Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
 *  Meta version derived from arch/powerpc/lib/dma-noncoherent.c
 *    Copyright (C) 2008 Imagination Technologies Ltd.
 *
 *  PowerPC version derived from arch/arm/mm/consistent.c
 *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
 *
 *  Copyright (C) 2000 Russell King
 *
 * Consistent memory allocators.  Used for DMA devices that want to
 * share uncached memory with the processor core.  The function return
 * is the virtual address and 'dma_handle' is the physical address.
 * Mostly stolen from the ARM port, with some changes for PowerPC.
 *						-- Dan
 *
 * Reorganized to get rid of the arch-specific consistent_* functions
 * and provide non-coherent implementations for the DMA API. -Matt
 *
 * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
 * implementation. This is pulled straight from ARM and barely
 * modified. -Matt
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>

#include <asm/tlbflush.h>
#include <asm/mmu.h>

#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_START) \
					>> PAGE_SHIFT)

static u64 get_coherent_dma_mask(struct device *dev)
{
	u64 mask = ~0ULL;

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}
	}

	return mask;
}
/*
 * This is the page table (2MB) covering uncached, DMA consistent allocations
 */
static pte_t *consistent_pte;
static DEFINE_SPINLOCK(consistent_lock);

/*
 * VM region handling support.
 *
 * This should become something generic, handling VM region allocations for
 * vmalloc and similar (ioremap, module space, etc).
 *
 * I envisage vmalloc()'s supporting vm_struct becoming:
 *
 *  struct vm_struct {
 *    struct metag_vm_region	region;
 *    unsigned long	flags;
 *    struct page	**pages;
 *    unsigned int	nr_pages;
 *    unsigned long	phys_addr;
 *  };
 *
 * get_vm_area() would then call metag_vm_region_alloc with an appropriate
 * struct metag_vm_region head (eg):
 *
 *  struct metag_vm_region vmalloc_head = {
 *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
 *	.vm_start	= VMALLOC_START,
 *	.vm_end		= VMALLOC_END,
 *  };
 *
 * However, vmalloc_head.vm_start is variable (typically, it is dependent on
 * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
 * would have to initialise this each time prior to calling
 * metag_vm_region_alloc().
 */
struct metag_vm_region {
	struct list_head vm_list;
	unsigned long vm_start;
	unsigned long vm_end;
	struct page		*vm_pages;
	int			vm_active;
};

static struct metag_vm_region consistent_head = {
	.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_start = CONSISTENT_START,
	.vm_end = CONSISTENT_END,
};

static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
						     *head, size_t size,
						     gfp_t gfp)
{
	unsigned long addr = head->vm_start, end = head->vm_end - size;
	unsigned long flags;
	struct metag_vm_region *c, *new;

	new = kmalloc(sizeof(struct metag_vm_region), gfp);
	if (!new)
		goto out;

	spin_lock_irqsave(&consistent_lock, flags);

	list_for_each_entry(c, &head->vm_list, vm_list) {
		if ((addr + size) < addr)
			goto nospc;
		if ((addr + size) <= c->vm_start)
			goto found;
		addr = c->vm_end;
		if (addr > end)
			goto nospc;
	}

found:
	/*
	 * Insert this entry _before_ the one we found.
	 */
	list_add_tail(&new->vm_list, &c->vm_list);
	new->vm_start = addr;
	new->vm_end = addr + size;
	new->vm_active = 1;

	spin_unlock_irqrestore(&consistent_lock, flags);
	return new;

nospc:
	spin_unlock_irqrestore(&consistent_lock, flags);
	kfree(new);
out:
	return NULL;
}

static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
						    *head, unsigned long addr)
{
	struct metag_vm_region *c;

	list_for_each_entry(c, &head->vm_list, vm_list) {
		if (c->vm_active && c->vm_start == addr)
			goto out;
	}
	c = NULL;
out:
	return c;
}

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *dma_alloc_coherent(struct device *dev, size_t size,
			 dma_addr_t *handle, gfp_t gfp)
{
	struct page *page;
	struct metag_vm_region *c;
	unsigned long order;
	u64 mask = get_coherent_dma_mask(dev);
	u64 limit;

	if (!consistent_pte) {
		pr_err("%s: not initialised\n", __func__);
		dump_stack();
		return NULL;
	}

	if (!mask)
		goto no_page;
	size = PAGE_ALIGN(size);
	limit = (mask + 1) & ~mask;
	if ((limit && size >= limit)
	    || size >= (CONSISTENT_END - CONSISTENT_START)) {
		pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
			size, mask);
		return NULL;
	}

	order = get_order(size);

	if (mask != 0xffffffff)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		goto no_page;

	/*
	 * Invalidate any data that might be lurking in the
	 * kernel direct-mapped region for device DMA.
	 */
	{
		void *kaddr = page_address(page);
		memset(kaddr, 0, size);
		flush_dcache_region(kaddr, size);
	}

	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
	c = metag_vm_region_alloc(&consistent_head, size,
				  gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
	if (c) {
		unsigned long vaddr = c->vm_start;
		pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
		struct page *end = page + (1 << order);

		c->vm_pages = page;
		split_page(page, order);

		/*
		 * Set the "dma handle"
		 */
		*handle = page_to_bus(page);

		do {
			BUG_ON(!pte_none(*pte));

			SetPageReserved(page);
			set_pte_at(&init_mm, vaddr,
				   pte, mk_pte(page,
					       pgprot_writecombine
					       (PAGE_KERNEL)));
			page++;
			pte++;
			vaddr += PAGE_SIZE;
		} while (size -= PAGE_SIZE);

		/*
		 * Free the otherwise unused pages.
		 */
		while (page < end) {
			__free_page(page);
			page++;
		}

		return (void *)c->vm_start;
	}

	if (page)
		__free_pages(page, order);
no_page:
	return NULL;
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * free a page as defined by the above mapping.
 */
void dma_free_coherent(struct device *dev, size_t size,
		       void *vaddr, dma_addr_t dma_handle)
{
	struct metag_vm_region *c;
	unsigned long flags, addr;
	pte_t *ptep;

	size = PAGE_ALIGN(size);

	spin_lock_irqsave(&consistent_lock, flags);

	c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
	if (!c)
		goto no_area;

	c->vm_active = 0;
	if ((c->vm_end - c->vm_start) != size) {
		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
		unsigned long pfn;

		ptep++;
		addr += PAGE_SIZE;

		if (!pte_none(pte) && pte_present(pte)) {
			pfn = pte_pfn(pte);

			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);
				ClearPageReserved(page);

				__free_page(page);
				continue;
			}
		}

		pr_crit("%s: bad page in kernel page table\n",
			__func__);
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	list_del(&c->vm_list);

	spin_unlock_irqrestore(&consistent_lock, flags);

	kfree(c);
	return;

no_area:
	spin_unlock_irqrestore(&consistent_lock, flags);
	pr_err("%s: trying to free invalid coherent area: %p\n",
	       __func__, vaddr);
	dump_stack();
}
EXPORT_SYMBOL(dma_free_coherent);


static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	int ret = -ENXIO;

	unsigned long flags, user_size, kern_size;
	struct metag_vm_region *c;

	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

	spin_lock_irqsave(&consistent_lock, flags);
	c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
	spin_unlock_irqrestore(&consistent_lock, flags);

	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}


	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);




/*
 * Initialise the consistent memory allocation.
 */
static int __init dma_alloc_init(void)
{
	pgd_t *pgd, *pgd_k;
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
	pte_t *pte;
	int ret = 0;

	do {
		int offset = pgd_index(CONSISTENT_START);
		pgd = pgd_offset(&init_mm, CONSISTENT_START);
		pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
		pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
		if (!pmd) {
			pr_err("%s: no pmd tables\n", __func__);
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, CONSISTENT_START);
		if (!pte) {
			pr_err("%s: no pte tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		pgd_k = ((pgd_t *) mmu_get_base()) + offset;
		pud_k = pud_offset(pgd_k, CONSISTENT_START);
		pmd_k = pmd_offset(pud_k, CONSISTENT_START);
		set_pmd(pmd_k, *pmd);

		consistent_pte = pte;
	} while (0);

	return ret;
}
early_initcall(dma_alloc_init);

/*
 * make an area consistent to devices.
 */
void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
{
	/*
	 * Ensure any writes get through the write combiner. This is necessary
	 * even with DMA_FROM_DEVICE, or the write may dirty the cache after
	 * we've invalidated it and get written back during the DMA.
	 */

	barrier();

	switch (dma_direction) {
	case DMA_BIDIRECTIONAL:
		/*
		 * Writeback to ensure the device can see our latest changes and
		 * so that we have no dirty lines, and invalidate the cache
		 * lines too in preparation for receiving the buffer back
		 * (dma_sync_for_cpu) later.
		 */
		flush_dcache_region(vaddr, size);
		break;
	case DMA_TO_DEVICE:
		/*
		 * Writeback to ensure the device can see our latest changes.
		 * There's no need to invalidate as the device shouldn't write
		 * to the buffer.
		 */
		writeback_dcache_region(vaddr, size);
		break;
	case DMA_FROM_DEVICE:
		/*
		 * Invalidate to ensure we have no dirty lines that could get
		 * written back during the DMA. It's also safe to flush
		 * (writeback) here if necessary.
		 */
		invalidate_dcache_region(vaddr, size);
		break;
	case DMA_NONE:
		BUG();
	}

	wmb();
}
EXPORT_SYMBOL(dma_sync_for_device);

/*
 * make an area consistent to the core.
 */
void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
{
	/*
	 * Hardware L2 cache prefetch doesn't occur across 4K physical
	 * boundaries, however according to Documentation/DMA-API-HOWTO.txt
	 * kmalloc'd memory is DMA'able, so accesses in nearby memory could
	 * trigger a cache fill in the DMA buffer.
	 *
	 * This should never cause dirty lines, so a flush or invalidate should
	 * be safe to allow us to see data from the device.
	 */
	if (_meta_l2c_pf_is_enabled()) {
		switch (dma_direction) {
		case DMA_BIDIRECTIONAL:
		case DMA_FROM_DEVICE:
			invalidate_dcache_region(vaddr, size);
			break;
		case DMA_TO_DEVICE:
			/* The device shouldn't have written to the buffer */
			break;
		case DMA_NONE:
			BUG();
		}
	}

	rmb();
}
EXPORT_SYMBOL(dma_sync_for_cpu);