fsdata)
{
	int ret;
	struct buffer_head *di_bh = NULL;
	struct inode *inode = mapping->host;

	ret = ocfs2_inode_lock(inode, &di_bh, 1);
	if (ret) {
		mlog_errno(ret);
		return ret;
	}

	/*
	 * Take alloc sem here to prevent concurrent lookups. That way
	 * the mapping, zeroing and tree manipulation within
	 * ocfs2_write() will be safe against ->readpage(). This
	 * should also serve to lock out allocation from a shared
	 * writeable region.
	 */
	down_write(&OCFS2_I(inode)->ip_alloc_sem);

	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
				       fsdata, di_bh, NULL);
	if (ret) {
		mlog_errno(ret);
		goto out_fail;
	}

	brelse(di_bh);

	return 0;

out_fail:
	up_write(&OCFS2_I(inode)->ip_alloc_sem);

	brelse(di_bh);
	ocfs2_inode_unlock(inode, 1);

	return ret;
}

static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
				   unsigned len, unsigned *copied,
				   struct ocfs2_dinode *di,
				   struct ocfs2_write_ctxt *wc)
{
	void *kaddr;

	if (unlikely(*copied < len)) {
		if (!PageUptodate(wc->w_target_page)) {
			*copied = 0;
			return;
		}
	}

	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
	kunmap_atomic(kaddr, KM_USER0);

	trace_ocfs2_write_end_inline(
	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
	     (unsigned long long)pos, *copied,
	     le16_to_cpu(di->id2.i_data.id_count),
	     le16_to_cpu(di->i_dyn_features));
}

int ocfs2_write_end_nolock(struct address_space *mapping,
			   loff_t pos, unsigned len, unsigned copied,
			   struct page *page, void *fsdata)
{
	int i;
	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
	struct inode *inode = mapping->host;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct ocfs2_write_ctxt *wc = fsdata;
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
	handle_t *handle = wc->w_handle;
	struct page *tmppage;

	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
		goto out_write_size;
	}

	if (unlikely(copied < len)) {
		if (!PageUptodate(wc->w_target_page))
			copied = 0;

		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
				       start+len);
	}
	flush_dcache_page(wc->w_target_page);

	for(i = 0; i < wc->w_num_pages; i++) {
		tmppage = wc->w_pages[i];

		if (tmppage == wc->w_target_page) {
			from = wc->w_target_from;
			to = wc->w_target_to;

			BUG_ON(from > PAGE_CACHE_SIZE ||
			       to > PAGE_CACHE_SIZE ||
			       to < from);
		} else {
			/*
			 * Pages adjacent to the target (if any) imply
			 * a hole-filling write in which case we want
			 * to flush their entire range.
			 */
			from = 0;
			to = PAGE_CACHE_SIZE;
		}

		if (page_has_buffers(tmppage)) {
			if (ocfs2_should_order_data(inode))
				ocfs2_jbd2_file_inode(wc->w_handle, inode);
			block_commit_write(tmppage, from, to);
		}
	}

out_write_size:
	pos += copied;
	if (pos > inode->i_size) {
		i_size_write(inode, pos);
		mark_inode_dirty(inode);
	}
	inode->i_blocks = ocfs2_inode_sector_count(inode);
	di->i_size = cpu_to_le64((u64)i_size_read(inode));
	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
	ocfs2_journal_dirty(handle, wc->w_di_bh);

	ocfs2_commit_trans(osb, handle);

	ocfs2_run_deallocs(osb, &wc->w_dealloc);

	ocfs2_free_write_ctxt(wc);

	return copied;
}

static int ocfs2_write_end(struct file *file, struct address_space *mapping,
			   loff_t pos, unsigned len, unsigned copied,
			   struct page *page, void *fsdata)
{
	int ret;
	struct inode *inode = mapping->host;

	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);

	up_write(&OCFS2_I(inode)->ip_alloc_sem);
	ocfs2_inode_unlock(inode, 1);

	return ret;
}

const struct address_space_operations ocfs2_aops = {
	.readpage		= ocfs2_readpage,
	.readpages		= ocfs2_readpages,
	.writepage		= ocfs2_writepage,
	.write_begin		= ocfs2_write_begin,
	.write_end		= ocfs2_write_end,
	.bmap			= ocfs2_bmap,
	.direct_IO		= ocfs2_direct_IO,
	.invalidatepage		= ocfs2_invalidatepage,
	.releasepage		= ocfs2_releasepage,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate	= block_is_partially_uptodate,
	.error_remove_page	= generic_error_remove_page,
};