Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
#include "amd64_edac.h"
#include <asm/k8.h>

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

/* Lookup table for all possible MC control instances */
struct amd64_pvt;
static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];

/*
 * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
 * for DDR2 DRAM mapping.
 */
u32 revf_quad_ddr2_shift[] = {
	0,	/* 0000b NULL DIMM (128mb) */
	28,	/* 0001b 256mb */
	29,	/* 0010b 512mb */
	29,	/* 0011b 512mb */
	29,	/* 0100b 512mb */
	30,	/* 0101b 1gb */
	30,	/* 0110b 1gb */
	31,	/* 0111b 2gb */
	31,	/* 1000b 2gb */
	32,	/* 1001b 4gb */
	32,	/* 1010b 4gb */
	33,	/* 1011b 8gb */
	0,	/* 1100b future */
	0,	/* 1101b future */
	0,	/* 1110b future */
	0	/* 1111b future */
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

struct scrubrate scrubrates[] = {
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
				       u32 min_scrubrate)
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
		if (scrubrates[i].scrubval < min_scrubrate)
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;
	if (scrubval)
		edac_printk(KERN_DEBUG, EDAC_MC,
			    "Setting scrub rate bandwidth: %u\n",
			    scrubrates[i].bandwidth);
	else
		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");

	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);

	return 0;
}

static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 min_scrubrate = 0x0;

	switch (boot_cpu_data.x86) {
	case 0xf:
		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
		break;
	case 0x10:
		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
		break;
	case 0x11:
		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
		break;

	default:
		amd64_printk(KERN_ERR, "Unsupported family!\n");
		break;
	}
	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
			min_scrubrate);
}

static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
	int status = -1, i, ret = 0;

	ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
	if (ret)
		debugf0("Reading K8_SCRCTRL failed\n");

	scrubval = scrubval & 0x001F;

	edac_printk(KERN_DEBUG, EDAC_MC,
		    "pci-read, sdram scrub control value: %d \n", scrubval);

	for (i = 0; ARRAY_SIZE(scrubrates); i++) {
		if (scrubrates[i].scrubval == scrubval) {
			*bw = scrubrates[i].bandwidth;
			status = 0;
			break;
		}
	}

	return status;
}

/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
		return csrow;
	else
		return csrow >> 1;
}

/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsb0[csrow];
	else
		return pvt->dcsb1[csrow];
}

/*
 * Return the 'mask' address the i'th CS entry. This function is needed because
 * there number of DCSM registers on Rev E and prior vs Rev F and later is
 * different.
 */
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
	else
		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}


/*
 * In *base and *limit, pass back the full 40-bit base and limit physical
 * addresses for the node given by node_id.  This information is obtained from
 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
 * base and limit addresses are of type SysAddr, as defined at the start of
 * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
 * in the address range they represent.
 */
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
			       u64 *base, u64 *limit)
{
	*base = pvt->dram_base[node_id];
	*limit = pvt->dram_limit[node_id];
}

/*
 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
 * with node_id
 */
static int amd64_base_limit_match(struct amd64_pvt *pvt,
					u64 sys_addr, int node_id)
{
	u64 base, limit, addr;

	amd64_get_base_and_limit(pvt, node_id, &base, &limit);

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

	return (addr >= base) && (addr <= limit);
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
	intlv_en = pvt->dram_IntlvEn[0];

	if (intlv_en == 0) {
		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
				goto found;
		}
		goto err_no_match;
	}

	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
			     "IntlvEn field of DRAM Base Register for node 0: "
			     "this probably indicates a BIOS bug.\n", intlv_en);
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
			break;	/* intlv_sel field matches */

		if (++node_id >= DRAM_REG_COUNT)
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
		amd64_printk(KERN_WARNING,
			     "%s(): sys_addr 0x%llx falls outside base/limit "
			     "address range for node %d with node interleaving "
			     "enabled.\n",
			     __func__, sys_addr, node_id);
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}

/*
 * Extract the DRAM CS base address from selected csrow register.
 */
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
{
	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
				pvt->dcs_shift;
}

/*
 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
 */
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
{
	u64 dcsm_bits, other_bits;
	u64 mask;

	/* Extract bits from DRAM CS Mask. */
	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;

	other_bits = pvt->dcsm_mask;
	other_bits = ~(other_bits << pvt->dcs_shift);

	/*
	 * The extracted bits from DCSM belong in the spaces represented by
	 * the cleared bits in other_bits.
	 */
	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;

	return mask;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

	/*
	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
	 * base/mask register pair, test the condition shown near the start of
	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
	 */
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {

		/* This DRAM chip select is disabled on this node */
		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
			continue;

		base = base_from_dct_base(pvt, csrow);
		mask = ~mask_from_dct_mask(pvt, csrow);

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}

	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Return the base value defined by the DRAM Base register for the node
 * represented by mci.  This function returns the full 40-bit value despite the
 * fact that the register only stores bits 39-24 of the value. See section
 * 3.4.4.1 (BKDG #26094, K8, revA-E)
 */
static inline u64 get_dram_base(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	return pvt->dram_base[pvt->mc_node_id];
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

	/* only valid for Fam10h */
	if (boot_cpu_data.x86 == 0x10 &&
	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

	if ((pvt->dhar & DHAR_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

	base = dhar_base(pvt->dhar);

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
		*hole_offset = f10_dhar_offset(pvt->dhar);
	else
		*hole_offset = k8_dhar_offset(pvt->dhar);

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

	dram_base = get_dram_base(mci);

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
	    (dram_addr & 0xfff);

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
	    (input_addr & 0xfff);

	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));

	base = base_from_dct_base(pvt, csrow);
	mask = mask_from_dct_mask(pvt, csrow);

	*input_addr_min = base & ~mask;
	*input_addr_max = base | mask | pvt->dcs_mask_notused;
}

/*
 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
 * Address High (section 3.6.4.6) register values and return the result. Address
 * is located in the info structure (nbeah and nbeal), the encoding is device
 * specific.
 */
static u64 extract_error_address(struct mem_ctl_info *mci,
				 struct err_regs *info)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	return pvt->ops->get_error_address(mci, info);
}


/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
		amd64_mc_printk(mci, KERN_ERR,
			     "Failed to translate InputAddr to csrow for "
			     "address 0x%lx\n", (unsigned long)sys_addr);
	return csrow;
}

static int get_channel_from_ecc_syndrome(unsigned short syndrome);

static void amd64_cpu_display_info(struct amd64_pvt *pvt)
{
	if (boot_cpu_data.x86 == 0x11)
		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
	else if (boot_cpu_data.x86 == 0x10)
		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
	else if (boot_cpu_data.x86 == 0xf)
		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
			(pvt->ext_model >= OPTERON_CPU_REV_F) ?
			"Rev F or later" : "Rev E or earlier");
	else
		/* we'll hardly ever ever get here */
		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
}

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
	int bit;
	enum dev_type edac_cap = EDAC_FLAG_NONE;

	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
		? 19
		: 17;

	if (pvt->dclr0 & BIT(bit))
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
					 int ganged);

/* Display and decode various NB registers for debug purposes. */
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
{
	int ganged;

	debugf1("  nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
		pvt->nbcap,
		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
		(pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
		(pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
	debugf1("    ECC Capable=%s   ChipKill Capable=%s\n",
		(pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
	debugf1("  DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
		pvt->dclr0,
		(pvt->dclr0 & BIT(19)) ?  "Enabled" : "Disabled",
		(pvt->dclr0 & BIT(8)) ?  "Enabled" : "Disabled",
		(pvt->dclr0 & BIT(11)) ?  "128b" : "64b");
	debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  DIMM Type=%s\n",
		(pvt->dclr0 & BIT(12)) ?  "Y" : "N",
		(pvt->dclr0 & BIT(13)) ?  "Y" : "N",
		(pvt->dclr0 & BIT(14)) ?  "Y" : "N",
		(pvt->dclr0 & BIT(15)) ?  "Y" : "N",
		(pvt->dclr0 & BIT(16)) ?  "UN-Buffered" : "Buffered");


	debugf1("  online-spare: 0x%8.08x\n", pvt->online_spare);

	if (boot_cpu_data.x86 == 0xf) {
		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
			pvt->dhar, dhar_base(pvt->dhar),
			k8_dhar_offset(pvt->dhar));
		debugf1("      DramHoleValid=%s\n",
			(pvt->dhar & DHAR_VALID) ?  "True" : "False");

		debugf1("  dbam-dkt: 0x%8.08x\n", pvt->dbam0);

		/* everything below this point is Fam10h and above */
		return;

	} else {
		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
			pvt->dhar, dhar_base(pvt->dhar),
			f10_dhar_offset(pvt->dhar));
		debugf1("    DramMemHoistValid=%s DramHoleValid=%s\n",
			(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
			"True" : "False",
			(pvt->dhar & DHAR_VALID) ?
			"True" : "False");
	}

	/* Only if NOT ganged does dcl1 have valid info */
	if (!dct_ganging_enabled(pvt)) {
		debugf1("  DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
			"Width=%s\n", pvt->dclr1,
			(pvt->dclr1 & BIT(19)) ?  "Enabled" : "Disabled",
			(pvt->dclr1 & BIT(8)) ?  "Enabled" : "Disabled",
			(pvt->dclr1 & BIT(11)) ?  "128b" : "64b");
		debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  "
			"DIMM Type=%s\n",
			(pvt->dclr1 & BIT(12)) ?  "Y" : "N",
			(pvt->dclr1 & BIT(13)) ?  "Y" : "N",
			(pvt->dclr1 & BIT(14)) ?  "Y" : "N",
			(pvt->dclr1 & BIT(15)) ?  "Y" : "N",
			(pvt->dclr1 & BIT(16)) ?  "UN-Buffered" : "Buffered");
	}

	/*
	 * Determine if ganged and then dump memory sizes for first controller,
	 * and if NOT ganged dump info for 2nd controller.
	 */
	ganged = dct_ganging_enabled(pvt);

	f10_debug_display_dimm_sizes(0, pvt, ganged);

	if (!ganged)
		f10_debug_display_dimm_sizes(1, pvt, ganged);
}

/* Read in both of DBAM registers */
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
	int err = 0;
	unsigned int reg;

	reg = DBAM0;
	err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
	if (err)
		goto err_reg;

	if (boot_cpu_data.x86 >= 0x10) {
		reg = DBAM1;
		err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);

		if (err)
			goto err_reg;
	}

	return;

err_reg:
	debugf0("Error reading F2x%03x.\n", reg);
}

/*
 * NOTE: CPU Revision Dependent code: Rev E and Rev F
 *
 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
 * set the shift factor for the DCSB and DCSM values.
 *
 * ->dcs_mask_notused, RevE:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of section
 * 3.5.4 (p. 84).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
 * gaps.
 *
 * ->dcs_mask_notused, RevF and later:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of NPT section
 * 4.5.4 (p. 87).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [36:27] and [21:13].
 *
 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
 * which are all bits in the above-mentioned gaps.
 */
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
{

	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_E_DCS_SHIFT;
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 8;
	} else {
		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;

		if (boot_cpu_data.x86 == 0x11) {
			pvt->cs_count = 4;
			pvt->num_dcsm = 2;
		} else {
			pvt->cs_count = 8;
			pvt->num_dcsm = 4;
		}
	}
}

/*
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
 */
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
{
	int cs, reg, err = 0;

	amd64_set_dct_base_and_mask(pvt);

	for (cs = 0; cs < pvt->cs_count; cs++) {
		reg = K8_DCSB0 + (cs * 4);
		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
						&pvt->dcsb0[cs]);
		if (unlikely(err))
			debugf0("Reading K8_DCSB0[%d] failed\n", cs);
		else
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsb0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's base */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSB1 + (cs * 4);
			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
							&pvt->dcsb1[cs]);
			if (unlikely(err))
				debugf0("Reading F10_DCSB1[%d] failed\n", cs);
			else
				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsb1[cs], reg);
		} else {
			pvt->dcsb1[cs] = 0;
		}
	}

	for (cs = 0; cs < pvt->num_dcsm; cs++) {
		reg = K8_DCSM0 + (cs * 4);
		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
					&pvt->dcsm0[cs]);
		if (unlikely(err))
			debugf0("Reading K8_DCSM0 failed\n");
		else
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsm0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's mask */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSM1 + (cs * 4);
			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
					&pvt->dcsm1[cs]);
			if (unlikely(err))
				debugf0("Reading F10_DCSM1[%d] failed\n", cs);
			else
				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsm1[cs], reg);
		} else
			pvt->dcsm1[cs] = 0;
	}
}

static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
{
	enum mem_type type;

	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
		/* Rev F and later */
		type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
	} else {
		/* Rev E and earlier */
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

	debugf1("  Memory type is: %s\n",
		(type == MEM_DDR2) ? "MEM_DDR2" :
		(type == MEM_RDDR2) ? "MEM_RDDR2" :
		(type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");

	return type;
}

/*
 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
 * and the later RevF memory controllers (DDR vs DDR2)
 *
 * Return:
 *      number of memory channels in operation
 * Pass back:
 *      contents of the DCL0_LOW register
 */
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
	int flag, err = 0;

	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
	if (err)
		return err;

	if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
	} else {
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;
	}

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

/* extract the ERROR ADDRESS for the K8 CPUs */
static u64 k8_get_error_address(struct mem_ctl_info *mci,
				struct err_regs *info)
{
	return (((u64) (info->nbeah & 0xff)) << 32) +
			(info->nbeal & ~0x03);
}

/*
 * Read the Base and Limit registers for K8 based Memory controllers; extract
 * fields from the 'raw' reg into separate data fields
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
 */
static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 low;
	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
	int err;

	err = pci_read_config_dword(pvt->addr_f1_ctl,
				    K8_DRAM_BASE_LOW + off, &low);
	if (err)
		debugf0("Reading K8_DRAM_BASE_LOW failed\n");

	/* Extract parts into separate data entries */
	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
	pvt->dram_rw_en[dram] = (low & 0x3);

	err = pci_read_config_dword(pvt->addr_f1_ctl,
				    K8_DRAM_LIMIT_LOW + off, &low);
	if (err)
		debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");

	/*
	 * Extract parts into separate data entries. Limit is the HIGHEST memory
	 * location of the region, so lower 24 bits need to be all ones
	 */
	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
	pvt->dram_DstNode[dram] = (low & 0x7);
}

static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
					struct err_regs *info,
					u64 SystemAddress)
{
	struct mem_ctl_info *src_mci;
	unsigned short syndrome;
	int channel, csrow;
	u32 page, offset;

	/* Extract the syndrome parts and form a 16-bit syndrome */
	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
	syndrome |= LOW_SYNDROME(info->nbsh);

	/* CHIPKILL enabled */
	if (info->nbcfg & K8_NBCFG_CHIPKILL) {
		channel = get_channel_from_ecc_syndrome(syndrome);
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
			amd64_mc_printk(mci, KERN_WARNING,
				       "unknown syndrome 0x%x - possible error "
				       "reporting race\n", syndrome);
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
		channel = ((SystemAddress & BIT(3)) != 0);
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
	if (!src_mci) {
		amd64_mc_printk(mci, KERN_ERR,
			     "failed to map error address 0x%lx to a node\n",
			     (unsigned long)SystemAddress);
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	/* Now map the SystemAddress to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, SystemAddress);
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
		error_address_to_page_and_offset(SystemAddress, &page, &offset);

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

/*
 * determrine the number of PAGES in for this DIMM's size based on its DRAM
 * Address Mapping.
 *
 * First step is to calc the number of bits to shift a value of 1 left to
 * indicate show many pages. Start with the DBAM value as the starting bits,
 * then proceed to adjust those shift bits, based on CPU rev and the table.
 * See BKDG on the DBAM
 */
static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
{
	int nr_pages;

	if (pvt->ext_model >= OPTERON_CPU_REV_F) {
		nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
	} else {
		/*
		 * RevE and less section; this line is tricky. It collapses the
		 * table used by RevD and later to one that matches revisions CG
		 * and earlier.
		 */
		dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
				(dram_map > 8 ? 4 : (dram_map > 5 ?
				3 : (dram_map > 2 ? 1 : 0))) : 0;

		/* 25 shift is 32MiB minimum DIMM size in RevE and prior */
		nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
	}

	return nr_pages;
}

/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
	int dbams[] = { DBAM0, DBAM1 };
	int err = 0, channels = 0;
	int i, j;
	u32 dbam;

	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
	if (err)
		goto err_reg;

	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
	if (err)
		goto err_reg;

	/* If we are in 128 bit mode, then we are using 2 channels */
	if (pvt->dclr0 & F10_WIDTH_128) {
		debugf0("Data WIDTH is 128 bits - 2 channels\n");
		channels = 2;
		return channels;
	}

	/*
	 * Need to check if in UN-ganged mode: In such, there are 2 channels,
	 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
	 * will be OFF.
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
	debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");

	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
		err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
		if (err)
			goto err_reg;

		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
	}

	debugf0("MCT channel count: %d\n", channels);

	return channels;

err_reg:
	return -1;

}

static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
{
	return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
}

/* Enable extended configuration access via 0xCF8 feature */
static void amd64_setup(struct amd64_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);

	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
}

/* Restore the extended configuration access via 0xCF8 feature */
static void amd64_teardown(struct amd64_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);

	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
	if (pvt->flags.cf8_extcfg)
		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
}

static u64 f10_get_error_address(struct mem_ctl_info *mci,
			struct err_regs *info)
{
	return (((u64) (info->nbeah & 0xffff)) << 32) +
			(info->nbeal & ~0x01);
}

/*
 * Read the Base and Limit registers for F10 based Memory controllers. Extract
 * fields from the 'raw' reg into separate data fields.
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
 */
static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;

	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);

	/* read the 'raw' DRAM BASE Address register */
	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);

	/* Read from the ECS data register */
	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);

	/* Extract parts into separate data entries */
	pvt->dram_rw_en[dram] = (low_base & 0x3);

	if (pvt->dram_rw_en[dram] == 0)
		return;

	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;

	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
			       (((u64)low_base  & 0xFFFF0000) << 8);

	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);

	/* read the 'raw' LIMIT registers */
	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);

	/* Read from the ECS data register for the HIGH portion */
	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);

	debugf0("  HW Regs: BASE=0x%08x-%08x      LIMIT=  0x%08x-%08x\n",
		high_base, low_base, high_limit, low_limit);

	pvt->dram_DstNode[dram] = (low_limit & 0x7);
	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;

	/*
	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
	 * memory location of the region, so low 24 bits need to be all ones.
	 */
	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
				(((u64) low_limit & 0xFFFF0000) << 8) |
				0x00FFFFFF;
}

static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{
	int err = 0;

	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
				    &pvt->dram_ctl_select_low);
	if (err) {
		debugf0("Reading F10_DCTL_SEL_LOW failed\n");
	} else {
		debugf0("DRAM_DCTL_SEL_LOW=0x%x  DctSelBaseAddr=0x%x\n",
			pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));

		debugf0("  DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
				"sel-hi-range=%s\n",
			(dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
			(dct_dram_enabled(pvt) ? "Enabled"   : "Disabled"),
			(dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));

		debugf0("  DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
			(dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
			(dct_memory_cleared(pvt) ? "True " : "False "),
			dct_sel_interleave_addr(pvt));
	}

	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
				    &pvt->dram_ctl_select_high);
	if (err)
		debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
}

/*
 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
 * Interleaving Modes.
 */
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				int hi_range_sel, u32 intlv_en)
{
	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;

	if (dct_ganging_enabled(pvt))
		cs = 0;
	else if (hi_range_sel)
		cs = dct_sel_high;
	else if (dct_interleave_enabled(pvt)) {
		/*
		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
		 */
		if (dct_sel_interleave_addr(pvt) == 0)
			cs = sys_addr >> 6 & 1;
		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			if (dct_sel_interleave_addr(pvt) & 1)
				cs = (sys_addr >> 9 & 1) ^ temp;
			else
				cs = (sys_addr >> 6 & 1) ^ temp;
		} else if (intlv_en & 4)
			cs = sys_addr >> 15 & 1;
		else if (intlv_en & 2)
			cs = sys_addr >> 14 & 1;
		else if (intlv_en & 1)
			cs = sys_addr >> 13 & 1;
		else
			cs = sys_addr >> 12 & 1;
	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
		cs = ~dct_sel_high & 1;
	else
		cs = 0;

	return cs;
}

static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
{
	if (intlv_en == 1)
		return 1;
	else if (intlv_en == 3)
		return 2;
	else if (intlv_en == 7)
		return 3;

	return 0;
}

/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
						 u32 dct_sel_base_addr,
						 u64 dct_sel_base_off,
						 u32 hole_valid, u32 hole_off,
						 u64 dram_base)
{
	u64 chan_off;

	if (hi_range_sel) {
		if (!(dct_sel_base_addr & 0xFFFFF800) &&
		   hole_valid && (sys_addr >= 0x100000000ULL))
			chan_off = hole_off << 16;
		else
			chan_off = dct_sel_base_off;
	} else {
		if (hole_valid && (sys_addr >= 0x100000000ULL))
			chan_off = hole_off << 16;
		else
			chan_off = dram_base & 0xFFFFF8000000ULL;
	}

	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
			(chan_off & 0x0000FFFFFF800000ULL);
}

/* Hack for the time being - Can we get this from BIOS?? */
#define	CH0SPARE_RANK	0
#define	CH1SPARE_RANK	1

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
static inline int f10_process_possible_spare(int csrow,
				u32 cs, struct amd64_pvt *pvt)
{
	u32 swap_done;
	u32 bad_dram_cs;

	/* Depending on channel, isolate respective SPARING info */
	if (cs) {
		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH1SPARE_RANK;
	} else {
		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH0SPARE_RANK;
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	u32 cs_base, cs_mask;
	int cs_found = -EINVAL;
	int csrow;

	mci = mci_lookup[nid];
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);

	for (csrow = 0; csrow < pvt->cs_count; csrow++) {

		cs_base = amd64_get_dct_base(pvt, cs, csrow);
		if (!(cs_base & K8_DCSB_CS_ENABLE))
			continue;

		/*
		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
		 * of the actual address.
		 */
		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;

		/*
		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
		 */
		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);

		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
				csrow, cs_base, cs_mask);

		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;

		debugf1("              Final CSMask=0x%x\n", cs_mask);
		debugf1("    (InputAddr & ~CSMask)=0x%x "
				"(CSBase & ~CSMask)=0x%x\n",
				(in_addr & ~cs_mask), (cs_base & ~cs_mask));

		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
			cs_found = f10_process_possible_spare(csrow, cs, pvt);

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

/* For a given @dram_range, check if @sys_addr falls within it. */
static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
				  u64 sys_addr, int *nid, int *chan_sel)
{
	int node_id, cs_found = -EINVAL, high_range = 0;
	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
	u32 hole_valid, tmp, dct_sel_base, channel;
	u64 dram_base, chan_addr, dct_sel_base_off;

	dram_base = pvt->dram_base[dram_range];
	intlv_en = pvt->dram_IntlvEn[dram_range];

	node_id = pvt->dram_DstNode[dram_range];
	intlv_sel = pvt->dram_IntlvSel[dram_range];

	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);

	/*
	 * This assumes that one node's DHAR is the same as all the other
	 * nodes' DHAR.
	 */
	hole_off = (pvt->dhar & 0x0000FF80);
	hole_valid = (pvt->dhar & 0x1);
	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;

	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
			hole_off, hole_valid, intlv_sel);

	if (intlv_en ||
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
		high_range = 1;

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
					     dct_sel_base_off, hole_valid,
					     hole_off, dram_base);

	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);

	/* remove Node ID (in case of memory interleaving) */
	tmp = chan_addr & 0xFC0;

	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;

	/* remove channel interleave and hash */
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
		if (dct_sel_interleave_addr(pvt) != 1)
			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
		else {
			tmp = chan_addr & 0xFC0;
			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
					| tmp;
		}
	}

	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
		chan_addr, (u32)(chan_addr >> 8));

	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
	int dram_range, cs_found = -EINVAL;
	u64 dram_base, dram_limit;

	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {

		if (!pvt->dram_rw_en[dram_range])
			continue;

		dram_base = pvt->dram_base[dram_range];
		dram_limit = pvt->dram_limit[dram_range];

		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {

			cs_found = f10_match_to_this_node(pvt, dram_range,
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
 * CSROW, Channel.
 *
 * The @sys_addr is usually an error address received from the hardware.
 */
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
				     struct err_regs *info,
				     u64 sys_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	unsigned short syndrome;
	int nid, csrow, chan = 0;

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

	if (csrow >= 0) {
		error_address_to_page_and_offset(sys_addr, &page, &offset);

		syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
		syndrome |= LOW_SYNDROME(info->nbsh);

		/*
		 * Is CHIPKILL on? If so, then we can attempt to use the
		 * syndrome to isolate which channel the error was on.
		 */
		if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
			chan = get_channel_from_ecc_syndrome(syndrome);

		if (chan >= 0) {
			edac_mc_handle_ce(mci, page, offset, syndrome,
					csrow, chan, EDAC_MOD_STR);
		} else {
			/*
			 * Channel unknown, report all channels on this
			 * CSROW as failed.
			 */
			for (chan = 0; chan < mci->csrows[csrow].nr_channels;
								chan++) {
					edac_mc_handle_ce(mci, page, offset,
							syndrome,
							csrow, chan,
							EDAC_MOD_STR);
			}
		}

	} else {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
	}
}

/*
 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
 *
 * Normalize to 128MB by subracting 27 bit shift.
 */
static int map_dbam_to_csrow_size(int index)
{
	int mega_bytes = 0;

	if (index > 0 && index <= DBAM_MAX_VALUE)
		mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));

	return mega_bytes;
}

/*
 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
 * CSROWs as well
 */
static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
					 int ganged)
{
	int dimm, size0, size1;
	u32 dbam;
	u32 *dcsb;

	debugf1("  dbam%d: 0x%8.08x  CSROW is %s\n", ctrl,
			ctrl ? pvt->dbam1 : pvt->dbam0,
			ganged ? "GANGED - dbam1 not used" : "NON-GANGED");

	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;

	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
			size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));

		size1 = 0;
		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
			size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));

		debugf1("     CTRL-%d DIMM-%d=%5dMB   CSROW-%d=%5dMB "
				"CSROW-%d=%5dMB\n",
				ctrl,
				dimm,
				size0 + size1,
				dimm * 2,
				size0,
				dimm * 2 + 1,
				size1);
	}
}

/*
 * Very early hardware probe on pci_probe thread to determine if this module
 * supports the hardware.
 *
 * Return:
 *      0 for OK
 *      1 for error
 */
static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
{
	int ret = 0;

	/*
	 * If we are on a DDR3 machine, we don't know yet if
	 * we support that properly at this time
	 */
	if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
	    (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {

		amd64_printk(KERN_WARNING,
			"%s() This machine is running with DDR3 memory. "
			"This is not currently supported. "
			"DCHR0=0x%x DCHR1=0x%x\n",
			__func__, pvt->dchr0, pvt->dchr1);

		amd64_printk(KERN_WARNING,
			"   Contact '%s' module MAINTAINER to help add"
			" support.\n",
			EDAC_MOD_STR);

		ret = 1;

	}
	return ret;
}

/*
 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
 * (as per PCI DEVICE_IDs):
 *
 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
 * DEVICE ID, even though there is differences between the different Revisions
 * (CG,D,E,F).
 *
 * Family F10h and F11h.
 *
 */
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
		.ctl_name = "RevF",
		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
		.ops = {
			.early_channel_count = k8_early_channel_count,
			.get_error_address = k8_get_error_address,
			.read_dram_base_limit = k8_read_dram_base_limit,
			.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
			.dbam_map_to_pages = k8_dbam_map_to_pages,
		}
	},
	[F10_CPUS] = {
		.ctl_name = "Family 10h",
		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
		.ops = {
			.probe_valid_hardware = f10_probe_valid_hardware,
			.early_channel_count = f10_early_channel_count,
			.get_error_address = f10_get_error_address,
			.read_dram_base_limit = f10_read_dram_base_limit,
			.read_dram_ctl_register = f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
			.dbam_map_to_pages = f10_dbam_map_to_pages,
		}
	},
	[F11_CPUS] = {
		.ctl_name = "Family 11h",
		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
		.ops = {
			.probe_valid_hardware = f10_probe_valid_hardware,
			.early_channel_count = f10_early_channel_count,
			.get_error_address = f10_get_error_address,
			.read_dram_base_limit = f10_read_dram_base_limit,
			.read_dram_ctl_register = f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
			.dbam_map_to_pages = f10_dbam_map_to_pages,
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

/*
 * syndrome mapping table for ECC ChipKill devices
 *
 * The comment in each row is the token (nibble) number that is in error.
 * The least significant nibble of the syndrome is the mask for the bits
 * that are in error (need to be toggled) for the particular nibble.
 *
 * Each row contains 16 entries.
 * The first entry (0th) is the channel number for that row of syndromes.
 * The remaining 15 entries are the syndromes for the respective Error
 * bit mask index.
 *
 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
 * bit in error.
 * The 2nd index entry is 0x0010 that the second bit is damaged.
 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
 * are damaged.
 * Thus so on until index 15, 0x1111, whose entry has the syndrome
 * indicating that all 4 bits are damaged.
 *
 * A search is performed on this table looking for a given syndrome.
 *
 * See the AMD documentation for ECC syndromes. This ECC table is valid
 * across all the versions of the AMD64 processors.
 *
 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
 * COLUMN index, then search all ROWS of that column, looking for a match
 * with the input syndrome. The ROW value will be the token number.
 *
 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
 * error.
 */
#define NUMBER_ECC_ROWS  36
static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
	/* Channel 0 syndromes */
	{/*0*/  0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
	   0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
	{/*1*/  0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
	   0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
	{/*2*/  0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
	   0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
	{/*3*/  0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
	   0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
	{/*4*/  0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
	   0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
	{/*5*/  0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
	   0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
	{/*6*/  0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
	   0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
	{/*7*/  0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
	   0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
	{/*8*/  0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
	   0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
	{/*9*/  0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
	   0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
	{/*a*/  0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
	   0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
	{/*b*/  0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
	   0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
	{/*c*/  0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
	   0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
	{/*d*/  0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
	   0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
	{/*e*/  0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
	   0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
	{/*f*/  0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
	   0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },

	/* Channel 1 syndromes */
	{/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
	   0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
	{/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
	   0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
	{/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
	   0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
	{/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
	   0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
	{/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
	   0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
	{/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
	   0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
	{/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
	   0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
	{/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
	   0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
	{/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
	   0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
	{/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
	   0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
	{/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
	   0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
	{/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
	   0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
	{/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
	   0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
	{/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
	   0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
	{/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
	   0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
	{/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
	   0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },

	/* ECC bits are also in the set of tokens and they too can go bad
	 * first 2 cover channel 0, while the second 2 cover channel 1
	 */
	{/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
	   0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
	{/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
	   0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
	{/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
	   0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
	{/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
	   0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
};

/*
 * Given the syndrome argument, scan each of the channel tables for a syndrome
 * match. Depending on which table it is found, return the channel number.
 */
static int get_channel_from_ecc_syndrome(unsigned short syndrome)
{
	int row;
	int column;

	/* Determine column to scan */
	column = syndrome & 0xF;

	/* Scan all rows, looking for syndrome, or end of table */
	for (row = 0; row < NUMBER_ECC_ROWS; row++) {
		if (ecc_chipkill_syndromes[row][column] == syndrome)
			return ecc_chipkill_syndromes[row][0];
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}

/*
 * Check for valid error in the NB Status High register. If so, proceed to read
 * NB Status Low, NB Address Low and NB Address High registers and store data
 * into error structure.
 *
 * Returns:
 *	- 1: if hardware regs contains valid error info
 *	- 0: if no valid error is indicated
 */
static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
				     struct err_regs *regs)
{
	struct amd64_pvt *pvt;
	struct pci_dev *misc_f3_ctl;
	int err = 0;

	pvt = mci->pvt_info;
	misc_f3_ctl = pvt->misc_f3_ctl;

	err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
	if (err)
		goto err_reg;

	if (!(regs->nbsh & K8_NBSH_VALID_BIT))
		return 0;

	/* valid error, read remaining error information registers */
	err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
	if (err)
		goto err_reg;

	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
	if (err)
		goto err_reg;

	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
	if (err)
		goto err_reg;

	err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
	if (err)
		goto err_reg;

	return 1;

err_reg:
	debugf0("Reading error info register failed\n");
	return 0;
}

/*
 * This function is called to retrieve the error data from hardware and store it
 * in the info structure.
 *
 * Returns:
 *	- 1: if a valid error is found
 *	- 0: if no error is found
 */
static int amd64_get_error_info(struct mem_ctl_info *mci,
				struct err_regs *info)
{
	struct amd64_pvt *pvt;
	struct err_regs regs;

	pvt = mci->pvt_info;

	if (!amd64_get_error_info_regs(mci, info))
		return 0;

	/*
	 * Here's the problem with the K8's EDAC reporting: There are four
	 * registers which report pieces of error information. They are shared
	 * between CEs and UEs. Furthermore, contrary to what is stated in the
	 * BKDG, the overflow bit is never used! Every error always updates the
	 * reporting registers.
	 *
	 * Can you see the race condition? All four error reporting registers
	 * must be read before a new error updates them! There is no way to read
	 * all four registers atomically. The best than can be done is to detect
	 * that a race has occured and then report the error without any kind of
	 * precision.
	 *
	 * What is still positive is that errors are still reported and thus
	 * problems can still be detected - just not localized because the
	 * syndrome and address are spread out across registers.
	 *
	 * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
	 * UEs and CEs should have separate register sets with proper overflow
	 * bits that are used! At very least the problem can be fixed by
	 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
	 * set the overflow bit - unless the current error is CE and the new
	 * error is UE which would be the only situation for overwriting the
	 * current values.
	 */

	regs = *info;

	/* Use info from the second read - most current */
	if (unlikely(!amd64_get_error_info_regs(mci, info)))
		return 0;

	/* clear the error bits in hardware */
	pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);

	/* Check for the possible race condition */
	if ((regs.nbsh != info->nbsh) ||
	     (regs.nbsl != info->nbsl) ||
	     (regs.nbeah != info->nbeah) ||
	     (regs.nbeal != info->nbeal)) {
		amd64_mc_printk(mci, KERN_WARNING,
				"hardware STATUS read access race condition "
				"detected!\n");
		return 0;
	}
	return 1;
}

/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
static void amd64_handle_ce(struct mem_ctl_info *mci,
			    struct err_regs *info)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 SystemAddress;

	/* Ensure that the Error Address is VALID */
	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
		amd64_mc_printk(mci, KERN_ERR,
			"HW has no ERROR_ADDRESS available\n");
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	SystemAddress = extract_error_address(mci, info);

	amd64_mc_printk(mci, KERN_ERR,
		"CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);

	pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
}

/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
			    struct err_regs *info)
{
	int csrow;
	u64 SystemAddress;
	u32 page, offset;
	struct mem_ctl_info *log_mci, *src_mci = NULL;

	log_mci = mci;

	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
		amd64_mc_printk(mci, KERN_CRIT,
			"HW has no ERROR_ADDRESS available\n");
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	SystemAddress = extract_error_address(mci, info);

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
	if (!src_mci) {
		amd64_mc_printk(mci, KERN_CRIT,
			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
			(unsigned long)SystemAddress);
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

	csrow = sys_addr_to_csrow(log_mci, SystemAddress);
	if (csrow < 0) {
		amd64_mc_printk(mci, KERN_CRIT,
			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
			(unsigned long)SystemAddress);
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
		error_address_to_page_and_offset(SystemAddress, &page, &offset);
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
					    struct err_regs *info)
{
	u32 ec  = ERROR_CODE(info->nbsl);
	u32 xec = EXT_ERROR_CODE(info->nbsl);
	int ecc_type = (info->nbsh >> 13) & 0x3;

	/* Bail early out if this was an 'observed' error */
	if (PP(ec) == K8_NBSL_PP_OBS)
		return;

	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
		return;

	if (ecc_type == 2)
		amd64_handle_ce(mci, info);
	else if (ecc_type == 1)
		amd64_handle_ue(mci, info);

	/*
	 * If main error is CE then overflow must be CE.  If main error is UE
	 * then overflow is unknown.  We'll call the overflow a CE - if
	 * panic_on_ue is set then we're already panic'ed and won't arrive
	 * here. Else, then apparently someone doesn't think that UE's are
	 * catastrophic.
	 */
	if (info->nbsh & K8_NBSH_OVERFLOW)
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
}

void amd64_decode_bus_error(int node_id, struct err_regs *regs)
{
	struct mem_ctl_info *mci = mci_lookup[node_id];

	__amd64_decode_bus_error(mci, regs);

	/*
	 * Check the UE bit of the NB status high register, if set generate some
	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
	 * If it was a GART error, skip that process.
	 *
	 * FIXME: this should go somewhere else, if at all.
	 */
	if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
		edac_mc_handle_ue_no_info(mci, "UE bit is set");

}

/*
 * The main polling 'check' function, called FROM the edac core to perform the
 * error checking and if an error is encountered, error processing.
 */
static void amd64_check(struct mem_ctl_info *mci)
{
	struct err_regs regs;

	if (amd64_get_error_info(mci, &regs)) {
		struct amd64_pvt *pvt = mci->pvt_info;
		amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
	}
}

/*
 * Input:
 *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
 *	2) AMD Family index value
 *
 * Ouput:
 *	Upon return of 0, the following filled in:
 *
 *		struct pvt->addr_f1_ctl
 *		struct pvt->misc_f3_ctl
 *
 *	Filled in with related device funcitions of 'dram_f2_ctl'
 *	These devices are "reserved" via the pci_get_device()
 *
 *	Upon return of 1 (error status):
 *
 *		Nothing reserved
 */
static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
{
	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];

	/* Reserve the ADDRESS MAP Device */
	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
						    amd64_dev->addr_f1_ctl,
						    pvt->dram_f2_ctl);

	if (!pvt->addr_f1_ctl) {
		amd64_printk(KERN_ERR, "error address map device not found: "
			     "vendor %x device 0x%x (broken BIOS?)\n",
			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
		return 1;
	}

	/* Reserve the MISC Device */
	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
						    amd64_dev->misc_f3_ctl,
						    pvt->dram_f2_ctl);

	if (!pvt->misc_f3_ctl) {
		pci_dev_put(pvt->addr_f1_ctl);
		pvt->addr_f1_ctl = NULL;

		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
			     "vendor %x device 0x%x (broken BIOS?)\n",
			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
		return 1;
	}

	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
		pci_name(pvt->addr_f1_ctl));
	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
		pci_name(pvt->dram_f2_ctl));
	debugf1("    Misc device PCI Bus ID:\t%s\n",
		pci_name(pvt->misc_f3_ctl));

	return 0;
}

static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
{
	pci_dev_put(pvt->addr_f1_ctl);
	pci_dev_put(pvt->misc_f3_ctl);
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
static void amd64_read_mc_registers(struct amd64_pvt *pvt)
{
	u64 msr_val;
	int dram, err = 0;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
	rdmsrl(MSR_K8_TOP_MEM1, msr_val);
	pvt->top_mem = msr_val >> 23;
	debugf0("  TOP_MEM=0x%08llx\n", pvt->top_mem);

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
		rdmsrl(MSR_K8_TOP_MEM2, msr_val);
		pvt->top_mem2 = msr_val >> 23;
		debugf0("  TOP_MEM2=0x%08llx\n", pvt->top_mem2);
	} else
		debugf0("  TOP_MEM2 disabled.\n");

	amd64_cpu_display_info(pvt);

	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
	if (err)
		goto err_reg;

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
		/*
		 * Call CPU specific READ function to get the DRAM Base and
		 * Limit values from the DCT.
		 */
		pvt->ops->read_dram_base_limit(pvt, dram);

		/*
		 * Only print out debug info on rows with both R and W Enabled.
		 * Normal processing, compiler should optimize this whole 'if'
		 * debug output block away.
		 */
		if (pvt->dram_rw_en[dram] != 0) {
			debugf1("  DRAM_BASE[%d]: 0x%8.08x-%8.08x "
				"DRAM_LIMIT:  0x%8.08x-%8.08x\n",
				dram,
				(u32)(pvt->dram_base[dram] >> 32),
				(u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
				(u32)(pvt->dram_limit[dram] >> 32),
				(u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
			debugf1("        IntlvEn=%s %s %s "
				"IntlvSel=%d DstNode=%d\n",
				pvt->dram_IntlvEn[dram] ?
					"Enabled" : "Disabled",
				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
				pvt->dram_IntlvSel[dram],
				pvt->dram_DstNode[dram]);
		}
	}

	amd64_read_dct_base_mask(pvt);

	err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
	if (err)
		goto err_reg;

	amd64_read_dbam_reg(pvt);

	err = pci_read_config_dword(pvt->misc_f3_ctl,
				F10_ONLINE_SPARE, &pvt->online_spare);
	if (err)
		goto err_reg;

	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
	if (err)
		goto err_reg;

	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
	if (err)
		goto err_reg;

	if (!dct_ganging_enabled(pvt)) {
		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
						&pvt->dclr1);
		if (err)
			goto err_reg;

		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
						&pvt->dchr1);
		if (err)
			goto err_reg;
	}

	amd64_dump_misc_regs(pvt);

	return;

err_reg:
	debugf0("Reading an MC register failed\n");

}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
 *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
	u32 dram_map, nr_pages;

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
	dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;

	nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
static int amd64_init_csrows(struct mem_ctl_info *mci)
{
	struct csrow_info *csrow;
	struct amd64_pvt *pvt;
	u64 input_addr_min, input_addr_max, sys_addr;
	int i, err = 0, empty = 1;

	pvt = mci->pvt_info;

	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
	if (err)
		debugf0("Reading K8_NBCFG failed\n");

	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
		);

	for (i = 0; i < pvt->cs_count; i++) {
		csrow = &mci->csrows[i];

		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
		/* 8 bytes of resolution */

		csrow->mtype = amd64_determine_memory_type(pvt);

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
			csrow->edac_mode =
			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}

/*
 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
 * enable it.
 */
static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
	int cpu, idx = 0, err = 0;
	struct msr msrs[cpumask_weight(cpumask)];
	u32 value;
	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;

	if (!ecc_enable_override)
		return;

	memset(msrs, 0, sizeof(msrs));

	amd64_printk(KERN_WARNING,
		"'ecc_enable_override' parameter is active, "
		"Enabling AMD ECC hardware now: CAUTION\n");

	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
	if (err)
		debugf0("Reading K8_NBCTL failed\n");

	/* turn on UECCn and CECCEn bits */
	pvt->old_nbctl = value & mask;
	pvt->nbctl_mcgctl_saved = 1;

	value |= mask;
	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);

	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);

	for_each_cpu(cpu, cpumask) {
		if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
			set_bit(idx, &pvt->old_mcgctl);

		msrs[idx].l |= K8_MSR_MCGCTL_NBE;
		idx++;
	}
	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);

	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
	if (err)
		debugf0("Reading K8_NBCFG failed\n");

	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");

	if (!(value & K8_NBCFG_ECC_ENABLE)) {
		amd64_printk(KERN_WARNING,
			"This node reports that DRAM ECC is "
			"currently Disabled; ENABLING now\n");

		/* Attempt to turn on DRAM ECC Enable */
		value |= K8_NBCFG_ECC_ENABLE;
		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);

		err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
		if (err)
			debugf0("Reading K8_NBCFG failed\n");

		if (!(value & K8_NBCFG_ECC_ENABLE)) {
			amd64_printk(KERN_WARNING,
				"Hardware rejects Enabling DRAM ECC checking\n"
				"Check memory DIMM configuration\n");
		} else {
			amd64_printk(KERN_DEBUG,
				"Hardware accepted DRAM ECC Enable\n");
		}
	}
	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");

	pvt->ctl_error_info.nbcfg = value;
}

static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
{
	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
	int cpu, idx = 0, err = 0;
	struct msr msrs[cpumask_weight(cpumask)];
	u32 value;
	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;

	if (!pvt->nbctl_mcgctl_saved)
		return;

	memset(msrs, 0, sizeof(msrs));

	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
	if (err)
		debugf0("Reading K8_NBCTL failed\n");
	value &= ~mask;
	value |= pvt->old_nbctl;

	/* restore the NB Enable MCGCTL bit */
	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);

	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);

	for_each_cpu(cpu, cpumask) {
		msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
		msrs[idx].l |=
			test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
		idx++;
	}

	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
}

/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(cpumask_t *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_t mask;
	struct msr *msrs;
	int cpu, nbe, idx = 0;
	bool ret = false;

	cpumask_clear(&mask);

	get_cpus_on_this_dct_cpumask(&mask, nid);

	msrs = kzalloc(sizeof(struct msr) * cpumask_weight(&mask), GFP_KERNEL);
	if (!msrs) {
		amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
			      __func__);
		 return false;
	}

	rdmsr_on_cpus(&mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, &mask) {
		nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			cpu, msrs[idx].q,
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;

		idx++;
	}
	ret = true;

out:
	kfree(msrs);
	return ret;
}

/*
 * EDAC requires that the BIOS have ECC enabled before taking over the
 * processing of ECC errors. This is because the BIOS can properly initialize
 * the memory system completely. A command line option allows to force-enable
 * hardware ECC later in amd64_enable_ecc_error_reporting().
 */
static const char *ecc_warning =
	"WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
	" Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
	" Also, use of the override can cause unknown side effects.\n";

static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
{
	u32 value;
	int err = 0;
	u8 ecc_enabled = 0;
	bool nb_mce_en = false;

	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
	if (err)
		debugf0("Reading K8_NBCTL failed\n");

	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
	if (!ecc_enabled)
		amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
			     "is currently disabled, set F3x%x[22] (%s).\n",
			     K8_NBCFG, pci_name(pvt->misc_f3_ctl));
	else
		amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");

	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
	if (!nb_mce_en)
		amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, pvt->mc_node_id);

	if (!ecc_enabled || !nb_mce_en) {
		if (!ecc_enable_override) {
			amd64_printk(KERN_WARNING, "%s", ecc_warning);
			return -ENODEV;
		}
	} else
		/* CLEAR the override, since BIOS controlled it */
		ecc_enable_override = 0;

	return 0;
}

struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
		sysfs_attrs[i] = amd64_inj_attrs[j];

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

	if (pvt->nbcap & K8_NBCAP_SECDED)
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
	mci->ctl_page_to_phys	= NULL;

	/* IMPORTANT: Set the polling 'check' function in this module */
	mci->edac_check		= amd64_check;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

/*
 * Init stuff for this DRAM Controller device.
 *
 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
 * Space feature MUST be enabled on ALL Processors prior to actually reading
 * from the ECS registers. Since the loading of the module can occur on any
 * 'core', and cores don't 'see' all the other processors ECS data when the
 * others are NOT enabled. Our solution is to first enable ECS access in this
 * routine on all processors, gather some data in a amd64_pvt structure and
 * later come back in a finish-setup function to perform that final
 * initialization. See also amd64_init_2nd_stage() for that.
 */
static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
				    int mc_type_index)
{
	struct amd64_pvt *pvt = NULL;
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_exit;

	pvt->mc_node_id = get_node_id(dram_f2_ctl);

	pvt->dram_f2_ctl	= dram_f2_ctl;
	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
	pvt->mc_type_index	= mc_type_index;
	pvt->ops		= family_ops(mc_type_index);
	pvt->old_mcgctl		= 0;

	/*
	 * We have the dram_f2_ctl device as an argument, now go reserve its
	 * sibling devices from the PCI system.
	 */
	ret = -ENODEV;
	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
	if (err)
		goto err_free;

	ret = -EINVAL;
	err = amd64_check_ecc_enabled(pvt);
	if (err)
		goto err_put;

	/*
	 * Key operation here: setup of HW prior to performing ops on it. Some
	 * setup is required to access ECS data. After this is performed, the
	 * 'teardown' function must be called upon error and normal exit paths.
	 */
	if (boot_cpu_data.x86 >= 0x10)
		amd64_setup(pvt);

	/*
	 * Save the pointer to the private data for use in 2nd initialization
	 * stage
	 */
	pvt_lookup[pvt->mc_node_id] = pvt;

	return 0;

err_put:
	amd64_free_mc_sibling_devices(pvt);

err_free:
	kfree(pvt);

err_exit:
	return ret;
}

/*
 * This is the finishing stage of the init code. Needs to be performed after all
 * MCs' hardware have been prepped for accessing extended config space.
 */
static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
{
	int node_id = pvt->mc_node_id;
	struct mem_ctl_info *mci;
	int ret, err = 0;

	amd64_read_mc_registers(pvt);

	ret = -ENODEV;
	if (pvt->ops->probe_valid_hardware) {
		err = pvt->ops->probe_valid_hardware(pvt);
		if (err)
			goto err_exit;
	}

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
	 * tables in the 'mci' structure
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
		goto err_exit;

	ret = -ENOMEM;
	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
	if (!mci)
		goto err_exit;

	mci->pvt_info = pvt;

	mci->dev = &pvt->dram_f2_ctl->dev;
	amd64_setup_mci_misc_attributes(mci);

	if (amd64_init_csrows(mci))
		mci->edac_cap = EDAC_FLAG_NONE;

	amd64_enable_ecc_error_reporting(mci);
	amd64_set_mc_sysfs_attributes(mci);

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

	mci_lookup[node_id] = mci;
	pvt_lookup[node_id] = NULL;

	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

	return 0;

err_add_mc:
	edac_mc_free(mci);

err_exit:
	debugf0("failure to init 2nd stage: ret=%d\n", ret);

	amd64_restore_ecc_error_reporting(pvt);

	if (boot_cpu_data.x86 > 0xf)
		amd64_teardown(pvt);

	amd64_free_mc_sibling_devices(pvt);

	kfree(pvt_lookup[pvt->mc_node_id]);
	pvt_lookup[node_id] = NULL;

	return ret;
}


static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
				 const struct pci_device_id *mc_type)
{
	int ret = 0;

	debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
		get_amd_family_name(mc_type->driver_data));

	ret = pci_enable_device(pdev);
	if (ret < 0)
		ret = -EIO;
	else
		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);

	if (ret < 0)
		debugf0("ret=%d\n", ret);

	return ret;
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	amd64_restore_ecc_error_reporting(pvt);

	if (boot_cpu_data.x86 > 0xf)
		amd64_teardown(pvt);

	amd64_free_mc_sibling_devices(pvt);

	kfree(pvt);
	mci->pvt_info = NULL;

	mci_lookup[pvt->mc_node_id] = NULL;

	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

	/* Free the EDAC CORE resources */
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
		.driver_data	= K8_CPUS
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
		.driver_data	= F10_CPUS
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
		.driver_data	= F11_CPUS
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
	.probe		= amd64_init_one_instance,
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

static void amd64_setup_pci_device(void)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

	mci = mci_lookup[0];
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
						    EDAC_MOD_STR);

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
	int nb, err = -ENODEV;

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

	if (cache_k8_northbridges() < 0)
		return err;

	err = pci_register_driver(&amd64_pci_driver);
	if (err)
		return err;

	/*
	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
	 * amd64_pvt structs. These will be used in the 2nd stage init function
	 * to finish initialization of the MC instances.
	 */
	for (nb = 0; nb < num_k8_northbridges; nb++) {
		if (!pvt_lookup[nb])
			continue;

		err = amd64_init_2nd_stage(pvt_lookup[nb]);
		if (err)
			goto err_2nd_stage;
	}

	amd64_setup_pci_device();

	return 0;

err_2nd_stage:
	debugf0("2nd stage failed\n");
	pci_unregister_driver(&amd64_pci_driver);

	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");