Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
 * in the file called COPYING.
 *
 * Contact Information:
 *  Intel Linux Wireless <ilw@linux.intel.com>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
 * Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *****************************************************************************/
#include "iwl-trans.h"
#include "mvm.h"
#include "iwl-eeprom-parse.h"
#include "iwl-eeprom-read.h"
#include "iwl-nvm-parse.h"

/* list of NVM sections we are allowed/need to read */
static const int nvm_to_read[] = {
	NVM_SECTION_TYPE_HW,
	NVM_SECTION_TYPE_SW,
	NVM_SECTION_TYPE_CALIBRATION,
	NVM_SECTION_TYPE_PRODUCTION,
};

/* Default NVM size to read */
#define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024);

static inline void iwl_nvm_fill_read(struct iwl_nvm_access_cmd *cmd,
				     u16 offset, u16 length, u16 section)
{
	cmd->offset = cpu_to_le16(offset);
	cmd->length = cpu_to_le16(length);
	cmd->type = cpu_to_le16(section);
}

static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
			      u16 offset, u16 length, u8 *data)
{
	struct iwl_nvm_access_cmd nvm_access_cmd = {};
	struct iwl_nvm_access_resp *nvm_resp;
	struct iwl_rx_packet *pkt;
	struct iwl_host_cmd cmd = {
		.id = NVM_ACCESS_CMD,
		.flags = CMD_SYNC | CMD_WANT_SKB,
		.data = { &nvm_access_cmd, },
	};
	int ret, bytes_read, offset_read;
	u8 *resp_data;

	iwl_nvm_fill_read(&nvm_access_cmd, offset, length, section);
	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);

	ret = iwl_mvm_send_cmd(mvm, &cmd);
	if (ret)
		return ret;

	pkt = cmd.resp_pkt;
	if (pkt->hdr.flags & IWL_CMD_FAILED_MSK) {
		IWL_ERR(mvm, "Bad return from NVM_ACCES_COMMAND (0x%08X)\n",
			pkt->hdr.flags);
		ret = -EIO;
		goto exit;
	}

	/* Extract NVM response */
	nvm_resp = (void *)pkt->data;
	ret = le16_to_cpu(nvm_resp->status);
	bytes_read = le16_to_cpu(nvm_resp->length);
	offset_read = le16_to_cpu(nvm_resp->offset);
	resp_data = nvm_resp->data;
	if (ret) {
		IWL_ERR(mvm,
			"NVM access command failed with status %d (device: %s)\n",
			ret, mvm->cfg->name);
		ret = -EINVAL;
		goto exit;
	}

	if (offset_read != offset) {
		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
			offset_read);
		ret = -EINVAL;
		goto exit;
	}

	/* Write data to NVM */
	memcpy(data + offset, resp_data, bytes_read);
	ret = bytes_read;

exit:
	iwl_free_resp(&cmd);
	return ret;
}

/*
 * Reads an NVM section completely.
 * NICs prior to 7000 family doesn't have a real NVM, but just read
 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
 * by uCode, we need to manually check in this case that we don't
 * overflow and try to read more than the EEPROM size.
 * For 7000 family NICs, we supply the maximal size we can read, and
 * the uCode fills the response with as much data as we can,
 * without overflowing, so no check is needed.
 */
static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
				u8 *data)
{
	u16 length, offset = 0;
	int ret;

	/* Set nvm section read length */
	length = IWL_NVM_DEFAULT_CHUNK_SIZE;

	ret = length;

	/* Read the NVM until exhausted (reading less than requested) */
	while (ret == length) {
		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
		if (ret < 0) {
			IWL_ERR(mvm,
				"Cannot read NVM from section %d offset %d, length %d\n",
				section, offset, length);
			return ret;
		}
		offset += ret;
	}

	IWL_INFO(mvm, "NVM section %d read completed\n", section);
	return offset;
}

static struct iwl_nvm_data *
iwl_parse_nvm_sections(struct iwl_mvm *mvm)
{
	struct iwl_nvm_section *sections = mvm->nvm_sections;
	const __le16 *hw, *sw, *calib;

	/* Checking for required sections */
	if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
	    !mvm->nvm_sections[NVM_SECTION_TYPE_HW].data) {
		IWL_ERR(mvm, "Can't parse empty NVM sections\n");
		return NULL;
	}

	if (WARN_ON(!mvm->cfg))
		return NULL;

	hw = (const __le16 *)sections[NVM_SECTION_TYPE_HW].data;
	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
	return iwl_parse_nvm_data(mvm->trans->dev, mvm->cfg, hw, sw, calib);
}

int iwl_nvm_init(struct iwl_mvm *mvm)
{
	int ret, i, section;
	u8 *nvm_buffer, *temp;

	/* TODO: find correct NVM max size for a section */
	nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
			     GFP_KERNEL);
	if (!nvm_buffer)
		return -ENOMEM;
	for (i = 0; i < ARRAY_SIZE(nvm_to_read); i++) {
		section = nvm_to_read[i];
		/* we override the constness for initial read */
		ret = iwl_nvm_read_section(mvm, section, nvm_buffer);
		if (ret < 0)
			break;
		temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}
		mvm->nvm_sections[section].data = temp;
		mvm->nvm_sections[section].length = ret;
	}
	kfree(nvm_buffer);
	if (ret < 0)
		return ret;

	ret = 0;
	mvm->nvm_data = iwl_parse_nvm_sections(mvm);

	return ret;
}