Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
/*
 * Carsten Langgaard, carstenl@mips.com
 * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
 * Portions copyright (C) 2009 Cisco Systems, Inc.
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 */
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/screen_info.h>
#include <linux/notifier.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/ctype.h>
#include <linux/cpu.h>
#include <linux/time.h>

#include <asm/bootinfo.h>
#include <asm/irq.h>
#include <asm/mips-boards/generic.h>
#include <asm/mips-boards/prom.h>
#include <asm/dma.h>
#include <asm/asm.h>
#include <asm/traps.h>
#include <asm/asm-offsets.h>
#include "reset.h"

#define VAL(n)		STR(n)

/*
 * Macros for loading addresses and storing registers:
 * LONG_L_	Stringified version of LONG_L for use in asm() statement
 * LONG_S_	Stringified version of LONG_S for use in asm() statement
 * PTR_LA_	Stringified version of PTR_LA for use in asm() statement
 * REG_SIZE	Number of 8-bit bytes in a full width register
 */
#define LONG_L_		VAL(LONG_L) " "
#define LONG_S_		VAL(LONG_S) " "
#define PTR_LA_		VAL(PTR_LA) " "

#ifdef CONFIG_64BIT
#warning TODO: 64-bit code needs to be verified
#define REG_SIZE	"8"		/* In bytes */
#endif

#ifdef CONFIG_32BIT
#define REG_SIZE	"4"		/* In bytes */
#endif

static void register_panic_notifier(void);
static int panic_handler(struct notifier_block *notifier_block,
	unsigned long event, void *cause_string);

const char *get_system_type(void)
{
	return "PowerTV";
}

void __init plat_mem_setup(void)
{
	panic_on_oops = 1;
	register_panic_notifier();

#if 0
	mips_pcibios_init();
#endif
	mips_reboot_setup();
}

/*
 * Install a panic notifier for platform-specific diagnostics
 */
static void register_panic_notifier()
{
	static struct notifier_block panic_notifier = {
		.notifier_call = panic_handler,
		.next = NULL,
		.priority	= INT_MAX
	};
	atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
}

static int panic_handler(struct notifier_block *notifier_block,
	unsigned long event, void *cause_string)
{
	struct pt_regs	my_regs;

	/* Save all of the registers */
	{
		unsigned long	at, v0, v1; /* Must be on the stack */

		/* Start by saving $at and v0 on the stack. We use $at
		 * ourselves, but it looks like the compiler may use v0 or v1
		 * to load the address of the pt_regs structure. We'll come
		 * back later to store the registers in the pt_regs
		 * structure. */
		__asm__ __volatile__ (
			".set	noat\n"
			LONG_S_		"$at, %[at]\n"
			LONG_S_		"$2, %[v0]\n"
			LONG_S_		"$3, %[v1]\n"
		:
			[at] "=m" (at),
			[v0] "=m" (v0),
			[v1] "=m" (v1)
		:
		:	"at"
		);

		__asm__ __volatile__ (
			".set	noat\n"
			"move		$at, %[pt_regs]\n"

			/* Argument registers */
			LONG_S_		"$4, " VAL(PT_R4) "($at)\n"
			LONG_S_		"$5, " VAL(PT_R5) "($at)\n"
			LONG_S_		"$6, " VAL(PT_R6) "($at)\n"
			LONG_S_		"$7, " VAL(PT_R7) "($at)\n"

			/* Temporary regs */
			LONG_S_		"$8, " VAL(PT_R8) "($at)\n"
			LONG_S_		"$9, " VAL(PT_R9) "($at)\n"
			LONG_S_		"$10, " VAL(PT_R10) "($at)\n"
			LONG_S_		"$11, " VAL(PT_R11) "($at)\n"
			LONG_S_		"$12, " VAL(PT_R12) "($at)\n"
			LONG_S_		"$13, " VAL(PT_R13) "($at)\n"
			LONG_S_		"$14, " VAL(PT_R14) "($at)\n"
			LONG_S_		"$15, " VAL(PT_R15) "($at)\n"

			/* "Saved" registers */
			LONG_S_		"$16, " VAL(PT_R16) "($at)\n"
			LONG_S_		"$17, " VAL(PT_R17) "($at)\n"
			LONG_S_		"$18, " VAL(PT_R18) "($at)\n"
			LONG_S_		"$19, " VAL(PT_R19) "($at)\n"
			LONG_S_		"$20, " VAL(PT_R20) "($at)\n"
			LONG_S_		"$21, " VAL(PT_R21) "($at)\n"
			LONG_S_		"$22, " VAL(PT_R22) "($at)\n"
			LONG_S_		"$23, " VAL(PT_R23) "($at)\n"

			/* Add'l temp regs */
			LONG_S_		"$24, " VAL(PT_R24) "($at)\n"
			LONG_S_		"$25, " VAL(PT_R25) "($at)\n"

			/* Kernel temp regs */
			LONG_S_		"$26, " VAL(PT_R26) "($at)\n"
			LONG_S_		"$27, " VAL(PT_R27) "($at)\n"

			/* Global pointer, stack pointer, frame pointer and
			 * return address */
			LONG_S_		"$gp, " VAL(PT_R28) "($at)\n"
			LONG_S_		"$sp, " VAL(PT_R29) "($at)\n"
			LONG_S_		"$fp, " VAL(PT_R30) "($at)\n"
			LONG_S_		"$ra, " VAL(PT_R31) "($at)\n"

			/* Now we can get the $at and v0 registers back and
			 * store them */
			LONG_L_		"$8, %[at]\n"
			LONG_S_		"$8, " VAL(PT_R1) "($at)\n"
			LONG_L_		"$8, %[v0]\n"
			LONG_S_		"$8, " VAL(PT_R2) "($at)\n"
			LONG_L_		"$8, %[v1]\n"
			LONG_S_		"$8, " VAL(PT_R3) "($at)\n"
		:
		:
			[at] "m" (at),
			[v0] "m" (v0),
			[v1] "m" (v1),
			[pt_regs] "r" (&my_regs)
		:	"at", "t0"
		);

		/* Set the current EPC value to be the current location in this
		 * function */
		__asm__ __volatile__ (
			".set	noat\n"
		"1:\n"
			PTR_LA_		"$at, 1b\n"
			LONG_S_		"$at, %[cp0_epc]\n"
		:
			[cp0_epc] "=m" (my_regs.cp0_epc)
		:
		:	"at"
		);

		my_regs.cp0_cause = read_c0_cause();
		my_regs.cp0_status = read_c0_status();
	}

	pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
		"zzzz... \n");

	return NOTIFY_DONE;
}

/* Information about the RF MAC address, if one was supplied on the
 * command line. */
static bool have_rfmac;
static u8 rfmac[ETH_ALEN];

static int rfmac_param(char *p)
{
	u8	*q;
	bool	is_high_nibble;
	int	c;

	/* Skip a leading "0x", if present */
	if (*p == '0' && *(p+1) == 'x')
		p += 2;

	q = rfmac;
	is_high_nibble = true;

	for (c = (unsigned char) *p++;
		isxdigit(c) && q - rfmac < ETH_ALEN;
		c = (unsigned char) *p++) {
		int	nibble;

		nibble = (isdigit(c) ? (c - '0') :
			(isupper(c) ? c - 'A' + 10 : c - 'a' + 10));

		if (is_high_nibble)
			*q = nibble << 4;
		else
			*q++ |= nibble;

		is_high_nibble = !is_high_nibble;
	}

	/* If we parsed all the way to the end of the parameter value and
	 * parsed all ETH_ALEN bytes, we have a usable RF MAC address */
	have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);

	return 0;
}

early_param("rfmac", rfmac_param);

/*
 * Generate an Ethernet MAC address that has a good chance of being unique.
 * @addr:	Pointer to six-byte array containing the Ethernet address
 * Generates an Ethernet MAC address that is highly likely to be unique for
 * this particular system on a network with other systems of the same type.
 *
 * The problem we are solving is that, when random_ether_addr() is used to
 * generate MAC addresses at startup, there isn't much entropy for the random
 * number generator to use and the addresses it produces are fairly likely to
 * be the same as those of other identical systems on the same local network.
 * This is true even for relatively small numbers of systems (for the reason
 * why, see the Wikipedia entry for "Birthday problem" at:
 *	http://en.wikipedia.org/wiki/Birthday_problem
 *
 * The good news is that we already have a MAC address known to be unique, the
 * RF MAC address. The bad news is that this address is already in use on the
 * RF interface. Worse, the obvious trick, taking the RF MAC address and
 * turning on the locally managed bit, has already been used for other devices.
 * Still, this does give us something to work with.
 *
 * The approach we take is:
 * 1.	If we can't get the RF MAC Address, just call random_ether_addr.
 * 2.	Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
 *	bits of the new address. This is very likely to be unique, except for
 *	the current box.
 * 3.	To avoid using addresses already on the current box, we set the top
 *	six bits of the address with a value different from any currently
 *	registered Scientific Atlanta organizationally unique identifyer
 *	(OUI). This avoids duplication with any addresses on the system that
 *	were generated from valid Scientific Atlanta-registered address by
 *	simply flipping the locally managed bit.
 * 4.	We aren't generating a multicast address, so we leave the multicast
 *	bit off. Since we aren't using a registered address, we have to set
 *	the locally managed bit.
 * 5.	We then randomly generate the remaining 16-bits. This does two
 *	things:
 *	a.	It allows us to call this function for more than one device
 *		in this system
 *	b.	It ensures that things will probably still work even if
 *		some device on the device network has a locally managed
 *		address that matches the top six bits from step 2.
 */
void platform_random_ether_addr(u8 addr[ETH_ALEN])
{
	const int num_random_bytes = 2;
	const unsigned char non_sciatl_oui_bits = 0xc0u;
	const unsigned char mac_addr_locally_managed = (1 << 1);

	if (!have_rfmac) {
		pr_warning("rfmac not available on command line; "
			"generating random MAC address\n");
		random_ether_addr(addr);
	}

	else {
		int	i;

		/* Set the first byte to something that won't match a Scientific
		 * Atlanta OUI, is locally managed, and isn't a multicast
		 * address */
		addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;

		/* Get some bytes of random address information */
		get_random_bytes(&addr[1], num_random_bytes);

		/* Copy over the NIC-specific bits of the RF MAC address */
		for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
			addr[i] = rfmac[i];
	}
}