Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
 * Copyright 2013 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

#include <subdev/bios.h>
#include <subdev/bios/bit.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/perf.h>
#include <subdev/bios/timing.h>
#include <subdev/clock/pll.h>
#include <subdev/fb.h>

#include <core/option.h>
#include <core/mm.h>

#include "ramseq.h"

#include "nv50.h"

struct nv50_ramseq {
	struct hwsq base;
	struct hwsq_reg r_0x002504;
	struct hwsq_reg r_0x004008;
	struct hwsq_reg r_0x00400c;
	struct hwsq_reg r_0x00c040;
	struct hwsq_reg r_0x100210;
	struct hwsq_reg r_0x1002d0;
	struct hwsq_reg r_0x1002d4;
	struct hwsq_reg r_0x1002dc;
	struct hwsq_reg r_0x100da0[8];
	struct hwsq_reg r_0x100e20;
	struct hwsq_reg r_0x100e24;
	struct hwsq_reg r_0x611200;
	struct hwsq_reg r_timing[9];
	struct hwsq_reg r_mr[4];
};

struct nv50_ram {
	struct nouveau_ram base;
	struct nv50_ramseq hwsq;
};

#define QFX5800NVA0 1

static int
nv50_ram_calc(struct nouveau_fb *pfb, u32 freq)
{
	struct nouveau_bios *bios = nouveau_bios(pfb);
	struct nv50_ram *ram = (void *)pfb->ram;
	struct nv50_ramseq *hwsq = &ram->hwsq;
	struct nvbios_perfE perfE;
	struct nvbios_pll mpll;
	struct bit_entry M;
	struct {
		u32 data;
		u8  size;
	} ramcfg, timing;
	u8  ver, hdr, cnt, strap;
	u32 data;
	int N1, M1, N2, M2, P;
	int ret, i;

	/* lookup closest matching performance table entry for frequency */
	i = 0;
	do {
		ramcfg.data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
					   &ramcfg.size, &perfE);
		if (!ramcfg.data || (ver < 0x25 || ver >= 0x40) ||
		    (ramcfg.size < 2)) {
			nv_error(pfb, "invalid/missing perftab entry\n");
			return -EINVAL;
		}
	} while (perfE.memory < freq);

	/* locate specific data set for the attached memory */
	if (bit_entry(bios, 'M', &M) || M.version != 1 || M.length < 5) {
		nv_error(pfb, "invalid/missing memory table\n");
		return -EINVAL;
	}

	strap = (nv_rd32(pfb, 0x101000) & 0x0000003c) >> 2;
	data = nv_ro16(bios, M.offset + 3);
	if (data)
		strap = nv_ro08(bios, data + strap);

	if (strap >= cnt) {
		nv_error(pfb, "invalid ramcfg strap\n");
		return -EINVAL;
	}

	ramcfg.data += hdr + (strap * ramcfg.size);

	/* lookup memory timings, if bios says they're present */
	strap = nv_ro08(bios, ramcfg.data + 0x01);
	if (strap != 0xff) {
		timing.data = nvbios_timing_entry(bios, strap, &ver, &hdr);
		if (!timing.data || ver != 0x10 || hdr < 0x12) {
			nv_error(pfb, "invalid/missing timing entry "
				 "%02x %04x %02x %02x\n",
				 strap, timing.data, ver, hdr);
			return -EINVAL;
		}
	} else {
		timing.data = 0;
	}

	ret = ram_init(hwsq, nv_subdev(pfb));
	if (ret)
		return ret;

	ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
	ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
	ram_wr32(hwsq, 0x611200, 0x00003300);
	ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
	ram_nsec(hwsq, 8000);
	ram_setf(hwsq, 0x10, 0x00); /* disable fb */
	ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */

	ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
	ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
	ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
	ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */

	ret = nvbios_pll_parse(bios, 0x004008, &mpll);
	mpll.vco2.max_freq = 0;
	if (ret == 0) {
		ret = nv04_pll_calc(nv_subdev(pfb), &mpll, freq,
				   &N1, &M1, &N2, &M2, &P);
		if (ret == 0)
			ret = -EINVAL;
	}

	if (ret < 0)
		return ret;

	ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
	ram_mask(hwsq, 0x004008, 0x00000200, 0x00000200);
	ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
	ram_mask(hwsq, 0x004008, 0x81ff0000, 0x80000000 | (mpll.bias_p << 19) |
					     (P << 22) | (P << 16));
#if QFX5800NVA0
	for (i = 0; i < 8; i++)
		ram_mask(hwsq, 0x100da0[i], 0x00000000, 0x00000000); /*XXX*/
#endif
	ram_nsec(hwsq, 96000); /*XXX*/
	ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);

	ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
	ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */

	ram_nsec(hwsq, 12000);

	switch (ram->base.type) {
	case NV_MEM_TYPE_DDR2:
		ram_nuke(hwsq, mr[0]); /* force update */
		ram_mask(hwsq, mr[0], 0x000, 0x000);
		break;
	case NV_MEM_TYPE_GDDR3:
		ram_mask(hwsq, mr[2], 0x000, 0x000);
		ram_nuke(hwsq, mr[0]); /* force update */
		ram_mask(hwsq, mr[0], 0x000, 0x000);
		break;
	default:
		break;
	}

	ram_mask(hwsq, timing[3], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[1], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[6], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[7], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[8], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[2], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[4], 0x00000000, 0x00000000); /*XXX*/
	ram_mask(hwsq, timing[5], 0x00000000, 0x00000000); /*XXX*/

	ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/

#if QFX5800NVA0
	ram_nuke(hwsq, 0x100e24);
	ram_mask(hwsq, 0x100e24, 0x00000000, 0x00000000);
	ram_nuke(hwsq, 0x100e20);
	ram_mask(hwsq, 0x100e20, 0x00000000, 0x00000000);
#endif

	ram_mask(hwsq, mr[0], 0x100, 0x100);
	ram_mask(hwsq, mr[0], 0x100, 0x000);

	ram_setf(hwsq, 0x10, 0x01); /* enable fb */
	ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
	ram_wr32(hwsq, 0x611200, 0x00003330);
	ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
	return 0;
}

static int
nv50_ram_prog(struct nouveau_fb *pfb)
{
	struct nouveau_device *device = nv_device(pfb);
	struct nv50_ram *ram = (void *)pfb->ram;
	struct nv50_ramseq *hwsq = &ram->hwsq;

	ram_exec(hwsq, nouveau_boolopt(device->cfgopt, "NvMemExec", false));
	return 0;
}

static void
nv50_ram_tidy(struct nouveau_fb *pfb)
{
	struct nv50_ram *ram = (void *)pfb->ram;
	struct nv50_ramseq *hwsq = &ram->hwsq;
	ram_exec(hwsq, false);
}

void
__nv50_ram_put(struct nouveau_fb *pfb, struct nouveau_mem *mem)
{
	struct nouveau_mm_node *this;

	while (!list_empty(&mem->regions)) {
		this = list_first_entry(&mem->regions, typeof(*this), rl_entry);

		list_del(&this->rl_entry);
		nouveau_mm_free(&pfb->vram, &this);
	}

	nouveau_mm_free(&pfb->tags, &mem->tag);
}

void
nv50_ram_put(struct nouveau_fb *pfb, struct nouveau_mem **pmem)
{
	struct nouveau_mem *mem = *pmem;

	*pmem = NULL;
	if (unlikely(mem == NULL))
		return;

	mutex_lock(&pfb->base.mutex);
	__nv50_ram_put(pfb, mem);
	mutex_unlock(&pfb->base.mutex);

	kfree(mem);
}

int
nv50_ram_get(struct nouveau_fb *pfb, u64 size, u32 align, u32 ncmin,
	     u32 memtype, struct nouveau_mem **pmem)
{
	struct nouveau_mm *heap = &pfb->vram;
	struct nouveau_mm *tags = &pfb->tags;
	struct nouveau_mm_node *r;
	struct nouveau_mem *mem;
	int comp = (memtype & 0x300) >> 8;
	int type = (memtype & 0x07f);
	int back = (memtype & 0x800);
	int min, max, ret;

	max = (size >> 12);
	min = ncmin ? (ncmin >> 12) : max;
	align >>= 12;

	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
	if (!mem)
		return -ENOMEM;

	mutex_lock(&pfb->base.mutex);
	if (comp) {
		if (align == 16) {
			int n = (max >> 4) * comp;

			ret = nouveau_mm_head(tags, 1, n, n, 1, &mem->tag);
			if (ret)
				mem->tag = NULL;
		}

		if (unlikely(!mem->tag))
			comp = 0;
	}

	INIT_LIST_HEAD(&mem->regions);
	mem->memtype = (comp << 7) | type;
	mem->size = max;

	type = nv50_fb_memtype[type];
	do {
		if (back)
			ret = nouveau_mm_tail(heap, type, max, min, align, &r);
		else
			ret = nouveau_mm_head(heap, type, max, min, align, &r);
		if (ret) {
			mutex_unlock(&pfb->base.mutex);
			pfb->ram->put(pfb, &mem);
			return ret;
		}

		list_add_tail(&r->rl_entry, &mem->regions);
		max -= r->length;
	} while (max);
	mutex_unlock(&pfb->base.mutex);

	r = list_first_entry(&mem->regions, struct nouveau_mm_node, rl_entry);
	mem->offset = (u64)r->offset << 12;
	*pmem = mem;
	return 0;
}

static u32
nv50_fb_vram_rblock(struct nouveau_fb *pfb, struct nouveau_ram *ram)
{
	int i, parts, colbits, rowbitsa, rowbitsb, banks;
	u64 rowsize, predicted;
	u32 r0, r4, rt, ru, rblock_size;

	r0 = nv_rd32(pfb, 0x100200);
	r4 = nv_rd32(pfb, 0x100204);
	rt = nv_rd32(pfb, 0x100250);
	ru = nv_rd32(pfb, 0x001540);
	nv_debug(pfb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n", r0, r4, rt, ru);

	for (i = 0, parts = 0; i < 8; i++) {
		if (ru & (0x00010000 << i))
			parts++;
	}

	colbits  =  (r4 & 0x0000f000) >> 12;
	rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
	rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
	banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);

	rowsize = parts * banks * (1 << colbits) * 8;
	predicted = rowsize << rowbitsa;
	if (r0 & 0x00000004)
		predicted += rowsize << rowbitsb;

	if (predicted != ram->size) {
		nv_warn(pfb, "memory controller reports %d MiB VRAM\n",
			(u32)(ram->size >> 20));
	}

	rblock_size = rowsize;
	if (rt & 1)
		rblock_size *= 3;

	nv_debug(pfb, "rblock %d bytes\n", rblock_size);
	return rblock_size;
}

int
nv50_ram_create_(struct nouveau_object *parent, struct nouveau_object *engine,
		 struct nouveau_oclass *oclass, int length, void **pobject)
{
	const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
	const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
	struct nouveau_bios *bios = nouveau_bios(parent);
	struct nouveau_fb *pfb = nouveau_fb(parent);
	struct nouveau_ram *ram;
	int ret;

	ret = nouveau_ram_create_(parent, engine, oclass, length, pobject);
	ram = *pobject;
	if (ret)
		return ret;

	ram->size = nv_rd32(pfb, 0x10020c);
	ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);

	switch (nv_rd32(pfb, 0x100714) & 0x00000007) {
	case 0: ram->type = NV_MEM_TYPE_DDR1; break;
	case 1:
		if (nouveau_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
			ram->type = NV_MEM_TYPE_DDR3;
		else
			ram->type = NV_MEM_TYPE_DDR2;
		break;
	case 2: ram->type = NV_MEM_TYPE_GDDR3; break;
	case 3: ram->type = NV_MEM_TYPE_GDDR4; break;
	case 4: ram->type = NV_MEM_TYPE_GDDR5; break;
	default:
		break;
	}

	ret = nouveau_mm_init(&pfb->vram, rsvd_head, (ram->size >> 12) -
			      (rsvd_head + rsvd_tail),
			      nv50_fb_vram_rblock(pfb, ram) >> 12);
	if (ret)
		return ret;

	ram->ranks = (nv_rd32(pfb, 0x100200) & 0x4) ? 2 : 1;
	ram->tags  =  nv_rd32(pfb, 0x100320);
	ram->get = nv50_ram_get;
	ram->put = nv50_ram_put;
	return 0;
}

static int
nv50_ram_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
	      struct nouveau_oclass *oclass, void *data, u32 datasize,
	      struct nouveau_object **pobject)
{
	struct nv50_ram *ram;
	int ret, i;

	ret = nv50_ram_create(parent, engine, oclass, &ram);
	*pobject = nv_object(ram);
	if (ret)
		return ret;

	switch (ram->base.type) {
	case NV_MEM_TYPE_DDR2:
	case NV_MEM_TYPE_GDDR3:
		ram->base.calc = nv50_ram_calc;
		ram->base.prog = nv50_ram_prog;
		ram->base.tidy = nv50_ram_tidy;
		break;
	default:
		nv_warn(ram, "reclocking of this ram type unsupported\n");
		return 0;
	}

	ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
	ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
	ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
	ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
	ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
	ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
	ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
	ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
	for (i = 0; i < 8; i++)
		ram->hwsq.r_0x100da0[i] = hwsq_reg(0x100da0 + (i * 0x04));
	ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
	ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
	ram->hwsq.r_0x611200 = hwsq_reg(0x611200);

	for (i = 0; i < 9; i++)
		ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));

	if (ram->base.ranks > 1) {
		ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
		ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
		ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
		ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
	} else {
		ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
		ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
		ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
		ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
	}

	return 0;
}

struct nouveau_oclass
nv50_ram_oclass = {
	.ofuncs = &(struct nouveau_ofuncs) {
		.ctor = nv50_ram_ctor,
		.dtor = _nouveau_ram_dtor,
		.init = _nouveau_ram_init,
		.fini = _nouveau_ram_fini,
	}
};