Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

 * NET		Generic infrastructure for Network protocols.
 *		Definitions for request_sock 
 * Authors:	Arnaldo Carvalho de Melo <>
 * 		From code originally in include/net/tcp.h
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.

#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/bug.h>

#include <net/sock.h>

struct request_sock;
struct sk_buff;
struct dst_entry;
struct proto;

struct request_sock_ops {
	int		family;
	int		obj_size;
	struct kmem_cache	*slab;
	char		*slab_name;
	int		(*rtx_syn_ack)(struct sock *sk,
				       struct request_sock *req);
	void		(*send_ack)(struct sock *sk, struct sk_buff *skb,
				    struct request_sock *req);
	void		(*send_reset)(struct sock *sk,
				      struct sk_buff *skb);
	void		(*destructor)(struct request_sock *req);
	void		(*syn_ack_timeout)(struct sock *sk,
					   struct request_sock *req);

extern int inet_rtx_syn_ack(struct sock *parent, struct request_sock *req);

/* struct request_sock - mini sock to represent a connection request
struct request_sock {
	struct request_sock		*dl_next;
	u16				mss;
	u8				num_retrans; /* number of retransmits */
	u8				cookie_ts:1; /* syncookie: encode tcpopts in timestamp */
	u8				num_timeout:7; /* number of timeouts */
	/* The following two fields can be easily recomputed I think -AK */
	u32				window_clamp; /* window clamp at creation time */
	u32				rcv_wnd;	  /* rcv_wnd offered first time */
	u32				ts_recent;
	unsigned long			expires;
	const struct request_sock_ops	*rsk_ops;
	struct sock			*sk;
	u32				secid;
	u32				peer_secid;

static inline struct request_sock *reqsk_alloc(const struct request_sock_ops *ops)
	struct request_sock *req = kmem_cache_alloc(ops->slab, GFP_ATOMIC);

	if (req != NULL)
		req->rsk_ops = ops;

	return req;

static inline void __reqsk_free(struct request_sock *req)
	kmem_cache_free(req->rsk_ops->slab, req);

static inline void reqsk_free(struct request_sock *req)

extern int sysctl_max_syn_backlog;

/** struct listen_sock - listen state
 * @max_qlen_log - log_2 of maximal queued SYNs/REQUESTs
struct listen_sock {
	u8			max_qlen_log;
	u8			synflood_warned;
	/* 2 bytes hole, try to use */
	int			qlen;
	int			qlen_young;
	int			clock_hand;
	u32			hash_rnd;
	u32			nr_table_entries;
	struct request_sock	*syn_table[0];

 * For a TCP Fast Open listener -
 *	lock - protects the access to all the reqsk, which is co-owned by
 *		the listener and the child socket.
 *	qlen - pending TFO requests (still in TCP_SYN_RECV).
 *	max_qlen - max TFO reqs allowed before TFO is disabled.
 *	XXX (TFO) - ideally these fields can be made as part of "listen_sock"
 *	structure above. But there is some implementation difficulty due to
 *	listen_sock being part of request_sock_queue hence will be freed when
 *	a listener is stopped. But TFO related fields may continue to be
 *	accessed even after a listener is closed, until its sk_refcnt drops
 *	to 0 implying no more outstanding TFO reqs. One solution is to keep
 *	listen_opt around until	sk_refcnt drops to 0. But there is some other
 *	complexity that needs to be resolved. E.g., a listener can be disabled
 *	temporarily through shutdown()->tcp_disconnect(), and re-enabled later.
struct fastopen_queue {
	struct request_sock	*rskq_rst_head; /* Keep track of past TFO */
	struct request_sock	*rskq_rst_tail; /* requests that caused RST.
						 * This is part of the defense
						 * against spoofing attack.
	spinlock_t	lock;
	int		qlen;		/* # of pending (TCP_SYN_RECV) reqs */
	int		max_qlen;	/* != 0 iff TFO is currently enabled */

/** struct request_sock_queue - queue of request_socks
 * @rskq_accept_head - FIFO head of established children
 * @rskq_accept_tail - FIFO tail of established children
 * @rskq_defer_accept - User waits for some data after accept()
 * @syn_wait_lock - serializer
 * %syn_wait_lock is necessary only to avoid proc interface having to grab the main
 * lock sock while browsing the listening hash (otherwise it's deadlock prone).
 * This lock is acquired in read mode only from listening_get_next() seq_file
 * op and it's acquired in write mode _only_ from code that is actively
 * changing rskq_accept_head. All readers that are holding the master sock lock
 * don't need to grab this lock in read mode too as rskq_accept_head. writes
 * are always protected from the main sock lock.
struct request_sock_queue {
	struct request_sock	*rskq_accept_head;
	struct request_sock	*rskq_accept_tail;
	rwlock_t		syn_wait_lock;
	u8			rskq_defer_accept;
	/* 3 bytes hole, try to pack */
	struct listen_sock	*listen_opt;
	struct fastopen_queue	*fastopenq; /* This is non-NULL iff TFO has been
					     * enabled on this listener. Check
					     * max_qlen != 0 in fastopen_queue
					     * to determine if TFO is enabled
					     * right at this moment.

extern int reqsk_queue_alloc(struct request_sock_queue *queue,
			     unsigned int nr_table_entries);

extern void __reqsk_queue_destroy(struct request_sock_queue *queue);
extern void reqsk_queue_destroy(struct request_sock_queue *queue);
extern void reqsk_fastopen_remove(struct sock *sk,
				  struct request_sock *req, bool reset);

static inline struct request_sock *
	reqsk_queue_yank_acceptq(struct request_sock_queue *queue)
	struct request_sock *req = queue->rskq_accept_head;

	queue->rskq_accept_head = NULL;
	return req;

static inline int reqsk_queue_empty(struct request_sock_queue *queue)
	return queue->rskq_accept_head == NULL;

static inline void reqsk_queue_unlink(struct request_sock_queue *queue,
				      struct request_sock *req,
				      struct request_sock **prev_req)
	*prev_req = req->dl_next;

static inline void reqsk_queue_add(struct request_sock_queue *queue,
				   struct request_sock *req,
				   struct sock *parent,
				   struct sock *child)
	req->sk = child;

	if (queue->rskq_accept_head == NULL)
		queue->rskq_accept_head = req;
		queue->rskq_accept_tail->dl_next = req;

	queue->rskq_accept_tail = req;
	req->dl_next = NULL;

static inline struct request_sock *reqsk_queue_remove(struct request_sock_queue *queue)
	struct request_sock *req = queue->rskq_accept_head;

	WARN_ON(req == NULL);

	queue->rskq_accept_head = req->dl_next;
	if (queue->rskq_accept_head == NULL)
		queue->rskq_accept_tail = NULL;

	return req;

static inline int reqsk_queue_removed(struct request_sock_queue *queue,
				      struct request_sock *req)
	struct listen_sock *lopt = queue->listen_opt;

	if (req->num_timeout == 0)

	return --lopt->qlen;

static inline int reqsk_queue_added(struct request_sock_queue *queue)
	struct listen_sock *lopt = queue->listen_opt;
	const int prev_qlen = lopt->qlen;

	return prev_qlen;

static inline int reqsk_queue_len(const struct request_sock_queue *queue)
	return queue->listen_opt != NULL ? queue->listen_opt->qlen : 0;

static inline int reqsk_queue_len_young(const struct request_sock_queue *queue)
	return queue->listen_opt->qlen_young;

static inline int reqsk_queue_is_full(const struct request_sock_queue *queue)
	return queue->listen_opt->qlen >> queue->listen_opt->max_qlen_log;

static inline void reqsk_queue_hash_req(struct request_sock_queue *queue,
					u32 hash, struct request_sock *req,
					unsigned long timeout)
	struct listen_sock *lopt = queue->listen_opt;

	req->expires = jiffies + timeout;
	req->num_retrans = 0;
	req->num_timeout = 0;
	req->sk = NULL;
	req->dl_next = lopt->syn_table[hash];

	lopt->syn_table[hash] = req;

#endif /* _REQUEST_SOCK_H */