Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
/*
 * Analog Devices SPI3 controller driver
 *
 * Copyright (c) 2013 Analog Devices Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/types.h>

#include <asm/bfin_spi3.h>
#include <asm/cacheflush.h>
#include <asm/dma.h>
#include <asm/portmux.h>

enum bfin_spi_state {
	START_STATE,
	RUNNING_STATE,
	DONE_STATE,
	ERROR_STATE
};

struct bfin_spi_master;

struct bfin_spi_transfer_ops {
	void (*write) (struct bfin_spi_master *);
	void (*read) (struct bfin_spi_master *);
	void (*duplex) (struct bfin_spi_master *);
};

/* runtime info for spi master */
struct bfin_spi_master {
	/* SPI framework hookup */
	struct spi_master *master;

	/* Regs base of SPI controller */
	struct bfin_spi_regs __iomem *regs;

	/* Pin request list */
	u16 *pin_req;

	/* Message Transfer pump */
	struct tasklet_struct pump_transfers;

	/* Current message transfer state info */
	struct spi_message *cur_msg;
	struct spi_transfer *cur_transfer;
	struct bfin_spi_device *cur_chip;
	unsigned transfer_len;

	/* transfer buffer */
	void *tx;
	void *tx_end;
	void *rx;
	void *rx_end;

	/* dma info */
	unsigned int tx_dma;
	unsigned int rx_dma;
	dma_addr_t tx_dma_addr;
	dma_addr_t rx_dma_addr;
	unsigned long dummy_buffer; /* used in unidirectional transfer */
	unsigned long tx_dma_size;
	unsigned long rx_dma_size;
	int tx_num;
	int rx_num;

	/* store register value for suspend/resume */
	u32 control;
	u32 ssel;

	unsigned long sclk;
	enum bfin_spi_state state;

	const struct bfin_spi_transfer_ops *ops;
};

struct bfin_spi_device {
	u32 control;
	u32 clock;
	u32 ssel;

	u8 cs;
	u16 cs_chg_udelay; /* Some devices require > 255usec delay */
	u32 cs_gpio;
	u32 tx_dummy_val; /* tx value for rx only transfer */
	bool enable_dma;
	const struct bfin_spi_transfer_ops *ops;
};

static void bfin_spi_enable(struct bfin_spi_master *drv_data)
{
	bfin_write_or(&drv_data->regs->control, SPI_CTL_EN);
}

static void bfin_spi_disable(struct bfin_spi_master *drv_data)
{
	bfin_write_and(&drv_data->regs->control, ~SPI_CTL_EN);
}

/* Caculate the SPI_CLOCK register value based on input HZ */
static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
{
	u32 spi_clock = sclk / speed_hz;

	if (spi_clock)
		spi_clock--;
	return spi_clock;
}

static int bfin_spi_flush(struct bfin_spi_master *drv_data)
{
	unsigned long limit = loops_per_jiffy << 1;

	/* wait for stop and clear stat */
	while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
		cpu_relax();

	bfin_write(&drv_data->regs->status, 0xFFFFFFFF);

	return limit;
}

/* Chip select operation functions for cs_change flag */
static void bfin_spi_cs_active(struct bfin_spi_master *drv_data, struct bfin_spi_device *chip)
{
	if (likely(chip->cs < MAX_CTRL_CS))
		bfin_write_and(&drv_data->regs->ssel, ~chip->ssel);
	else
		gpio_set_value(chip->cs_gpio, 0);
}

static void bfin_spi_cs_deactive(struct bfin_spi_master *drv_data,
				struct bfin_spi_device *chip)
{
	if (likely(chip->cs < MAX_CTRL_CS))
		bfin_write_or(&drv_data->regs->ssel, chip->ssel);
	else
		gpio_set_value(chip->cs_gpio, 1);

	/* Move delay here for consistency */
	if (chip->cs_chg_udelay)
		udelay(chip->cs_chg_udelay);
}

/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
static inline void bfin_spi_cs_enable(struct bfin_spi_master *drv_data,
					struct bfin_spi_device *chip)
{
	if (chip->cs < MAX_CTRL_CS)
		bfin_write_or(&drv_data->regs->ssel, chip->ssel >> 8);
}

static inline void bfin_spi_cs_disable(struct bfin_spi_master *drv_data,
					struct bfin_spi_device *chip)
{
	if (chip->cs < MAX_CTRL_CS)
		bfin_write_and(&drv_data->regs->ssel, ~(chip->ssel >> 8));
}

/* stop controller and re-config current chip*/
static void bfin_spi_restore_state(struct bfin_spi_master *drv_data)
{
	struct bfin_spi_device *chip = drv_data->cur_chip;

	/* Clear status and disable clock */
	bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
	bfin_write(&drv_data->regs->rx_control, 0x0);
	bfin_write(&drv_data->regs->tx_control, 0x0);
	bfin_spi_disable(drv_data);

	SSYNC();

	/* Load the registers */
	bfin_write(&drv_data->regs->control, chip->control);
	bfin_write(&drv_data->regs->clock, chip->clock);

	bfin_spi_enable(drv_data);
	drv_data->tx_num = drv_data->rx_num = 0;
	/* we always choose tx transfer initiate */
	bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN);
	bfin_write(&drv_data->regs->tx_control,
			SPI_TXCTL_TEN | SPI_TXCTL_TTI);
	bfin_spi_cs_active(drv_data, chip);
}

/* discard invalid rx data and empty rfifo */
static inline void dummy_read(struct bfin_spi_master *drv_data)
{
	while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_RFE))
		bfin_read(&drv_data->regs->rfifo);
}

static void bfin_spi_u8_write(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->tx < drv_data->tx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u8_read(struct bfin_spi_master *drv_data)
{
	u32 tx_val = drv_data->cur_chip->tx_dummy_val;

	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, tx_val);
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u8_duplex(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
	}
}

static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
	.write  = bfin_spi_u8_write,
	.read   = bfin_spi_u8_read,
	.duplex = bfin_spi_u8_duplex,
};

static void bfin_spi_u16_write(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->tx < drv_data->tx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
		drv_data->tx += 2;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u16_read(struct bfin_spi_master *drv_data)
{
	u32 tx_val = drv_data->cur_chip->tx_dummy_val;

	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, tx_val);
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 2;
	}
}

static void bfin_spi_u16_duplex(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
		drv_data->tx += 2;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 2;
	}
}

static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
	.write  = bfin_spi_u16_write,
	.read   = bfin_spi_u16_read,
	.duplex = bfin_spi_u16_duplex,
};

static void bfin_spi_u32_write(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->tx < drv_data->tx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
		drv_data->tx += 4;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		bfin_read(&drv_data->regs->rfifo);
	}
}

static void bfin_spi_u32_read(struct bfin_spi_master *drv_data)
{
	u32 tx_val = drv_data->cur_chip->tx_dummy_val;

	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, tx_val);
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 4;
	}
}

static void bfin_spi_u32_duplex(struct bfin_spi_master *drv_data)
{
	dummy_read(drv_data);
	while (drv_data->rx < drv_data->rx_end) {
		bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
		drv_data->tx += 4;
		while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
			cpu_relax();
		*(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
		drv_data->rx += 4;
	}
}

static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u32 = {
	.write  = bfin_spi_u32_write,
	.read   = bfin_spi_u32_read,
	.duplex = bfin_spi_u32_duplex,
};


/* test if there is more transfer to be done */
static void bfin_spi_next_transfer(struct bfin_spi_master *drv)
{
	struct spi_message *msg = drv->cur_msg;
	struct spi_transfer *t = drv->cur_transfer;

	/* Move to next transfer */
	if (t->transfer_list.next != &msg->transfers) {
		drv->cur_transfer = list_entry(t->transfer_list.next,
			       struct spi_transfer, transfer_list);
		drv->state = RUNNING_STATE;
	} else {
		drv->state = DONE_STATE;
		drv->cur_transfer = NULL;
	}
}

static void bfin_spi_giveback(struct bfin_spi_master *drv_data)
{
	struct bfin_spi_device *chip = drv_data->cur_chip;

	bfin_spi_cs_deactive(drv_data, chip);
	spi_finalize_current_message(drv_data->master);
}

static int bfin_spi_setup_transfer(struct bfin_spi_master *drv)
{
	struct spi_transfer *t = drv->cur_transfer;
	u32 cr, cr_width;

	if (t->tx_buf) {
		drv->tx = (void *)t->tx_buf;
		drv->tx_end = drv->tx + t->len;
	} else {
		drv->tx = NULL;
	}

	if (t->rx_buf) {
		drv->rx = t->rx_buf;
		drv->rx_end = drv->rx + t->len;
	} else {
		drv->rx = NULL;
	}

	drv->transfer_len = t->len;

	/* bits per word setup */
	switch (t->bits_per_word) {
	case 8:
		cr_width = SPI_CTL_SIZE08;
		drv->ops = &bfin_bfin_spi_transfer_ops_u8;
		break;
	case 16:
		cr_width = SPI_CTL_SIZE16;
		drv->ops = &bfin_bfin_spi_transfer_ops_u16;
		break;
	case 32:
		cr_width = SPI_CTL_SIZE32;
		drv->ops = &bfin_bfin_spi_transfer_ops_u32;
		break;
	default:
		return -EINVAL;
	}
	cr = bfin_read(&drv->regs->control) & ~SPI_CTL_SIZE;
	cr |= cr_width;
	bfin_write(&drv->regs->control, cr);

	/* speed setup */
	bfin_write(&drv->regs->clock,
			hz_to_spi_clock(drv->sclk, t->speed_hz));
	return 0;
}

static int bfin_spi_dma_xfer(struct bfin_spi_master *drv_data)
{
	struct spi_transfer *t = drv_data->cur_transfer;
	struct spi_message *msg = drv_data->cur_msg;
	struct bfin_spi_device *chip = drv_data->cur_chip;
	u32 dma_config;
	unsigned long word_count, word_size;
	void *tx_buf, *rx_buf;

	switch (t->bits_per_word) {
	case 8:
		dma_config = WDSIZE_8 | PSIZE_8;
		word_count = drv_data->transfer_len;
		word_size = 1;
		break;
	case 16:
		dma_config = WDSIZE_16 | PSIZE_16;
		word_count = drv_data->transfer_len / 2;
		word_size = 2;
		break;
	default:
		dma_config = WDSIZE_32 | PSIZE_32;
		word_count = drv_data->transfer_len / 4;
		word_size = 4;
		break;
	}

	if (!drv_data->rx) {
		tx_buf = drv_data->tx;
		rx_buf = &drv_data->dummy_buffer;
		drv_data->tx_dma_size = drv_data->transfer_len;
		drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
		set_dma_x_modify(drv_data->tx_dma, word_size);
		set_dma_x_modify(drv_data->rx_dma, 0);
	} else if (!drv_data->tx) {
		drv_data->dummy_buffer = chip->tx_dummy_val;
		tx_buf = &drv_data->dummy_buffer;
		rx_buf = drv_data->rx;
		drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
		drv_data->rx_dma_size = drv_data->transfer_len;
		set_dma_x_modify(drv_data->tx_dma, 0);
		set_dma_x_modify(drv_data->rx_dma, word_size);
	} else {
		tx_buf = drv_data->tx;
		rx_buf = drv_data->rx;
		drv_data->tx_dma_size = drv_data->rx_dma_size
					= drv_data->transfer_len;
		set_dma_x_modify(drv_data->tx_dma, word_size);
		set_dma_x_modify(drv_data->rx_dma, word_size);
	}

	drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
				(void *)tx_buf,
				drv_data->tx_dma_size,
				DMA_TO_DEVICE);
	if (dma_mapping_error(&msg->spi->dev,
				drv_data->tx_dma_addr))
		return -ENOMEM;

	drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
				(void *)rx_buf,
				drv_data->rx_dma_size,
				DMA_FROM_DEVICE);
	if (dma_mapping_error(&msg->spi->dev,
				drv_data->rx_dma_addr)) {
		dma_unmap_single(&msg->spi->dev,
				drv_data->tx_dma_addr,
				drv_data->tx_dma_size,
				DMA_TO_DEVICE);
		return -ENOMEM;
	}

	dummy_read(drv_data);
	set_dma_x_count(drv_data->tx_dma, word_count);
	set_dma_x_count(drv_data->rx_dma, word_count);
	set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
	set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
	dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
	set_dma_config(drv_data->tx_dma, dma_config);
	set_dma_config(drv_data->rx_dma, dma_config | WNR);
	enable_dma(drv_data->tx_dma);
	enable_dma(drv_data->rx_dma);
	SSYNC();

	bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN | SPI_RXCTL_RDR_NE);
	SSYNC();
	bfin_write(&drv_data->regs->tx_control,
			SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF);

	return 0;
}

static int bfin_spi_pio_xfer(struct bfin_spi_master *drv_data)
{
	struct spi_message *msg = drv_data->cur_msg;

	if (!drv_data->rx) {
		/* write only half duplex */
		drv_data->ops->write(drv_data);
		if (drv_data->tx != drv_data->tx_end)
			return -EIO;
	} else if (!drv_data->tx) {
		/* read only half duplex */
		drv_data->ops->read(drv_data);
		if (drv_data->rx != drv_data->rx_end)
			return -EIO;
	} else {
		/* full duplex mode */
		drv_data->ops->duplex(drv_data);
		if (drv_data->tx != drv_data->tx_end)
			return -EIO;
	}

	if (!bfin_spi_flush(drv_data))
		return -EIO;
	msg->actual_length += drv_data->transfer_len;
	tasklet_schedule(&drv_data->pump_transfers);
	return 0;
}

static void bfin_spi_pump_transfers(unsigned long data)
{
	struct bfin_spi_master *drv_data = (struct bfin_spi_master *)data;
	struct spi_message *msg = NULL;
	struct spi_transfer *t = NULL;
	struct bfin_spi_device *chip = NULL;
	int ret;

	/* Get current state information */
	msg = drv_data->cur_msg;
	t = drv_data->cur_transfer;
	chip = drv_data->cur_chip;

	/* Handle for abort */
	if (drv_data->state == ERROR_STATE) {
		msg->status = -EIO;
		bfin_spi_giveback(drv_data);
		return;
	}

	if (drv_data->state == RUNNING_STATE) {
		if (t->delay_usecs)
			udelay(t->delay_usecs);
		if (t->cs_change)
			bfin_spi_cs_deactive(drv_data, chip);
		bfin_spi_next_transfer(drv_data);
		t = drv_data->cur_transfer;
	}
	/* Handle end of message */
	if (drv_data->state == DONE_STATE) {
		msg->status = 0;
		bfin_spi_giveback(drv_data);
		return;
	}

	if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
		/* Schedule next transfer tasklet */
		tasklet_schedule(&drv_data->pump_transfers);
		return;
	}

	ret = bfin_spi_setup_transfer(drv_data);
	if (ret) {
		msg->status = ret;
		bfin_spi_giveback(drv_data);
	}

	bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
	bfin_spi_cs_active(drv_data, chip);
	drv_data->state = RUNNING_STATE;

	if (chip->enable_dma)
		ret = bfin_spi_dma_xfer(drv_data);
	else
		ret = bfin_spi_pio_xfer(drv_data);
	if (ret) {
		msg->status = ret;
		bfin_spi_giveback(drv_data);
	}
}

static int bfin_spi_transfer_one_message(struct spi_master *master,
					struct spi_message *m)
{
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);

	drv_data->cur_msg = m;
	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
	bfin_spi_restore_state(drv_data);

	drv_data->state = START_STATE;
	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
					    struct spi_transfer, transfer_list);

	tasklet_schedule(&drv_data->pump_transfers);
	return 0;
}

#define MAX_SPI_SSEL	7

static const u16 ssel[][MAX_SPI_SSEL] = {
	{P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
	P_SPI0_SSEL4, P_SPI0_SSEL5,
	P_SPI0_SSEL6, P_SPI0_SSEL7},

	{P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
	P_SPI1_SSEL4, P_SPI1_SSEL5,
	P_SPI1_SSEL6, P_SPI1_SSEL7},

	{P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
	P_SPI2_SSEL4, P_SPI2_SSEL5,
	P_SPI2_SSEL6, P_SPI2_SSEL7},
};

static int bfin_spi_setup(struct spi_device *spi)
{
	struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);
	struct bfin_spi_device *chip = spi_get_ctldata(spi);
	u32 bfin_ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
	int ret = -EINVAL;

	if (!chip) {
		struct bfin_spi3_chip *chip_info = spi->controller_data;

		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
		if (!chip) {
			dev_err(&spi->dev, "can not allocate chip data\n");
			return -ENOMEM;
		}
		if (chip_info) {
			if (chip_info->control & ~bfin_ctl_reg) {
				dev_err(&spi->dev,
					"do not set bits that the SPI framework manages\n");
				goto error;
			}
			chip->control = chip_info->control;
			chip->cs_chg_udelay = chip_info->cs_chg_udelay;
			chip->tx_dummy_val = chip_info->tx_dummy_val;
			chip->enable_dma = chip_info->enable_dma;
		}
		chip->cs = spi->chip_select;
		if (chip->cs < MAX_CTRL_CS) {
			chip->ssel = (1 << chip->cs) << 8;
			ret = peripheral_request(ssel[spi->master->bus_num]
					[chip->cs-1], dev_name(&spi->dev));
			if (ret) {
				dev_err(&spi->dev, "peripheral_request() error\n");
				goto error;
			}
		} else {
			chip->cs_gpio = chip->cs - MAX_CTRL_CS;
			ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
						dev_name(&spi->dev));
			if (ret) {
				dev_err(&spi->dev, "gpio_request_one() error\n");
				goto error;
			}
		}
		spi_set_ctldata(spi, chip);
	}

	/* force a default base state */
	chip->control &= bfin_ctl_reg;

	if (spi->mode & SPI_CPOL)
		chip->control |= SPI_CTL_CPOL;
	if (spi->mode & SPI_CPHA)
		chip->control |= SPI_CTL_CPHA;
	if (spi->mode & SPI_LSB_FIRST)
		chip->control |= SPI_CTL_LSBF;
	chip->control |= SPI_CTL_MSTR;
	/* we choose software to controll cs */
	chip->control &= ~SPI_CTL_ASSEL;

	chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);

	bfin_spi_cs_enable(drv_data, chip);
	bfin_spi_cs_deactive(drv_data, chip);

	return 0;
error:
	if (chip) {
		kfree(chip);
		spi_set_ctldata(spi, NULL);
	}

	return ret;
}

static void bfin_spi_cleanup(struct spi_device *spi)
{
	struct bfin_spi_device *chip = spi_get_ctldata(spi);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);

	if (!chip)
		return;

	if (chip->cs < MAX_CTRL_CS) {
		peripheral_free(ssel[spi->master->bus_num]
					[chip->cs-1]);
		bfin_spi_cs_disable(drv_data, chip);
	} else {
		gpio_free(chip->cs_gpio);
	}

	kfree(chip);
	spi_set_ctldata(spi, NULL);
}

static irqreturn_t bfin_spi_tx_dma_isr(int irq, void *dev_id)
{
	struct bfin_spi_master *drv_data = dev_id;
	u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);

	clear_dma_irqstat(drv_data->tx_dma);
	if (dma_stat & DMA_DONE) {
		drv_data->tx_num++;
	} else {
		dev_err(&drv_data->master->dev,
				"spi tx dma error: %d\n", dma_stat);
		if (drv_data->tx)
			drv_data->state = ERROR_STATE;
	}
	bfin_write_and(&drv_data->regs->tx_control, ~SPI_TXCTL_TDR_NF);
	return IRQ_HANDLED;
}

static irqreturn_t bfin_spi_rx_dma_isr(int irq, void *dev_id)
{
	struct bfin_spi_master *drv_data = dev_id;
	struct spi_message *msg = drv_data->cur_msg;
	u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);

	clear_dma_irqstat(drv_data->rx_dma);
	if (dma_stat & DMA_DONE) {
		drv_data->rx_num++;
		/* we may fail on tx dma */
		if (drv_data->state != ERROR_STATE)
			msg->actual_length += drv_data->transfer_len;
	} else {
		drv_data->state = ERROR_STATE;
		dev_err(&drv_data->master->dev,
				"spi rx dma error: %d\n", dma_stat);
	}
	bfin_write(&drv_data->regs->tx_control, 0);
	bfin_write(&drv_data->regs->rx_control, 0);
	if (drv_data->rx_num != drv_data->tx_num)
		dev_dbg(&drv_data->master->dev,
				"dma interrupt missing: tx=%d,rx=%d\n",
				drv_data->tx_num, drv_data->rx_num);
	tasklet_schedule(&drv_data->pump_transfers);
	return IRQ_HANDLED;
}

static int bfin_spi_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct bfin_spi3_master *info = dev_get_platdata(dev);
	struct spi_master *master;
	struct bfin_spi_master *drv_data;
	struct resource *mem, *res;
	unsigned int tx_dma, rx_dma;
	unsigned long sclk;
	int ret;

	if (!info) {
		dev_err(dev, "platform data missing!\n");
		return -ENODEV;
	}

	sclk = get_sclk1();
	if (!sclk) {
		dev_err(dev, "can not get sclk1\n");
		return -ENXIO;
	}

	res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
	if (!res) {
		dev_err(dev, "can not get tx dma resource\n");
		return -ENXIO;
	}
	tx_dma = res->start;

	res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
	if (!res) {
		dev_err(dev, "can not get rx dma resource\n");
		return -ENXIO;
	}
	rx_dma = res->start;

	/* allocate master with space for drv_data */
	master = spi_alloc_master(dev, sizeof(*drv_data));
	if (!master) {
		dev_err(dev, "can not alloc spi_master\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);

	/* the mode bits supported by this driver */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;

	master->bus_num = pdev->id;
	master->num_chipselect = info->num_chipselect;
	master->cleanup = bfin_spi_cleanup;
	master->setup = bfin_spi_setup;
	master->transfer_one_message = bfin_spi_transfer_one_message;
	master->bits_per_word_mask = BIT(32 - 1) | BIT(16 - 1) | BIT(8 - 1);

	drv_data = spi_master_get_devdata(master);
	drv_data->master = master;
	drv_data->tx_dma = tx_dma;
	drv_data->rx_dma = rx_dma;
	drv_data->pin_req = info->pin_req;
	drv_data->sclk = sclk;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	drv_data->regs = devm_ioremap_resource(dev, mem);
	if (IS_ERR(drv_data->regs)) {
		ret = PTR_ERR(drv_data->regs);
		goto err_put_master;
	}

	/* request tx and rx dma */
	ret = request_dma(tx_dma, "SPI_TX_DMA");
	if (ret) {
		dev_err(dev, "can not request SPI TX DMA channel\n");
		goto err_put_master;
	}
	set_dma_callback(tx_dma, bfin_spi_tx_dma_isr, drv_data);

	ret = request_dma(rx_dma, "SPI_RX_DMA");
	if (ret) {
		dev_err(dev, "can not request SPI RX DMA channel\n");
		goto err_free_tx_dma;
	}
	set_dma_callback(drv_data->rx_dma, bfin_spi_rx_dma_isr, drv_data);

	/* request CLK, MOSI and MISO */
	ret = peripheral_request_list(drv_data->pin_req, "bfin-spi3");
	if (ret < 0) {
		dev_err(dev, "can not request spi pins\n");
		goto err_free_rx_dma;
	}

	bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
	bfin_write(&drv_data->regs->ssel, 0x0000FE00);
	bfin_write(&drv_data->regs->delay, 0x0);

	tasklet_init(&drv_data->pump_transfers,
			bfin_spi_pump_transfers, (unsigned long)drv_data);
	/* register with the SPI framework */
	ret = devm_spi_register_master(dev, master);
	if (ret) {
		dev_err(dev, "can not  register spi master\n");
		goto err_free_peripheral;
	}

	return ret;

err_free_peripheral:
	peripheral_free_list(drv_data->pin_req);
err_free_rx_dma:
	free_dma(rx_dma);
err_free_tx_dma:
	free_dma(tx_dma);
err_put_master:
	spi_master_put(master);

	return ret;
}

static int bfin_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);

	bfin_spi_disable(drv_data);

	peripheral_free_list(drv_data->pin_req);
	free_dma(drv_data->rx_dma);
	free_dma(drv_data->tx_dma);

	return 0;
}

#ifdef CONFIG_PM
static int bfin_spi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);

	spi_master_suspend(master);

	drv_data->control = bfin_read(&drv_data->regs->control);
	drv_data->ssel = bfin_read(&drv_data->regs->ssel);

	bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
	bfin_write(&drv_data->regs->ssel, 0x0000FE00);
	dma_disable_irq(drv_data->rx_dma);
	dma_disable_irq(drv_data->tx_dma);

	return 0;
}

static int bfin_spi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
	int ret = 0;

	/* bootrom may modify spi and dma status when resume in spi boot mode */
	disable_dma(drv_data->rx_dma);

	dma_enable_irq(drv_data->rx_dma);
	dma_enable_irq(drv_data->tx_dma);
	bfin_write(&drv_data->regs->control, drv_data->control);
	bfin_write(&drv_data->regs->ssel, drv_data->ssel);

	ret = spi_master_resume(master);
	if (ret) {
		free_dma(drv_data->rx_dma);
		free_dma(drv_data->tx_dma);
	}

	return ret;
}
#endif
static const struct dev_pm_ops bfin_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(bfin_spi_suspend, bfin_spi_resume)
};

MODULE_ALIAS("platform:bfin-spi3");
static struct platform_driver bfin_spi_driver = {
	.driver	= {
		.name	= "bfin-spi3",
		.owner	= THIS_MODULE,
		.pm     = &bfin_spi_pm_ops,
	},
	.remove		= bfin_spi_remove,
};

module_platform_driver_probe(bfin_spi_driver, bfin_spi_probe);

MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
MODULE_LICENSE("GPL v2");