Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
/*
 *  linux/fs/exec.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 * #!-checking implemented by tytso.
 */
/*
 * Demand-loading implemented 01.12.91 - no need to read anything but
 * the header into memory. The inode of the executable is put into
 * "current->executable", and page faults do the actual loading. Clean.
 *
 * Once more I can proudly say that linux stood up to being changed: it
 * was less than 2 hours work to get demand-loading completely implemented.
 *
 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
 * current->executable is only used by the procfs.  This allows a dispatch
 * table to check for several different types  of binary formats.  We keep
 * trying until we recognize the file or we run out of supported binary
 * formats. 
 */

#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <linux/oom.h>
#include <linux/compat.h>

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include "internal.h"

int core_uses_pid;
char core_pattern[CORENAME_MAX_SIZE] = "core";
unsigned int core_pipe_limit;
int suid_dumpable = 0;

struct core_name {
	char *corename;
	int used, size;
};
static atomic_t call_count = ATOMIC_INIT(1);

/* The maximal length of core_pattern is also specified in sysctl.c */

static LIST_HEAD(formats);
static DEFINE_RWLOCK(binfmt_lock);

int __register_binfmt(struct linux_binfmt * fmt, int insert)
{
	if (!fmt)
		return -EINVAL;
	write_lock(&binfmt_lock);
	insert ? list_add(&fmt->lh, &formats) :
		 list_add_tail(&fmt->lh, &formats);
	write_unlock(&binfmt_lock);
	return 0;	
}

EXPORT_SYMBOL(__register_binfmt);

void unregister_binfmt(struct linux_binfmt * fmt)
{
	write_lock(&binfmt_lock);
	list_del(&fmt->lh);
	write_unlock(&binfmt_lock);
}

EXPORT_SYMBOL(unregister_binfmt);

static inline void put_binfmt(struct linux_binfmt * fmt)
{
	module_put(fmt->module);
}

/*
 * Note that a shared library must be both readable and executable due to
 * security reasons.
 *
 * Also note that we take the address to load from from the file itself.
 */
SYSCALL_DEFINE1(uselib, const char __user *, library)
{
	struct file *file;
	char *tmp = getname(library);
	int error = PTR_ERR(tmp);
	static const struct open_flags uselib_flags = {
		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
		.intent = LOOKUP_OPEN
	};

	if (IS_ERR(tmp))
		goto out;

	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
	putname(tmp);
	error = PTR_ERR(file);
	if (IS_ERR(file))
		goto out;

	error = -EINVAL;
	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
		goto exit;

	error = -EACCES;
	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
		goto exit;

	fsnotify_open(file);

	error = -ENOEXEC;
	if(file->f_op) {
		struct linux_binfmt * fmt;

		read_lock(&binfmt_lock);
		list_for_each_entry(fmt, &formats, lh) {
			if (!fmt->load_shlib)
				continue;
			if (!try_module_get(fmt->module))
				continue;
			read_unlock(&binfmt_lock);
			error = fmt->load_shlib(file);
			read_lock(&binfmt_lock);
			put_binfmt(fmt);
			if (error != -ENOEXEC)
				break;
		}
		read_unlock(&binfmt_lock);
	}
exit:
	fput(file);
out:
  	return error;
}

#ifdef CONFIG_MMU
/*
 * The nascent bprm->mm is not visible until exec_mmap() but it can
 * use a lot of memory, account these pages in current->mm temporary
 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 * change the counter back via acct_arg_size(0).
 */
static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
{
	struct mm_struct *mm = current->mm;
	long diff = (long)(pages - bprm->vma_pages);

	if (!mm || !diff)
		return;

	bprm->vma_pages = pages;
	add_mm_counter(mm, MM_ANONPAGES, diff);
}

static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
		int write)
{
	struct page *page;
	int ret;

#ifdef CONFIG_STACK_GROWSUP
	if (write) {
		ret = expand_downwards(bprm->vma, pos);
		if (ret < 0)
			return NULL;
	}
#endif
	ret = get_user_pages(current, bprm->mm, pos,
			1, write, 1, &page, NULL);
	if (ret <= 0)
		return NULL;

	if (write) {
		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
		struct rlimit *rlim;

		acct_arg_size(bprm, size / PAGE_SIZE);

		/*
		 * We've historically supported up to 32 pages (ARG_MAX)
		 * of argument strings even with small stacks
		 */
		if (size <= ARG_MAX)
			return page;

		/*
		 * Limit to 1/4-th the stack size for the argv+env strings.
		 * This ensures that:
		 *  - the remaining binfmt code will not run out of stack space,
		 *  - the program will have a reasonable amount of stack left
		 *    to work from.
		 */
		rlim = current->signal->rlim;
		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
			put_page(page);
			return NULL;
		}
	}

	return page;
}

static void put_arg_page(struct page *page)
{
	put_page(page);
}

static void free_arg_page(struct linux_binprm *bprm, int i)
{
}

static void free_arg_pages(struct linux_binprm *bprm)
{
}

static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
		struct page *page)
{
	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
}

static int __bprm_mm_init(struct linux_binprm *bprm)
{
	int err;
	struct vm_area_struct *vma = NULL;
	struct mm_struct *mm = bprm->mm;

	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
	if (!vma)
		return -ENOMEM;

	down_write(&mm->mmap_sem);
	vma->vm_mm = mm;

	/*
	 * Place the stack at the largest stack address the architecture
	 * supports. Later, we'll move this to an appropriate place. We don't
	 * use STACK_TOP because that can depend on attributes which aren't
	 * configured yet.
	 */
	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
	vma->vm_end = STACK_TOP_MAX;
	vma->vm_start = vma->vm_end - PAGE_SIZE;
	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
	INIT_LIST_HEAD(&vma->anon_vma_chain);

	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
	if (err)
		goto err;

	err = insert_vm_struct(mm, vma);
	if (err)
		goto err;

	mm->stack_vm = mm->total_vm = 1;
	up_write(&mm->mmap_sem);
	bprm->p = vma->vm_end - sizeof(void *);
	return 0;
err:
	up_write(&mm->mmap_sem);
	bprm->vma = NULL;
	kmem_cache_free(vm_area_cachep, vma);
	return err;
}

static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
	return len <= MAX_ARG_STRLEN;
}

#else

static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
{
}

static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
		int write)
{
	struct page *page;

	page = bprm->page[pos / PAGE_SIZE];
	if (!page && write) {
		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
		if (!page)
			return NULL;
		bprm->page[pos / PAGE_SIZE] = page;
	}

	return page;
}

static void put_arg_page(struct page *page)
{
}

static void free_arg_page(struct linux_binprm *bprm, int i)
{
	if (bprm->page[i]) {
		__free_page(bprm->page[i]);
		bprm->page[i] = NULL;
	}
}

static void free_arg_pages(struct linux_binprm *bprm)
{
	int i;

	for (i = 0; i < MAX_ARG_PAGES; i++)
		free_arg_page(bprm, i);
}

static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
		struct page *page)
{
}

static int __bprm_mm_init(struct linux_binprm *bprm)
{
	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
	return 0;
}

static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
	return len <= bprm->p;
}

#endif /* CONFIG_MMU */

/*
 * Create a new mm_struct and populate it with a temporary stack
 * vm_area_struct.  We don't have enough context at this point to set the stack
 * flags, permissions, and offset, so we use temporary values.  We'll update
 * them later in setup_arg_pages().
 */
int bprm_mm_init(struct linux_binprm *bprm)
{
	int err;
	struct mm_struct *mm = NULL;

	bprm->mm = mm = mm_alloc();
	err = -ENOMEM;
	if (!mm)
		goto err;

	err = init_new_context(current, mm);
	if (err)
		goto err;

	err = __bprm_mm_init(bprm);
	if (err)
		goto err;

	return 0;

err:
	if (mm) {
		bprm->mm = NULL;
		mmdrop(mm);
	}

	return err;
}

struct user_arg_ptr {
#ifdef CONFIG_COMPAT
	bool is_compat;
#endif
	union {
		const char __user *const __user *native;
#ifdef CONFIG_COMPAT
		compat_uptr_t __user *compat;
#endif
	} ptr;
};

static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
{
	const char __user *native;

#ifdef CONFIG_COMPAT
	if (unlikely(argv.is_compat)) {
		compat_uptr_t compat;

		if (get_user(compat, argv.ptr.compat + nr))
			return ERR_PTR(-EFAULT);

		return compat_ptr(compat);
	}
#endif

	if (get_user(native, argv.ptr.native + nr))
		return ERR_PTR(-EFAULT);

	return native;
}

/*
 * count() counts the number of strings in array ARGV.
 */
static int count(struct user_arg_ptr argv, int max)
{
	int i = 0;

	if (argv.ptr.native != NULL) {
		for (;;) {
			const char __user *p = get_user_arg_ptr(argv, i);

			if (!p)
				break;

			if (IS_ERR(p))
				return -EFAULT;

			if (i++ >= max)
				return -E2BIG;

			if (fatal_signal_pending(current))
				return -ERESTARTNOHAND;
			cond_resched();
		}
	}
	return i;
}

/*
 * 'copy_strings()' copies argument/environment strings from the old
 * processes's memory to the new process's stack.  The call to get_user_pages()
 * ensures the destination page is created and not swapped out.
 */
static int copy_strings(int argc, struct user_arg_ptr argv,
			struct linux_binprm *bprm)
{
	struct page *kmapped_page = NULL;
	char *kaddr = NULL;
	unsigned long kpos = 0;
	int ret;

	while (argc-- > 0) {
		const char __user *str;
		int len;
		unsigned long pos;

		ret = -EFAULT;
		str = get_user_arg_ptr(argv, argc);
		if (IS_ERR(str))
			goto out;

		len = strnlen_user(str, MAX_ARG_STRLEN);
		if (!len)
			goto out;

		ret = -E2BIG;
		if (!valid_arg_len(bprm, len))
			goto out;

		/* We're going to work our way backwords. */
		pos = bprm->p;
		str += len;
		bprm->p -= len;

		while (len > 0) {
			int offset, bytes_to_copy;

			if (fatal_signal_pending(current)) {
				ret = -ERESTARTNOHAND;
				goto out;
			}
			cond_resched();

			offset = pos % PAGE_SIZE;
			if (offset == 0)
				offset = PAGE_SIZE;

			bytes_to_copy = offset;
			if (bytes_to_copy > len)
				bytes_to_copy = len;

			offset -= bytes_to_copy;
			pos -= bytes_to_copy;
			str -= bytes_to_copy;
			len -= bytes_to_copy;

			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
				struct page *page;

				page = get_arg_page(bprm, pos, 1);
				if (!page) {
					ret = -E2BIG;
					goto out;
				}

				if (kmapped_page) {
					flush_kernel_dcache_page(kmapped_page);
					kunmap(kmapped_page);
					put_arg_page(kmapped_page);
				}
				kmapped_page = page;
				kaddr = kmap(kmapped_page);
				kpos = pos & PAGE_MASK;
				flush_arg_page(bprm, kpos, kmapped_page);
			}
			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
				ret = -EFAULT;
				goto out;
			}
		}
	}
	ret = 0;
out:
	if (kmapped_page) {
		flush_kernel_dcache_page(kmapped_page);
		kunmap(kmapped_page);
		put_arg_page(kmapped_page);
	}
	return ret;
}

/*
 * Like copy_strings, but get argv and its values from kernel memory.
 */
int copy_strings_kernel(int argc, const char *const *__argv,
			struct linux_binprm *bprm)
{
	int r;
	mm_segment_t oldfs = get_fs();
	struct user_arg_ptr argv = {
		.ptr.native = (const char __user *const  __user *)__argv,
	};

	set_fs(KERNEL_DS);
	r = copy_strings(argc, argv, bprm);
	set_fs(oldfs);

	return r;
}
EXPORT_SYMBOL(copy_strings_kernel);

#ifdef CONFIG_MMU

/*
 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 * the binfmt code determines where the new stack should reside, we shift it to
 * its final location.  The process proceeds as follows:
 *
 * 1) Use shift to calculate the new vma endpoints.
 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 *    arguments passed to subsequent functions are consistent.
 * 3) Move vma's page tables to the new range.
 * 4) Free up any cleared pgd range.
 * 5) Shrink the vma to cover only the new range.
 */
static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long old_start = vma->vm_start;
	unsigned long old_end = vma->vm_end;
	unsigned long length = old_end - old_start;
	unsigned long new_start = old_start - shift;
	unsigned long new_end = old_end - shift;
	struct mmu_gather tlb;

	BUG_ON(new_start > new_end);

	/*
	 * ensure there are no vmas between where we want to go
	 * and where we are
	 */
	if (vma != find_vma(mm, new_start))
		return -EFAULT;

	/*
	 * cover the whole range: [new_start, old_end)
	 */
	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
		return -ENOMEM;

	/*
	 * move the page tables downwards, on failure we rely on
	 * process cleanup to remove whatever mess we made.
	 */
	if (length != move_page_tables(vma, old_start,
				       vma, new_start, length))
		return -ENOMEM;

	lru_add_drain();
	tlb_gather_mmu(&tlb, mm, 0);
	if (new_end > old_start) {
		/*
		 * when the old and new regions overlap clear from new_end.
		 */
		free_pgd_range(&tlb, new_end, old_end, new_end,
			vma->vm_next ? vma->vm_next->vm_start : 0);
	} else {
		/*
		 * otherwise, clean from old_start; this is done to not touch
		 * the address space in [new_end, old_start) some architectures
		 * have constraints on va-space that make this illegal (IA64) -
		 * for the others its just a little faster.
		 */
		free_pgd_range(&tlb, old_start, old_end, new_end,
			vma->vm_next ? vma->vm_next->vm_start : 0);
	}
	tlb_finish_mmu(&tlb, new_end, old_end);

	/*
	 * Shrink the vma to just the new range.  Always succeeds.
	 */
	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);

	return 0;
}

/*
 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 * the stack is optionally relocated, and some extra space is added.
 */
int setup_arg_pages(struct linux_binprm *bprm,
		    unsigned long stack_top,
		    int executable_stack)
{
	unsigned long ret;
	unsigned long stack_shift;
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma = bprm->vma;
	struct vm_area_struct *prev = NULL;
	unsigned long vm_flags;
	unsigned long stack_base;
	unsigned long stack_size;
	unsigned long stack_expand;
	unsigned long rlim_stack;

#ifdef CONFIG_STACK_GROWSUP
	/* Limit stack size to 1GB */
	stack_base = rlimit_max(RLIMIT_STACK);
	if (stack_base > (1 << 30))
		stack_base = 1 << 30;

	/* Make sure we didn't let the argument array grow too large. */
	if (vma->vm_end - vma->vm_start > stack_base)
		return -ENOMEM;

	stack_base = PAGE_ALIGN(stack_top - stack_base);

	stack_shift = vma->vm_start - stack_base;
	mm->arg_start = bprm->p - stack_shift;
	bprm->p = vma->vm_end - stack_shift;
#else
	stack_top = arch_align_stack(stack_top);
	stack_top = PAGE_ALIGN(stack_top);

	if (unlikely(stack_top < mmap_min_addr) ||
	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
		return -ENOMEM;

	stack_shift = vma->vm_end - stack_top;

	bprm->p -= stack_shift;
	mm->arg_start = bprm->p;
#endif

	if (bprm->loader)
		bprm->loader -= stack_shift;
	bprm->exec -= stack_shift;

	down_write(&mm->mmap_sem);
	vm_flags = VM_STACK_FLAGS;

	/*
	 * Adjust stack execute permissions; explicitly enable for
	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
	 * (arch default) otherwise.
	 */
	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
		vm_flags |= VM_EXEC;
	else if (executable_stack == EXSTACK_DISABLE_X)
		vm_flags &= ~VM_EXEC;
	vm_flags |= mm->def_flags;
	vm_flags |= VM_STACK_INCOMPLETE_SETUP;

	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
			vm_flags);
	if (ret)
		goto out_unlock;
	BUG_ON(prev != vma);

	/* Move stack pages down in memory. */
	if (stack_shift) {
		ret = shift_arg_pages(vma, stack_shift);
		if (ret)
			goto out_unlock;
	}

	/* mprotect_fixup is overkill to remove the temporary stack flags */
	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;

	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
	stack_size = vma->vm_end - vma->vm_start;
	/*
	 * Align this down to a page boundary as expand_stack
	 * will align it up.
	 */
	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
#ifdef CONFIG_STACK_GROWSUP
	if (stack_size + stack_expand > rlim_stack)
		stack_base = vma->vm_start + rlim_stack;
	else
		stack_base = vma->vm_end + stack_expand;
#else
	if (stack_size + stack_expand > rlim_stack)
		stack_base = vma->vm_end - rlim_stack;
	else
		stack_base = vma->vm_start - stack_expand;
#endif
	current->mm->start_stack = bprm->p;
	ret = expand_stack(vma, stack_base);
	if (ret)
		ret = -EFAULT;

out_unlock:
	up_write(&mm->mmap_sem);
	return ret;
}
EXPORT_SYMBOL(setup_arg_pages);

#endif /* CONFIG_MMU */

struct file *open_exec(const char *name)
{
	struct file *file;
	int err;
	static const struct open_flags open_exec_flags = {
		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
		.acc_mode = MAY_EXEC | MAY_OPEN,
		.intent = LOOKUP_OPEN
	};

	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
	if (IS_ERR(file))
		goto out;

	err = -EACCES;
	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
		goto exit;

	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
		goto exit;

	fsnotify_open(file);

	err = deny_write_access(file);
	if (err)
		goto exit;

out:
	return file;

exit:
	fput(file);
	return ERR_PTR(err);
}
EXPORT_SYMBOL(open_exec);

int kernel_read(struct file *file, loff_t offset,
		char *addr, unsigned long count)
{
	mm_segment_t old_fs;
	loff_t pos = offset;
	int result;

	old_fs = get_fs();
	set_fs(get_ds());
	/* The cast to a user pointer is valid due to the set_fs() */
	result = vfs_read(file, (void __user *)addr, count, &pos);
	set_fs(old_fs);
	return result;
}

EXPORT_SYMBOL(kernel_read);

static int exec_mmap(struct mm_struct *mm)
{
	struct task_struct *tsk;
	struct mm_struct * old_mm, *active_mm;

	/* Notify parent that we're no longer interested in the old VM */
	tsk = current;
	old_mm = current->mm;
	sync_mm_rss(tsk, old_mm);
	mm_release(tsk, old_mm);

	if (old_mm) {
		/*
		 * Make sure that if there is a core dump in progress
		 * for the old mm, we get out and die instead of going
		 * through with the exec.  We must hold mmap_sem around
		 * checking core_state and changing tsk->mm.
		 */
		down_read(&old_mm->mmap_sem);
		if (unlikely(old_mm->core_state)) {
			up_read(&old_mm->mmap_sem);
			return -EINTR;
		}
	}
	task_lock(tsk);
	active_mm = tsk->active_mm;
	tsk->mm = mm;
	tsk->active_mm = mm;
	activate_mm(active_mm, mm);
	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
		atomic_dec(&old_mm->oom_disable_count);
		atomic_inc(&tsk->mm->oom_disable_count);
	}
	task_unlock(tsk);
	arch_pick_mmap_layout(mm);
	if (old_mm) {
		up_read(&old_mm->mmap_sem);
		BUG_ON(active_mm != old_mm);
		mm_update_next_owner(old_mm);
		mmput(old_mm);
		return 0;
	}
	mmdrop(active_mm);
	return 0;
}

/*
 * This function makes sure the current process has its own signal table,
 * so that flush_signal_handlers can later reset the handlers without
 * disturbing other processes.  (Other processes might share the signal
 * table via the CLONE_SIGHAND option to clone().)
 */
static int de_thread(struct task_struct *tsk)
{
	struct signal_struct *sig = tsk->signal;
	struct sighand_struct *oldsighand = tsk->sighand;
	spinlock_t *lock = &oldsighand->siglock;

	if (thread_group_empty(tsk))
		goto no_thread_group;

	/*
	 * Kill all other threads in the thread group.
	 */
	spin_lock_irq(lock);
	if (signal_group_exit(sig)) {
		/*
		 * Another group action in progress, just
		 * return so that the signal is processed.
		 */
		spin_unlock_irq(lock);
		return -EAGAIN;
	}

	sig->group_exit_task = tsk;
	sig->notify_count = zap_other_threads(tsk);
	if (!thread_group_leader(tsk))
		sig->notify_count--;

	while (sig->notify_count) {
		__set_current_state(TASK_UNINTERRUPTIBLE);
		spin_unlock_irq(lock);
		schedule();
		spin_lock_irq(lock);
	}
	spin_unlock_irq(lock);

	/*
	 * At this point all other threads have exited, all we have to
	 * do is to wait for the thread group leader to become inactive,
	 * and to assume its PID:
	 */
	if (!thread_group_leader(tsk)) {
		struct task_struct *leader = tsk->group_leader;

		sig->notify_count = -1;	/* for exit_notify() */
		for (;;) {
			write_lock_irq(&tasklist_lock);
			if (likely(leader->exit_state))
				break;
			__set_current_state(TASK_UNINTERRUPTIBLE);
			write_unlock_irq(&tasklist_lock);
			schedule();
		}

		/*
		 * The only record we have of the real-time age of a
		 * process, regardless of execs it's done, is start_time.
		 * All the past CPU time is accumulated in signal_struct
		 * from sister threads now dead.  But in this non-leader
		 * exec, nothing survives from the original leader thread,
		 * whose birth marks the true age of this process now.
		 * When we take on its identity by switching to its PID, we
		 * also take its birthdate (always earlier than our own).
		 */
		tsk->start_time = leader->start_time;

		BUG_ON(!same_thread_group(leader, tsk));
		BUG_ON(has_group_leader_pid(tsk));
		/*
		 * An exec() starts a new thread group with the
		 * TGID of the previous thread group. Rehash the
		 * two threads with a switched PID, and release
		 * the former thread group leader:
		 */

		/* Become a process group leader with the old leader's pid.
		 * The old leader becomes a thread of the this thread group.
		 * Note: The old leader also uses this pid until release_task
		 *       is called.  Odd but simple and correct.
		 */
		detach_pid(tsk, PIDTYPE_PID);
		tsk->pid = leader->pid;
		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
		transfer_pid(leader, tsk, PIDTYPE_PGID);
		transfer_pid(leader, tsk, PIDTYPE_SID);

		list_replace_rcu(&leader->tasks, &tsk->tasks);
		list_replace_init(&leader->sibling, &tsk->sibling);

		tsk->group_leader = tsk;
		leader->group_leader = tsk;

		tsk->exit_signal = SIGCHLD;
		leader->exit_signal = -1;

		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
		leader->exit_state = EXIT_DEAD;

		/*
		 * We are going to release_task()->ptrace_unlink() silently,
		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
		 * the tracer wont't block again waiting for this thread.
		 */
		if (unlikely(leader->ptrace))
			__wake_up_parent(leader, leader->parent);
		write_unlock_irq(&tasklist_lock);

		release_task(leader);
	}

	sig->group_exit_task = NULL;
	sig->notify_count = 0;

no_thread_group:
	if (current->mm)
		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);

	exit_itimers(sig);
	flush_itimer_signals();

	if (atomic_read(&oldsighand->count) != 1) {
		struct sighand_struct *newsighand;
		/*
		 * This ->sighand is shared with the CLONE_SIGHAND
		 * but not CLONE_THREAD task, switch to the new one.
		 */
		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
		if (!newsighand)
			return -ENOMEM;

		atomic_set(&newsighand->count, 1);
		memcpy(newsighand->action, oldsighand->action,
		       sizeof(newsighand->action));

		write_lock_irq(&tasklist_lock);
		spin_lock(&oldsighand->siglock);
		rcu_assign_pointer(tsk->sighand, newsighand);
		spin_unlock(&oldsighand->siglock);
		write_unlock_irq(&tasklist_lock);

		__cleanup_sighand(oldsighand);
	}

	BUG_ON(!thread_group_leader(tsk));
	return 0;
}

/*
 * These functions flushes out all traces of the currently running executable
 * so that a new one can be started
 */
static void flush_old_files(struct files_struct * files)
{
	long j = -1;
	struct fdtable *fdt;

	spin_lock(&files->file_lock);
	for (;;) {
		unsigned long set, i;

		j++;
		i = j * __NFDBITS;
		fdt = files_fdtable(files);
		if (i >= fdt->max_fds)
			break;
		set = fdt->close_on_exec->fds_bits[j];
		if (!set)
			continue;
		fdt->close_on_exec->fds_bits[j] = 0;
		spin_unlock(&files->file_lock);
		for ( ; set ; i++,set >>= 1) {
			if (set & 1) {
				sys_close(i);
			}
		}
		spin_lock(&files->file_lock);

	}
	spin_unlock(&files->file_lock);
}

char *get_task_comm(char *buf, struct task_struct *tsk)
{
	/* buf must be at least sizeof(tsk->comm) in size */
	task_lock(tsk);
	strncpy(buf, tsk->comm, sizeof(tsk->comm));
	task_unlock(tsk);
	return buf;
}
EXPORT_SYMBOL_GPL(get_task_comm);

void set_task_comm(struct task_struct *tsk, char *buf)
{
	task_lock(tsk);

	/*
	 * Threads may access current->comm without holding
	 * the task lock, so write the string carefully.
	 * Readers without a lock may see incomplete new
	 * names but are safe from non-terminating string reads.
	 */
	memset(tsk->comm, 0, TASK_COMM_LEN);
	wmb();
	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
	task_unlock(tsk);
	perf_event_comm(tsk);
}

int flush_old_exec(struct linux_binprm * bprm)
{
	int retval;

	/*
	 * Make sure we have a private signal table and that
	 * we are unassociated from the previous thread group.
	 */
	retval = de_thread(current);
	if (retval)
		goto out;

	set_mm_exe_file(bprm->mm, bprm->file);

	/*
	 * Release all of the old mmap stuff
	 */
	acct_arg_size(bprm, 0);
	retval = exec_mmap(bprm->mm);
	if (retval)
		goto out;

	bprm->mm = NULL;		/* We're using it now */

	set_fs(USER_DS);
	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
	flush_thread();
	current->personality &= ~bprm->per_clear;

	return 0;

out:
	return retval;
}
EXPORT_SYMBOL(flush_old_exec);

void would_dump(struct linux_binprm *bprm, struct file *file)
{
	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
}
EXPORT_SYMBOL(would_dump);

void setup_new_exec(struct linux_binprm * bprm)
{
	int i, ch;
	const char *name;
	char tcomm[sizeof(current->comm)];

	arch_pick_mmap_layout(current->mm);

	/* This is the point of no return */
	current->sas_ss_sp = current->sas_ss_size = 0;

	if (current_euid() == current_uid() && current_egid() == current_gid())
		set_dumpable(current->mm, 1);
	else
		set_dumpable(current->mm, suid_dumpable);

	name = bprm->filename;

	/* Copies the binary name from after last slash */
	for (i=0; (ch = *(name++)) != '\0';) {
		if (ch == '/')
			i = 0; /* overwrite what we wrote */
		else
			if (i < (sizeof(tcomm) - 1))
				tcomm[i++] = ch;
	}
	tcomm[i] = '\0';
	set_task_comm(current, tcomm);

	/* Set the new mm task size. We have to do that late because it may
	 * depend on TIF_32BIT which is only updated in flush_thread() on
	 * some architectures like powerpc
	 */
	current->mm->task_size = TASK_SIZE;

	/* install the new credentials */
	if (bprm->cred->uid != current_euid() ||
	    bprm->cred->gid != current_egid()) {
		current->pdeath_signal = 0;
	} else {
		would_dump(bprm, bprm->file);
		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
			set_dumpable(current->mm, suid_dumpable);
	}

	/*
	 * Flush performance counters when crossing a
	 * security domain:
	 */
	if (!get_dumpable(current->mm))
		perf_event_exit_task(current);

	/* An exec changes our domain. We are no longer part of the thread
	   group */

	current->self_exec_id++;
			
	flush_signal_handlers(current, 0);
	flush_old_files(current->files);
}
EXPORT_SYMBOL(setup_new_exec);

/*
 * Prepare credentials and lock ->cred_guard_mutex.
 * install_exec_creds() commits the new creds and drops the lock.
 * Or, if exec fails before, free_bprm() should release ->cred and
 * and unlock.
 */
int prepare_bprm_creds(struct linux_binprm *bprm)
{
	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
		return -ERESTARTNOINTR;

	bprm->cred = prepare_exec_creds();
	if (likely(bprm->cred))
		return 0;

	mutex_unlock(&current->signal->cred_guard_mutex);
	return -ENOMEM;
}

void free_bprm(struct linux_binprm *bprm)
{
	free_arg_pages(bprm);
	if (bprm->cred) {
		mutex_unlock(&current->signal->cred_guard_mutex);
		abort_creds(bprm->cred);
	}
	kfree(bprm);
}

/*
 * install the new credentials for this executable
 */
void install_exec_creds(struct linux_binprm *bprm)
{
	security_bprm_committing_creds(bprm);

	commit_creds(bprm->cred);
	bprm->cred = NULL;
	/*
	 * cred_guard_mutex must be held at least to this point to prevent
	 * ptrace_attach() from altering our determination of the task's
	 * credentials; any time after this it may be unlocked.
	 */
	security_bprm_committed_creds(bprm);
	mutex_unlock(&current->signal->cred_guard_mutex);
}
EXPORT_SYMBOL(install_exec_creds);

/*
 * determine how safe it is to execute the proposed program
 * - the caller must hold ->cred_guard_mutex to protect against
 *   PTRACE_ATTACH
 */
int check_unsafe_exec(struct linux_binprm *bprm)
{
	struct task_struct *p = current, *t;
	unsigned n_fs;
	int res = 0;

	if (p->ptrace) {
		if (p->ptrace & PT_PTRACE_CAP)
			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
		else
			bprm->unsafe |= LSM_UNSAFE_PTRACE;
	}

	n_fs = 1;
	spin_lock(&p->fs->lock);
	rcu_read_lock();
	for (t = next_thread(p); t != p; t = next_thread(t)) {
		if (t->fs == p->fs)
			n_fs++;
	}
	rcu_read_unlock();

	if (p->fs->users > n_fs) {
		bprm->unsafe |= LSM_UNSAFE_SHARE;
	} else {
		res = -EAGAIN;
		if (!p->fs->in_exec) {
			p->fs->in_exec = 1;
			res = 1;
		}
	}
	spin_unlock(&p->fs->lock);

	return res;
}

/* 
 * Fill the binprm structure from the inode. 
 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
 *
 * This may be called multiple times for binary chains (scripts for example).
 */
int prepare_binprm(struct linux_binprm *bprm)
{
	umode_t mode;
	struct inode * inode = bprm->file->f_path.dentry->d_inode;
	int retval;

	mode = inode->i_mode;
	if (bprm->file->f_op == NULL)
		return -EACCES;

	/* clear any previous set[ug]id data from a previous binary */
	bprm->cred->euid = current_euid();
	bprm->cred->egid = current_egid();

	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
		/* Set-uid? */
		if (mode & S_ISUID) {
			bprm->per_clear |= PER_CLEAR_ON_SETID;
			bprm->cred->euid = inode->i_uid;
		}

		/* Set-gid? */
		/*
		 * If setgid is set but no group execute bit then this
		 * is a candidate for mandatory locking, not a setgid
		 * executable.
		 */
		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
			bprm->per_clear |= PER_CLEAR_ON_SETID;
			bprm->cred->egid = inode->i_gid;
		}
	}

	/* fill in binprm security blob */
	retval = security_bprm_set_creds(bprm);
	if (retval)
		return retval;
	bprm->cred_prepared = 1;

	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
}

EXPORT_SYMBOL(prepare_binprm);

/*
 * Arguments are '\0' separated strings found at the location bprm->p
 * points to; chop off the first by relocating brpm->p to right after
 * the first '\0' encountered.
 */
int remove_arg_zero(struct linux_binprm *bprm)
{
	int ret = 0;
	unsigned long offset;
	char *kaddr;
	struct page *page;

	if (!bprm->argc)
		return 0;

	do {
		offset = bprm->p & ~PAGE_MASK;
		page = get_arg_page(bprm, bprm->p, 0);
		if (!page) {
			ret = -EFAULT;
			goto out;
		}
		kaddr = kmap_atomic(page, KM_USER0);

		for (; offset < PAGE_SIZE && kaddr[offset];
				offset++, bprm->p++)
			;

		kunmap_atomic(kaddr, KM_USER0);
		put_arg_page(page);

		if (offset == PAGE_SIZE)
			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
	} while (offset == PAGE_SIZE);

	bprm->p++;
	bprm->argc--;
	ret = 0;

out:
	return ret;
}
EXPORT_SYMBOL(remove_arg_zero);

/*
 * cycle the list of binary formats handler, until one recognizes the image
 */
int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
{
	unsigned int depth = bprm->recursion_depth;
	int try,retval;
	struct linux_binfmt *fmt;
	pid_t old_pid;

	retval = security_bprm_check(bprm);
	if (retval)
		return retval;

	retval = audit_bprm(bprm);
	if (retval)
		return retval;

	/* Need to fetch pid before load_binary changes it */
	rcu_read_lock();
	old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
	rcu_read_unlock();

	retval = -ENOENT;
	for (try=0; try<2; try++) {
		read_lock(&binfmt_lock);
		list_for_each_entry(fmt, &formats, lh) {
			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
			if (!fn)
				continue;
			if (!try_module_get(fmt->module))
				continue;
			read_unlock(&binfmt_lock);
			retval = fn(bprm, regs);
			/*
			 * Restore the depth counter to its starting value
			 * in this call, so we don't have to rely on every
			 * load_binary function to restore it on return.
			 */
			bprm->recursion_depth = depth;
			if (retval >= 0) {
				if (depth == 0)
					ptrace_event(PTRACE_EVENT_EXEC,
							old_pid);
				put_binfmt(fmt);
				allow_write_access(bprm->file);
				if (bprm->file)
					fput(bprm->file);
				bprm->file = NULL;
				current->did_exec = 1;
				proc_exec_connector(current);
				return retval;
			}
			read_lock(&binfmt_lock);
			put_binfmt(fmt);
			if (retval != -ENOEXEC || bprm->mm == NULL)
				break;
			if (!bprm->file) {
				read_unlock(&binfmt_lock);
				return retval;
			}
		}
		read_unlock(&binfmt_lock);
#ifdef CONFIG_MODULES
		if (retval != -ENOEXEC || bprm->mm == NULL) {
			break;
		} else {
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
			if (printable(bprm->buf[0]) &&
			    printable(bprm->buf[1]) &&
			    printable(bprm->buf[2]) &&
			    printable(bprm->buf[3]))
				break; /* -ENOEXEC */
			if (try)
				break; /* -ENOEXEC */
			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
		}
#else
		break;
#endif
	}
	return retval;
}

EXPORT_SYMBOL(search_binary_handler);

/*
 * sys_execve() executes a new program.
 */
static int do_execve_common(const char *filename,
				struct user_arg_ptr argv,
				struct user_arg_ptr envp,
				struct pt_regs *regs)
{
	struct linux_binprm *bprm;
	struct file *file;
	struct files_struct *displaced;
	bool clear_in_exec;
	int retval;
	const struct cred *cred = current_cred();

	/*
	 * We move the actual failure in case of RLIMIT_NPROC excess from
	 * set*uid() to execve() because too many poorly written programs
	 * don't check setuid() return code.  Here we additionally recheck
	 * whether NPROC limit is still exceeded.
	 */
	if ((current->flags & PF_NPROC_EXCEEDED) &&
	    atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
		retval = -EAGAIN;
		goto out_ret;
	}

	/* We're below the limit (still or again), so we don't want to make
	 * further execve() calls fail. */
	current->flags &= ~PF_NPROC_EXCEEDED;

	retval = unshare_files(&displaced);
	if (retval)
		goto out_ret;

	retval = -ENOMEM;
	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
	if (!bprm)
		goto out_files;

	retval = prepare_bprm_creds(bprm);
	if (retval)
		goto out_free;

	retval = check_unsafe_exec(bprm);
	if (retval < 0)
		goto out_free;
	clear_in_exec = retval;
	current->in_execve = 1;

	file = open_exec(filename);
	retval = PTR_ERR(file);
	if (IS_ERR(file))
		goto out_unmark;

	sched_exec();

	bprm->file = file;
	bprm->filename = filename;
	bprm->interp = filename;

	retval = bprm_mm_init(bprm);
	if (retval)
		goto out_file;

	bprm->argc = count(argv, MAX_ARG_STRINGS);
	if ((retval = bprm->argc) < 0)
		goto out;

	bprm->envc = count(envp, MAX_ARG_STRINGS);
	if ((retval = bprm->envc) < 0)
		goto out;

	retval = prepare_binprm(bprm);
	if (retval < 0)
		goto out;

	retval = copy_strings_kernel(1, &bprm->filename, bprm);
	if (retval < 0)
		goto out;

	bprm->exec = bprm->p;
	retval = copy_strings(bprm->envc, envp, bprm);
	if (retval < 0)
		goto out;

	retval = copy_strings(bprm->argc, argv, bprm);
	if (retval < 0)
		goto out;

	retval = search_binary_handler(bprm,regs);
	if (retval < 0)
		goto out;

	/* execve succeeded */
	current->fs->in_exec = 0;
	current->in_execve = 0;
	acct_update_integrals(current);
	free_bprm(bprm);
	if (displaced)
		put_files_struct(displaced);
	return retval;

out:
	if (bprm->mm) {
		acct_arg_size(bprm, 0);
		mmput(bprm->mm);
	}

out_file:
	if (bprm->file) {
		allow_write_access(bprm->file);
		fput(bprm->file);
	}

out_unmark:
	if (clear_in_exec)
		current->fs->in_exec = 0;
	current->in_execve = 0;

out_free:
	free_bprm(bprm);

out_files:
	if (displaced)
		reset_files_struct(displaced);
out_ret:
	return retval;
}

int do_execve(const char *filename,
	const char __user *const __user *__argv,
	const char __user *const __user *__envp,
	struct pt_regs *regs)
{
	struct user_arg_ptr argv = { .ptr.native = __argv };
	struct user_arg_ptr envp = { .ptr.native = __envp };
	return do_execve_common(filename, argv, envp, regs);
}

#ifdef CONFIG_COMPAT
int compat_do_execve(char *filename,
	compat_uptr_t __user *__argv,
	compat_uptr_t __user *__envp,
	struct pt_regs *regs)
{
	struct user_arg_ptr argv = {
		.is_compat = true,
		.ptr.compat = __argv,
	};
	struct user_arg_ptr envp = {
		.is_compat = true,
		.ptr.compat = __envp,
	};
	return do_execve_common(filename, argv, envp, regs);
}
#endif

void set_binfmt(struct linux_binfmt *new)
{
	struct mm_struct *mm = current->mm;

	if (mm->binfmt)
		module_put(mm->binfmt->module);

	mm->binfmt = new;
	if (new)
		__module_get(new->module);
}

EXPORT_SYMBOL(set_binfmt);

static int expand_corename(struct core_name *cn)
{
	char *old_corename = cn->corename;

	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);

	if (!cn->corename) {
		kfree(old_corename);
		return -ENOMEM;
	}

	return 0;
}

static int cn_printf(struct core_name *cn, const char *fmt, ...)
{
	char *cur;
	int need;
	int ret;
	va_list arg;

	va_start(arg, fmt);
	need = vsnprintf(NULL, 0, fmt, arg);
	va_end(arg);

	if (likely(need < cn->size - cn->used - 1))
		goto out_printf;

	ret = expand_corename(cn);
	if (ret)
		goto expand_fail;

out_printf:
	cur = cn->corename + cn->used;
	va_start(arg, fmt);
	vsnprintf(cur, need + 1, fmt, arg);
	va_end(arg);
	cn->used += need;
	return 0;

expand_fail:
	return ret;
}

static void cn_escape(char *str)
{
	for (; *str; str++)
		if (*str == '/')
			*str = '!';
}

static int cn_print_exe_file(struct core_name *cn)
{
	struct file *exe_file;
	char *pathbuf, *path;
	int ret;

	exe_file = get_mm_exe_file(current->mm);
	if (!exe_file) {
		char *commstart = cn->corename + cn->used;
		ret = cn_printf(cn, "%s (path unknown)", current->comm);
		cn_escape(commstart);
		return ret;
	}

	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
	if (!pathbuf) {
		ret = -ENOMEM;
		goto put_exe_file;
	}

	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
	if (IS_ERR(path)) {
		ret = PTR_ERR(path);
		goto free_buf;
	}

	cn_escape(path);

	ret = cn_printf(cn, "%s", path);

free_buf:
	kfree(pathbuf);
put_exe_file:
	fput(exe_file);
	return ret;
}

/* format_corename will inspect the pattern parameter, and output a
 * name into corename, which must have space for at least
 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 */
static int format_corename(struct core_name *cn, long signr)
{
	const struct cred *cred = current_cred();
	const char *pat_ptr = core_pattern;
	int ispipe = (*pat_ptr == '|');
	int pid_in_pattern = 0;
	int err = 0;

	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
	cn->corename = kmalloc(cn->size, GFP_KERNEL);
	cn->used = 0;

	if (!cn->corename)
		return -ENOMEM;

	/* Repeat as long as we have more pattern to process and more output
	   space */
	while (*pat_ptr) {
		if (*pat_ptr != '%') {
			if (*pat_ptr == 0)
				goto out;
			err = cn_printf(cn, "%c", *pat_ptr++);
		} else {
			switch (*++pat_ptr) {
			/* single % at the end, drop that */
			case 0:
				goto out;
			/* Double percent, output one percent */
			case '%':
				err = cn_printf(cn, "%c", '%');
				break;
			/* pid */
			case 'p':
				pid_in_pattern = 1;
				err = cn_printf(cn, "%d",
					      task_tgid_vnr(current));
				break;
			/* uid */
			case 'u':
				err = cn_printf(cn, "%d", cred->uid);
				break;
			/* gid */
			case 'g':
				err = cn_printf(cn, "%d", cred->gid);
				break;
			/* signal that caused the coredump */
			case 's':
				err = cn_printf(cn, "%ld", signr);
				break;
			/* UNIX time of coredump */
			case 't': {
				struct timeval tv;
				do_gettimeofday(&tv);
				err = cn_printf(cn, "%lu", tv.tv_sec);
				break;
			}
			/* hostname */
			case 'h': {
				char *namestart = cn->corename + cn->used;
				down_read(&uts_sem);
				err = cn_printf(cn, "%s",
					      utsname()->nodename);
				up_read(&uts_sem);
				cn_escape(namestart);
				break;
			}
			/* executable */
			case 'e': {
				char *commstart = cn->corename + cn->used;
				err = cn_printf(cn, "%s", current->comm);
				cn_escape(commstart);
				break;
			}
			case 'E':
				err = cn_print_exe_file(cn);
				break;
			/* core limit size */
			case 'c':
				err = cn_printf(cn, "%lu",
					      rlimit(RLIMIT_CORE));
				break;
			default:
				break;
			}
			++pat_ptr;
		}

		if (err)
			return err;
	}

	/* Backward compatibility with core_uses_pid:
	 *
	 * If core_pattern does not include a %p (as is the default)
	 * and core_uses_pid is set, then .%pid will be appended to
	 * the filename. Do not do this for piped commands. */
	if (!ispipe && !pid_in_pattern && core_uses_pid) {
		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
		if (err)
			return err;
	}
out:
	return ispipe;
}

static int zap_process(struct task_struct *start, int exit_code)
{
	struct task_struct *t;
	int nr = 0;

	start->signal->flags = SIGNAL_GROUP_EXIT;
	start->signal->group_exit_code = exit_code;
	start->signal->group_stop_count = 0;

	t = start;
	do {
		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
		if (t != current && t->mm) {
			sigaddset(&t->pending.signal, SIGKILL);
			signal_wake_up(t, 1);
			nr++;
		}
	} while_each_thread(start, t);

	return nr;
}

static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
				struct core_state *core_state, int exit_code)
{
	struct task_struct *g, *p;
	unsigned long flags;
	int nr = -EAGAIN;

	spin_lock_irq(&tsk->sighand->siglock);
	if (!signal_group_exit(tsk->signal)) {
		mm->core_state = core_state;
		nr = zap_process(tsk, exit_code);
	}
	spin_unlock_irq(&tsk->sighand->siglock);
	if (unlikely(nr < 0))
		return nr;

	if (atomic_read(&mm->mm_users) == nr + 1)
		goto done;
	/*
	 * We should find and kill all tasks which use this mm, and we should
	 * count them correctly into ->nr_threads. We don't take tasklist
	 * lock, but this is safe wrt:
	 *
	 * fork:
	 *	None of sub-threads can fork after zap_process(leader). All
	 *	processes which were created before this point should be
	 *	visible to zap_threads() because copy_process() adds the new
	 *	process to the tail of init_task.tasks list, and lock/unlock
	 *	of ->siglock provides a memory barrier.
	 *
	 * do_exit:
	 *	The caller holds mm->mmap_sem. This means that the task which
	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
	 *	its ->mm.
	 *
	 * de_thread:
	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
	 *	we must see either old or new leader, this does not matter.
	 *	However, it can change p->sighand, so lock_task_sighand(p)
	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
	 *	it can't fail.
	 *
	 *	Note also that "g" can be the old leader with ->mm == NULL
	 *	and already unhashed and thus removed from ->thread_group.
	 *	This is OK, __unhash_process()->list_del_rcu() does not
	 *	clear the ->next pointer, we will find the new leader via
	 *	next_thread().
	 */
	rcu_read_lock();
	for_each_process(g) {
		if (g == tsk->group_leader)
			continue;
		if (g->flags & PF_KTHREAD)
			continue;
		p = g;
		do {
			if (p->mm) {
				if (unlikely(p->mm == mm)) {
					lock_task_sighand(p, &flags);
					nr += zap_process(p, exit_code);
					unlock_task_sighand(p, &flags);
				}
				break;
			}
		} while_each_thread(g, p);
	}
	rcu_read_unlock();
done:
	atomic_set(&core_state->nr_threads, nr);
	return nr;
}

static int coredump_wait(int exit_code, struct core_state *core_state)
{
	struct task_struct *tsk = current;
	struct mm_struct *mm = tsk->mm;
	struct completion *vfork_done;
	int core_waiters = -EBUSY;

	init_completion(&core_state->startup);
	core_state->dumper.task = tsk;
	core_state->dumper.next = NULL;

	down_write(&mm->mmap_sem);
	if (!mm->core_state)
		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
	up_write(&mm->mmap_sem);

	if (unlikely(core_waiters < 0))
		goto fail;

	/*
	 * Make sure nobody is waiting for us to release the VM,
	 * otherwise we can deadlock when we wait on each other
	 */
	vfork_done = tsk->vfork_done;
	if (vfork_done) {
		tsk->vfork_done = NULL;
		complete(vfork_done);
	}

	if (core_waiters)
		wait_for_completion(&core_state->startup);
fail:
	return core_waiters;
}

static void coredump_finish(struct mm_struct *mm)
{
	struct core_thread *curr, *next;
	struct task_struct *task;

	next = mm->core_state->dumper.next;
	while ((curr = next) != NULL) {
		next = curr->next;
		task = curr->task;
		/*
		 * see exit_mm(), curr->task must not see
		 * ->task == NULL before we read ->next.
		 */
		smp_mb();
		curr->task = NULL;
		wake_up_process(task);
	}

	mm->core_state = NULL;
}

/*
 * set_dumpable converts traditional three-value dumpable to two flags and
 * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
 * these bits are not changed atomically.  So get_dumpable can observe the
 * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
 * return either old dumpable or new one by paying attention to the order of
 * modifying the bits.
 *
 * dumpable |   mm->flags (binary)
 * old  new | initial interim  final
 * ---------+-----------------------
 *  0    1  |   00      01      01
 *  0    2  |   00      10(*)   11
 *  1    0  |   01      00      00
 *  1    2  |   01      11      11
 *  2    0  |   11      10(*)   00
 *  2    1  |   11      11      01
 *
 * (*) get_dumpable regards interim value of 10 as 11.
 */
void set_dumpable(struct mm_struct *mm, int value)
{
	switch (value) {
	case 0:
		clear_bit(MMF_DUMPABLE, &mm->flags);
		smp_wmb();
		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
		break;
	case 1:
		set_bit(MMF_DUMPABLE, &mm->flags);
		smp_wmb();
		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
		break;
	case 2:
		set_bit(MMF_DUMP_SECURELY, &mm->flags);
		smp_wmb();
		set_bit(MMF_DUMPABLE, &mm->flags);
		break;
	}
}

static int __get_dumpable(unsigned long mm_flags)
{
	int ret;

	ret = mm_flags & MMF_DUMPABLE_MASK;
	return (ret >= 2) ? 2 : ret;
}

int get_dumpable(struct mm_struct *mm)
{
	return __get_dumpable(mm->flags);
}

static void wait_for_dump_helpers(struct file *file)
{
	struct pipe_inode_info *pipe;

	pipe = file->f_path.dentry->d_inode->i_pipe;

	pipe_lock(pipe);
	pipe->readers++;
	pipe->writers--;

	while ((pipe->readers > 1) && (!signal_pending(current))) {
		wake_up_interruptible_sync(&pipe->wait);
		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
		pipe_wait(pipe);
	}

	pipe->readers--;
	pipe->writers++;
	pipe_unlock(pipe);

}


/*
 * umh_pipe_setup
 * helper function to customize the process used
 * to collect the core in userspace.  Specifically
 * it sets up a pipe and installs it as fd 0 (stdin)
 * for the process.  Returns 0 on success, or
 * PTR_ERR on failure.
 * Note that it also sets the core limit to 1.  This
 * is a special value that we use to trap recursive
 * core dumps
 */
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
	struct file *rp, *wp;
	struct fdtable *fdt;
	struct coredump_params *cp = (struct coredump_params *)info->data;
	struct files_struct *cf = current->files;

	wp = create_write_pipe(0);
	if (IS_ERR(wp))
		return PTR_ERR(wp);

	rp = create_read_pipe(wp, 0);
	if (IS_ERR(rp)) {
		free_write_pipe(wp);
		return PTR_ERR(rp);
	}

	cp->file = wp;

	sys_close(0);
	fd_install(0, rp);
	spin_lock(&cf->file_lock);
	fdt = files_fdtable(cf);
	FD_SET(0, fdt->open_fds);
	FD_CLR(0, fdt->close_on_exec);
	spin_unlock(&cf->file_lock);

	/* and disallow core files too */
	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};

	return 0;
}

void do_coredump(long signr, int exit_code, struct pt_regs *regs)
{
	struct core_state core_state;
	struct core_name cn;
	struct mm_struct *mm = current->mm;
	struct linux_binfmt * binfmt;
	const struct cred *old_cred;
	struct cred *cred;
	int retval = 0;
	int flag = 0;
	int ispipe;
	static atomic_t core_dump_count = ATOMIC_INIT(0);
	struct coredump_params cprm = {
		.signr = signr,
		.regs = regs,
		.limit = rlimit(RLIMIT_CORE),
		/*
		 * We must use the same mm->flags while dumping core to avoid
		 * inconsistency of bit flags, since this flag is not protected
		 * by any locks.
		 */
		.mm_flags = mm->flags,
	};

	audit_core_dumps(signr);

	binfmt = mm->binfmt;
	if (!binfmt || !binfmt->core_dump)
		goto fail;
	if (!__get_dumpable(cprm.mm_flags))
		goto fail;

	cred = prepare_creds();
	if (!cred)
		goto fail;
	/*
	 *	We cannot trust fsuid as being the "true" uid of the
	 *	process nor do we know its entire history. We only know it
	 *	was tainted so we dump it as root in mode 2.
	 */
	if (__get_dumpable(cprm.mm_flags) == 2) {
		/* Setuid core dump mode */
		flag = O_EXCL;		/* Stop rewrite attacks */
		cred->fsuid = 0;	/* Dump root private */
	}

	retval = coredump_wait(exit_code, &core_state);
	if (retval < 0)
		goto fail_creds;

	old_cred = override_creds(cred);

	/*
	 * Clear any false indication of pending signals that might
	 * be seen by the filesystem code called to write the core file.
	 */
	clear_thread_flag(TIF_SIGPENDING);

	ispipe = format_corename(&cn, signr);

 	if (ispipe) {
		int dump_count;
		char **helper_argv;

		if (ispipe < 0) {
			printk(KERN_WARNING "format_corename failed\n");
			printk(KERN_WARNING "Aborting core\n");
			goto fail_corename;
		}

		if (cprm.limit == 1) {
			/*
			 * Normally core limits are irrelevant to pipes, since
			 * we're not writing to the file system, but we use
			 * cprm.limit of 1 here as a speacial value. Any
			 * non-1 limit gets set to RLIM_INFINITY below, but
			 * a limit of 0 skips the dump.  This is a consistent
			 * way to catch recursive crashes.  We can still crash
			 * if the core_pattern binary sets RLIM_CORE =  !1
			 * but it runs as root, and can do lots of stupid things
			 * Note that we use task_tgid_vnr here to grab the pid
			 * of the process group leader.  That way we get the
			 * right pid if a thread in a multi-threaded
			 * core_pattern process dies.
			 */
			printk(KERN_WARNING
				"Process %d(%s) has RLIMIT_CORE set to 1\n",
				task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Aborting core\n");
			goto fail_unlock;
		}
		cprm.limit = RLIM_INFINITY;

		dump_count = atomic_inc_return(&core_dump_count);
		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
			       task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Skipping core dump\n");
			goto fail_dropcount;
		}

		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
		if (!helper_argv) {
			printk(KERN_WARNING "%s failed to allocate memory\n",
			       __func__);
			goto fail_dropcount;
		}

		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
					NULL, &cprm);
		argv_free(helper_argv);
		if (retval) {
 			printk(KERN_INFO "Core dump to %s pipe failed\n",
			       cn.corename);
			goto close_fail;
 		}
	} else {
		struct inode *inode;

		if (cprm.limit < binfmt->min_coredump)
			goto fail_unlock;

		cprm.file = filp_open(cn.corename,
				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
				 0600);
		if (IS_ERR(cprm.file))
			goto fail_unlock;

		inode = cprm.file->f_path.dentry->d_inode;
		if (inode->i_nlink > 1)
			goto close_fail;
		if (d_unhashed(cprm.file->f_path.dentry))
			goto close_fail;
		/*
		 * AK: actually i see no reason to not allow this for named
		 * pipes etc, but keep the previous behaviour for now.
		 */
		if (!S_ISREG(inode->i_mode))
			goto close_fail;
		/*
		 * Dont allow local users get cute and trick others to coredump
		 * into their pre-created files.
		 */
		if (inode->i_uid != current_fsuid())
			goto close_fail;
		if (!cprm.file->f_op || !cprm.file->f_op->write)
			goto close_fail;
		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
			goto close_fail;
	}

	retval = binfmt->core_dump(&cprm);
	if (retval)
		current->signal->group_exit_code |= 0x80;

	if (ispipe && core_pipe_limit)
		wait_for_dump_helpers(cprm.file);
close_fail:
	if (cprm.file)
		filp_close(cprm.file, NULL);
fail_dropcount:
	if (ispipe)
		atomic_dec(&core_dump_count);
fail_unlock:
	kfree(cn.corename);
fail_corename:
	coredump_finish(mm);
	revert_creds(old_cred);
fail_creds:
	put_cred(cred);
fail:
	return;
}

/*
 * Core dumping helper functions.  These are the only things you should
 * do on a core-file: use only these functions to write out all the
 * necessary info.
 */
int dump_write(struct file *file, const void *addr, int nr)
{
	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
}
EXPORT_SYMBOL(dump_write);

int dump_seek(struct file *file, loff_t off)
{
	int ret = 1;

	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
			return 0;
	} else {
		char *buf = (char *)get_zeroed_page(GFP_KERNEL);

		if (!buf)
			return 0;
		while (off > 0) {
			unsigned long n = off;

			if (n > PAGE_SIZE)
				n = PAGE_SIZE;
			if (!dump_write(file, buf, n)) {
				ret = 0;
				break;
			}
			off -= n;
		}
		free_page((unsigned long)buf);
	}
	return ret;
}
EXPORT_SYMBOL(dump_seek);