Stuck at home?

Check our new online training!

Stuck at home?

All Bootlin training courses
are now available
through on-line seminars

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
 *
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
 */

#include <linux/filter.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <linux/random.h>
#include <linux/moduleloader.h>
#include <asm/unaligned.h>
#include <linux/bpf.h>

/* Registers */
#define BPF_R0	regs[BPF_REG_0]
#define BPF_R1	regs[BPF_REG_1]
#define BPF_R2	regs[BPF_REG_2]
#define BPF_R3	regs[BPF_REG_3]
#define BPF_R4	regs[BPF_REG_4]
#define BPF_R5	regs[BPF_REG_5]
#define BPF_R6	regs[BPF_REG_6]
#define BPF_R7	regs[BPF_REG_7]
#define BPF_R8	regs[BPF_REG_8]
#define BPF_R9	regs[BPF_REG_9]
#define BPF_R10	regs[BPF_REG_10]

/* Named registers */
#define DST	regs[insn->dst_reg]
#define SRC	regs[insn->src_reg]
#define FP	regs[BPF_REG_FP]
#define ARG1	regs[BPF_REG_ARG1]
#define CTX	regs[BPF_REG_CTX]
#define IMM	insn->imm

/* No hurry in this branch
 *
 * Exported for the bpf jit load helper.
 */
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
{
	u8 *ptr = NULL;

	if (k >= SKF_NET_OFF)
		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
	else if (k >= SKF_LL_OFF)
		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
		return ptr;

	return NULL;
}

struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
{
	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
			  gfp_extra_flags;
	struct bpf_prog_aux *aux;
	struct bpf_prog *fp;

	size = round_up(size, PAGE_SIZE);
	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
	if (fp == NULL)
		return NULL;

	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
	if (aux == NULL) {
		vfree(fp);
		return NULL;
	}

	fp->pages = size / PAGE_SIZE;
	fp->aux = aux;

	return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_alloc);

struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
				  gfp_t gfp_extra_flags)
{
	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
			  gfp_extra_flags;
	struct bpf_prog *fp;

	BUG_ON(fp_old == NULL);

	size = round_up(size, PAGE_SIZE);
	if (size <= fp_old->pages * PAGE_SIZE)
		return fp_old;

	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
	if (fp != NULL) {
		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
		fp->pages = size / PAGE_SIZE;

		/* We keep fp->aux from fp_old around in the new
		 * reallocated structure.
		 */
		fp_old->aux = NULL;
		__bpf_prog_free(fp_old);
	}

	return fp;
}
EXPORT_SYMBOL_GPL(bpf_prog_realloc);

void __bpf_prog_free(struct bpf_prog *fp)
{
	kfree(fp->aux);
	vfree(fp);
}
EXPORT_SYMBOL_GPL(__bpf_prog_free);

#ifdef CONFIG_BPF_JIT
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
		     unsigned int alignment,
		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
{
	struct bpf_binary_header *hdr;
	unsigned int size, hole, start;

	/* Most of BPF filters are really small, but if some of them
	 * fill a page, allow at least 128 extra bytes to insert a
	 * random section of illegal instructions.
	 */
	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
	hdr = module_alloc(size);
	if (hdr == NULL)
		return NULL;

	/* Fill space with illegal/arch-dep instructions. */
	bpf_fill_ill_insns(hdr, size);

	hdr->pages = size / PAGE_SIZE;
	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
		     PAGE_SIZE - sizeof(*hdr));
	start = (prandom_u32() % hole) & ~(alignment - 1);

	/* Leave a random number of instructions before BPF code. */
	*image_ptr = &hdr->image[start];

	return hdr;
}

void bpf_jit_binary_free(struct bpf_binary_header *hdr)
{
	module_free(NULL, hdr);
}
#endif /* CONFIG_BPF_JIT */

/* Base function for offset calculation. Needs to go into .text section,
 * therefore keeping it non-static as well; will also be used by JITs
 * anyway later on, so do not let the compiler omit it.
 */
noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return 0;
}

/**
 *	__bpf_prog_run - run eBPF program on a given context
 *	@ctx: is the data we are operating on
 *	@insn: is the array of eBPF instructions
 *
 * Decode and execute eBPF instructions.
 */
static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
{
	u64 stack[MAX_BPF_STACK / sizeof(u64)];
	u64 regs[MAX_BPF_REG], tmp;
	static const void *jumptable[256] = {
		[0 ... 255] = &&default_label,
		/* Now overwrite non-defaults ... */
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
		/* 64 bit ALU operations */
		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
		/* Call instruction */
		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
		/* Jumps */
		[BPF_JMP | BPF_JA] = &&JMP_JA,
		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
		/* Program return */
		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
		/* Store instructions */
		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
		/* Load instructions */
		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
	};
	void *ptr;
	int off;

#define CONT	 ({ insn++; goto select_insn; })
#define CONT_JMP ({ insn++; goto select_insn; })

	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
	ARG1 = (u64) (unsigned long) ctx;

	/* Registers used in classic BPF programs need to be reset first. */
	regs[BPF_REG_A] = 0;
	regs[BPF_REG_X] = 0;

select_insn:
	goto *jumptable[insn->code];

	/* ALU */
#define ALU(OPCODE, OP)			\
	ALU64_##OPCODE##_X:		\
		DST = DST OP SRC;	\
		CONT;			\
	ALU_##OPCODE##_X:		\
		DST = (u32) DST OP (u32) SRC;	\
		CONT;			\
	ALU64_##OPCODE##_K:		\
		DST = DST OP IMM;		\
		CONT;			\
	ALU_##OPCODE##_K:		\
		DST = (u32) DST OP (u32) IMM;	\
		CONT;

	ALU(ADD,  +)
	ALU(SUB,  -)
	ALU(AND,  &)
	ALU(OR,   |)
	ALU(LSH, <<)
	ALU(RSH, >>)
	ALU(XOR,  ^)
	ALU(MUL,  *)
#undef ALU
	ALU_NEG:
		DST = (u32) -DST;
		CONT;
	ALU64_NEG:
		DST = -DST;
		CONT;
	ALU_MOV_X:
		DST = (u32) SRC;
		CONT;
	ALU_MOV_K:
		DST = (u32) IMM;
		CONT;
	ALU64_MOV_X:
		DST = SRC;
		CONT;
	ALU64_MOV_K:
		DST = IMM;
		CONT;
	LD_IMM_DW:
		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
		insn++;
		CONT;
	ALU64_ARSH_X:
		(*(s64 *) &DST) >>= SRC;
		CONT;
	ALU64_ARSH_K:
		(*(s64 *) &DST) >>= IMM;
		CONT;
	ALU64_MOD_X:
		if (unlikely(SRC == 0))
			return 0;
		div64_u64_rem(DST, SRC, &tmp);
		DST = tmp;
		CONT;
	ALU_MOD_X:
		if (unlikely(SRC == 0))
			return 0;
		tmp = (u32) DST;
		DST = do_div(tmp, (u32) SRC);
		CONT;
	ALU64_MOD_K:
		div64_u64_rem(DST, IMM, &tmp);
		DST = tmp;
		CONT;
	ALU_MOD_K:
		tmp = (u32) DST;
		DST = do_div(tmp, (u32) IMM);
		CONT;
	ALU64_DIV_X:
		if (unlikely(SRC == 0))
			return 0;
		DST = div64_u64(DST, SRC);
		CONT;
	ALU_DIV_X:
		if (unlikely(SRC == 0))
			return 0;
		tmp = (u32) DST;
		do_div(tmp, (u32) SRC);
		DST = (u32) tmp;
		CONT;
	ALU64_DIV_K:
		DST = div64_u64(DST, IMM);
		CONT;
	ALU_DIV_K:
		tmp = (u32) DST;
		do_div(tmp, (u32) IMM);
		DST = (u32) tmp;
		CONT;
	ALU_END_TO_BE:
		switch (IMM) {
		case 16:
			DST = (__force u16) cpu_to_be16(DST);
			break;
		case 32:
			DST = (__force u32) cpu_to_be32(DST);
			break;
		case 64:
			DST = (__force u64) cpu_to_be64(DST);
			break;
		}
		CONT;
	ALU_END_TO_LE:
		switch (IMM) {
		case 16:
			DST = (__force u16) cpu_to_le16(DST);
			break;
		case 32:
			DST = (__force u32) cpu_to_le32(DST);
			break;
		case 64:
			DST = (__force u64) cpu_to_le64(DST);
			break;
		}
		CONT;

	/* CALL */
	JMP_CALL:
		/* Function call scratches BPF_R1-BPF_R5 registers,
		 * preserves BPF_R6-BPF_R9, and stores return value
		 * into BPF_R0.
		 */
		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
						       BPF_R4, BPF_R5);
		CONT;

	/* JMP */
	JMP_JA:
		insn += insn->off;
		CONT;
	JMP_JEQ_X:
		if (DST == SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JEQ_K:
		if (DST == IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JNE_X:
		if (DST != SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JNE_K:
		if (DST != IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGT_X:
		if (DST > SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGT_K:
		if (DST > IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGE_X:
		if (DST >= SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JGE_K:
		if (DST >= IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGT_X:
		if (((s64) DST) > ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGT_K:
		if (((s64) DST) > ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGE_X:
		if (((s64) DST) >= ((s64) SRC)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSGE_K:
		if (((s64) DST) >= ((s64) IMM)) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSET_X:
		if (DST & SRC) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_JSET_K:
		if (DST & IMM) {
			insn += insn->off;
			CONT_JMP;
		}
		CONT;
	JMP_EXIT:
		return BPF_R0;

	/* STX and ST and LDX*/
#define LDST(SIZEOP, SIZE)						\
	STX_MEM_##SIZEOP:						\
		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
		CONT;							\
	ST_MEM_##SIZEOP:						\
		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
		CONT;							\
	LDX_MEM_##SIZEOP:						\
		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
		CONT;

	LDST(B,   u8)
	LDST(H,  u16)
	LDST(W,  u32)
	LDST(DW, u64)
#undef LDST
	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
			   (DST + insn->off));
		CONT;
	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
			     (DST + insn->off));
		CONT;
	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
		off = IMM;
load_word:
		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
		 * only appearing in the programs where ctx ==
		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
		 * internal BPF verifier will check that BPF_R6 ==
		 * ctx.
		 *
		 * BPF_ABS and BPF_IND are wrappers of function calls,
		 * so they scratch BPF_R1-BPF_R5 registers, preserve
		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
		 *
		 * Implicit input:
		 *   ctx == skb == BPF_R6 == CTX
		 *
		 * Explicit input:
		 *   SRC == any register
		 *   IMM == 32-bit immediate
		 *
		 * Output:
		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
		 */

		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
		if (likely(ptr != NULL)) {
			BPF_R0 = get_unaligned_be32(ptr);
			CONT;
		}

		return 0;
	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
		off = IMM;
load_half:
		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
		if (likely(ptr != NULL)) {
			BPF_R0 = get_unaligned_be16(ptr);
			CONT;
		}

		return 0;
	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
		off = IMM;
load_byte:
		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
		if (likely(ptr != NULL)) {
			BPF_R0 = *(u8 *)ptr;
			CONT;
		}

		return 0;
	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
		off = IMM + SRC;
		goto load_word;
	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
		off = IMM + SRC;
		goto load_half;
	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
		off = IMM + SRC;
		goto load_byte;

	default_label:
		/* If we ever reach this, we have a bug somewhere. */
		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
		return 0;
}

void __weak bpf_int_jit_compile(struct bpf_prog *prog)
{
}

/**
 *	bpf_prog_select_runtime - select execution runtime for BPF program
 *	@fp: bpf_prog populated with internal BPF program
 *
 * try to JIT internal BPF program, if JIT is not available select interpreter
 * BPF program will be executed via BPF_PROG_RUN() macro
 */
void bpf_prog_select_runtime(struct bpf_prog *fp)
{
	fp->bpf_func = (void *) __bpf_prog_run;

	/* Probe if internal BPF can be JITed */
	bpf_int_jit_compile(fp);
	/* Lock whole bpf_prog as read-only */
	bpf_prog_lock_ro(fp);
}
EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);

static void bpf_prog_free_deferred(struct work_struct *work)
{
	struct bpf_prog_aux *aux;

	aux = container_of(work, struct bpf_prog_aux, work);
	bpf_jit_free(aux->prog);
}

/* Free internal BPF program */
void bpf_prog_free(struct bpf_prog *fp)
{
	struct bpf_prog_aux *aux = fp->aux;

	INIT_WORK(&aux->work, bpf_prog_free_deferred);
	aux->prog = fp;
	schedule_work(&aux->work);
}
EXPORT_SYMBOL_GPL(bpf_prog_free);

/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
 */
int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
			 int len)
{
	return -EFAULT;
}