Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
/***********************license start***************
 * Author: Cavium Networks
 *
 * Contact: support@caviumnetworks.com
 * This file is part of the OCTEON SDK
 *
 * Copyright (c) 2003-2008 Cavium Networks
 *
 * This file is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, Version 2, as
 * published by the Free Software Foundation.
 *
 * This file is distributed in the hope that it will be useful, but
 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
 * NONINFRINGEMENT.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this file; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 * or visit http://www.gnu.org/licenses/.
 *
 * This file may also be available under a different license from Cavium.
 * Contact Cavium Networks for more information
 ***********************license end**************************************/

/*
 *
 * Interface to the Level 2 Cache (L2C) control, measurement, and debugging
 * facilities.
 */

#ifndef __CVMX_L2C_H__
#define __CVMX_L2C_H__

/* Deprecated macro, use function */
#define CVMX_L2_ASSOC     cvmx_l2c_get_num_assoc()

/* Deprecated macro, use function */
#define CVMX_L2_SET_BITS  cvmx_l2c_get_set_bits()

/* Deprecated macro, use function */
#define CVMX_L2_SETS      cvmx_l2c_get_num_sets()

#define CVMX_L2C_IDX_ADDR_SHIFT 7  /* based on 128 byte cache line size */
#define CVMX_L2C_IDX_MASK       (cvmx_l2c_get_num_sets() - 1)

/* Defines for index aliasing computations */
#define CVMX_L2C_TAG_ADDR_ALIAS_SHIFT \
	(CVMX_L2C_IDX_ADDR_SHIFT + cvmx_l2c_get_set_bits())

#define CVMX_L2C_ALIAS_MASK \
	(CVMX_L2C_IDX_MASK << CVMX_L2C_TAG_ADDR_ALIAS_SHIFT)

union cvmx_l2c_tag {
	uint64_t u64;
	struct {
		uint64_t reserved:28;
		uint64_t V:1;	/* Line valid */
		uint64_t D:1;	/* Line dirty */
		uint64_t L:1;	/* Line locked */
		uint64_t U:1;	/* Use, LRU eviction */
		uint64_t addr:32;	/* Phys mem (not all bits valid) */
	} s;
};

  /* L2C Performance Counter events. */
enum cvmx_l2c_event {
	CVMX_L2C_EVENT_CYCLES = 0,
	CVMX_L2C_EVENT_INSTRUCTION_MISS = 1,
	CVMX_L2C_EVENT_INSTRUCTION_HIT = 2,
	CVMX_L2C_EVENT_DATA_MISS = 3,
	CVMX_L2C_EVENT_DATA_HIT = 4,
	CVMX_L2C_EVENT_MISS = 5,
	CVMX_L2C_EVENT_HIT = 6,
	CVMX_L2C_EVENT_VICTIM_HIT = 7,
	CVMX_L2C_EVENT_INDEX_CONFLICT = 8,
	CVMX_L2C_EVENT_TAG_PROBE = 9,
	CVMX_L2C_EVENT_TAG_UPDATE = 10,
	CVMX_L2C_EVENT_TAG_COMPLETE = 11,
	CVMX_L2C_EVENT_TAG_DIRTY = 12,
	CVMX_L2C_EVENT_DATA_STORE_NOP = 13,
	CVMX_L2C_EVENT_DATA_STORE_READ = 14,
	CVMX_L2C_EVENT_DATA_STORE_WRITE = 15,
	CVMX_L2C_EVENT_FILL_DATA_VALID = 16,
	CVMX_L2C_EVENT_WRITE_REQUEST = 17,
	CVMX_L2C_EVENT_READ_REQUEST = 18,
	CVMX_L2C_EVENT_WRITE_DATA_VALID = 19,
	CVMX_L2C_EVENT_XMC_NOP = 20,
	CVMX_L2C_EVENT_XMC_LDT = 21,
	CVMX_L2C_EVENT_XMC_LDI = 22,
	CVMX_L2C_EVENT_XMC_LDD = 23,
	CVMX_L2C_EVENT_XMC_STF = 24,
	CVMX_L2C_EVENT_XMC_STT = 25,
	CVMX_L2C_EVENT_XMC_STP = 26,
	CVMX_L2C_EVENT_XMC_STC = 27,
	CVMX_L2C_EVENT_XMC_DWB = 28,
	CVMX_L2C_EVENT_XMC_PL2 = 29,
	CVMX_L2C_EVENT_XMC_PSL1 = 30,
	CVMX_L2C_EVENT_XMC_IOBLD = 31,
	CVMX_L2C_EVENT_XMC_IOBST = 32,
	CVMX_L2C_EVENT_XMC_IOBDMA = 33,
	CVMX_L2C_EVENT_XMC_IOBRSP = 34,
	CVMX_L2C_EVENT_XMC_BUS_VALID = 35,
	CVMX_L2C_EVENT_XMC_MEM_DATA = 36,
	CVMX_L2C_EVENT_XMC_REFL_DATA = 37,
	CVMX_L2C_EVENT_XMC_IOBRSP_DATA = 38,
	CVMX_L2C_EVENT_RSC_NOP = 39,
	CVMX_L2C_EVENT_RSC_STDN = 40,
	CVMX_L2C_EVENT_RSC_FILL = 41,
	CVMX_L2C_EVENT_RSC_REFL = 42,
	CVMX_L2C_EVENT_RSC_STIN = 43,
	CVMX_L2C_EVENT_RSC_SCIN = 44,
	CVMX_L2C_EVENT_RSC_SCFL = 45,
	CVMX_L2C_EVENT_RSC_SCDN = 46,
	CVMX_L2C_EVENT_RSC_DATA_VALID = 47,
	CVMX_L2C_EVENT_RSC_VALID_FILL = 48,
	CVMX_L2C_EVENT_RSC_VALID_STRSP = 49,
	CVMX_L2C_EVENT_RSC_VALID_REFL = 50,
	CVMX_L2C_EVENT_LRF_REQ = 51,
	CVMX_L2C_EVENT_DT_RD_ALLOC = 52,
	CVMX_L2C_EVENT_DT_WR_INVAL = 53
};

/**
 * Configure one of the four L2 Cache performance counters to capture event
 * occurences.
 *
 * @counter:        The counter to configure. Range 0..3.
 * @event:          The type of L2 Cache event occurrence to count.
 * @clear_on_read:  When asserted, any read of the performance counter
 *                       clears the counter.
 *
 * The routine does not clear the counter.
 */
void cvmx_l2c_config_perf(uint32_t counter,
			  enum cvmx_l2c_event event, uint32_t clear_on_read);
/**
 * Read the given L2 Cache performance counter. The counter must be configured
 * before reading, but this routine does not enforce this requirement.
 *
 * @counter:  The counter to configure. Range 0..3.
 *
 * Returns The current counter value.
 */
uint64_t cvmx_l2c_read_perf(uint32_t counter);

/**
 * Return the L2 Cache way partitioning for a given core.
 *
 * @core:  The core processor of interest.
 *
 * Returns    The mask specifying the partitioning. 0 bits in mask indicates
 *              the cache 'ways' that a core can evict from.
 *            -1 on error
 */
int cvmx_l2c_get_core_way_partition(uint32_t core);

/**
 * Partitions the L2 cache for a core
 *
 * @core:  The core that the partitioning applies to.
 *
 * @mask: The partitioning of the ways expressed as a binary mask. A 0
 *        bit allows the core to evict cache lines from a way, while a
 *        1 bit blocks the core from evicting any lines from that
 *        way. There must be at least one allowed way (0 bit) in the
 *        mask.
 *
 * If any ways are blocked for all cores and the HW blocks, then those
 * ways will never have any cache lines evicted from them.  All cores
 * and the hardware blocks are free to read from all ways regardless
 * of the partitioning.
 */
int cvmx_l2c_set_core_way_partition(uint32_t core, uint32_t mask);

/**
 * Return the L2 Cache way partitioning for the hw blocks.
 *
 * Returns    The mask specifying the reserved way. 0 bits in mask indicates
 *              the cache 'ways' that a core can evict from.
 *            -1 on error
 */
int cvmx_l2c_get_hw_way_partition(void);

/**
 * Partitions the L2 cache for the hardware blocks.
 *
 * @mask: The partitioning of the ways expressed as a binary mask. A 0
 *        bit allows the core to evict cache lines from a way, while a
 *        1 bit blocks the core from evicting any lines from that
 *        way. There must be at least one allowed way (0 bit) in the
 *        mask.
 *
 * If any ways are blocked for all cores and the HW blocks, then those
 * ways will never have any cache lines evicted from them.  All cores
 * and the hardware blocks are free to read from all ways regardless
 * of the partitioning.
 */
int cvmx_l2c_set_hw_way_partition(uint32_t mask);

/**
 * Locks a line in the L2 cache at the specified physical address
 *
 * @addr:   physical address of line to lock
 *
 * Returns 0 on success,
 *         1 if line not locked.
 */
int cvmx_l2c_lock_line(uint64_t addr);

/**
 * Locks a specified memory region in the L2 cache.
 *
 * Note that if not all lines can be locked, that means that all
 * but one of the ways (associations) available to the locking
 * core are locked.  Having only 1 association available for
 * normal caching may have a significant adverse affect on performance.
 * Care should be taken to ensure that enough of the L2 cache is left
 * unlocked to allow for normal caching of DRAM.
 *
 * @start:  Physical address of the start of the region to lock
 * @len:    Length (in bytes) of region to lock
 *
 * Returns Number of requested lines that where not locked.
 *         0 on success (all locked)
 */
int cvmx_l2c_lock_mem_region(uint64_t start, uint64_t len);

/**
 * Unlock and flush a cache line from the L2 cache.
 * IMPORTANT: Must only be run by one core at a time due to use
 * of L2C debug features.
 * Note that this function will flush a matching but unlocked cache line.
 * (If address is not in L2, no lines are flushed.)
 *
 * @address: Physical address to unlock
 *
 * Returns 0: line not unlocked
 *         1: line unlocked
 */
int cvmx_l2c_unlock_line(uint64_t address);

/**
 * Unlocks a region of memory that is locked in the L2 cache
 *
 * @start:  start physical address
 * @len:    length (in bytes) to unlock
 *
 * Returns Number of locked lines that the call unlocked
 */
int cvmx_l2c_unlock_mem_region(uint64_t start, uint64_t len);

/**
 * Read the L2 controller tag for a given location in L2
 *
 * @association:
 *               Which association to read line from
 * @index:  Which way to read from.
 *
 * Returns l2c tag structure for line requested.
 */
union cvmx_l2c_tag cvmx_l2c_get_tag(uint32_t association, uint32_t index);

/* Wrapper around deprecated old function name */
static inline union cvmx_l2c_tag cvmx_get_l2c_tag(uint32_t association,
					      uint32_t index)
{
	return cvmx_l2c_get_tag(association, index);
}

/**
 * Returns the cache index for a given physical address
 *
 * @addr:   physical address
 *
 * Returns L2 cache index
 */
uint32_t cvmx_l2c_address_to_index(uint64_t addr);

/**
 * Flushes (and unlocks) the entire L2 cache.
 * IMPORTANT: Must only be run by one core at a time due to use
 * of L2C debug features.
 */
void cvmx_l2c_flush(void);

/**
 *
 * Returns Returns the size of the L2 cache in bytes,
 * -1 on error (unrecognized model)
 */
int cvmx_l2c_get_cache_size_bytes(void);

/**
 * Return the number of sets in the L2 Cache
 *
 * Returns
 */
int cvmx_l2c_get_num_sets(void);

/**
 * Return log base 2 of the number of sets in the L2 cache
 * Returns
 */
int cvmx_l2c_get_set_bits(void);
/**
 * Return the number of associations in the L2 Cache
 *
 * Returns
 */
int cvmx_l2c_get_num_assoc(void);

/**
 * Flush a line from the L2 cache
 * This should only be called from one core at a time, as this routine
 * sets the core to the 'debug' core in order to flush the line.
 *
 * @assoc:  Association (or way) to flush
 * @index:  Index to flush
 */
void cvmx_l2c_flush_line(uint32_t assoc, uint32_t index);

#endif /* __CVMX_L2C_H__ */