Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
/*
 *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 */

/*
 *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
 *  Programm System Institute
 *  Pereslavl-Zalessky Russia
 */

/*
 *  This file contains functions dealing with S+tree
 *
 * B_IS_IN_TREE
 * copy_short_key
 * copy_item_head
 * comp_short_keys
 * comp_keys
 * comp_cpu_keys
 * comp_short_le_keys
 * comp_short_cpu_keys
 * cpu_key2cpu_key
 * le_key2cpu_key
 * comp_le_keys
 * bin_search
 * get_lkey
 * get_rkey
 * key_in_buffer
 * decrement_bcount
 * decrement_counters_in_path
 * reiserfs_check_path
 * pathrelse_and_restore
 * pathrelse
 * search_by_key_reada
 * search_by_key
 * search_for_position_by_key
 * comp_items
 * prepare_for_direct_item
 * prepare_for_direntry_item
 * prepare_for_delete_or_cut
 * calc_deleted_bytes_number
 * init_tb_struct
 * padd_item
 * reiserfs_delete_item
 * reiserfs_delete_solid_item
 * reiserfs_delete_object
 * maybe_indirect_to_direct
 * indirect_to_direct_roll_back
 * reiserfs_cut_from_item
 * truncate_directory
 * reiserfs_do_truncate
 * reiserfs_paste_into_item
 * reiserfs_insert_item
 */

#include <linux/config.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/pagemap.h>
#include <linux/reiserfs_fs.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>

/* Does the buffer contain a disk block which is in the tree. */
inline int B_IS_IN_TREE (const struct buffer_head * p_s_bh)
{

  RFALSE( B_LEVEL (p_s_bh) > MAX_HEIGHT,
	  "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh);

  return ( B_LEVEL (p_s_bh) != FREE_LEVEL );
}




inline void copy_short_key (void * to, const void * from)
{
    memcpy (to, from, SHORT_KEY_SIZE);
}

//
// to gets item head in le form
//
inline void copy_item_head(struct item_head * p_v_to, 
			   const struct item_head * p_v_from)
{
  memcpy (p_v_to, p_v_from, IH_SIZE);
}


/* k1 is pointer to on-disk structure which is stored in little-endian
   form. k2 is pointer to cpu variable. For key of items of the same
   object this returns 0.
   Returns: -1 if key1 < key2 
   0 if key1 == key2
   1 if key1 > key2 */
inline int  comp_short_keys (const struct key * le_key, 
			     const struct cpu_key * cpu_key)
{
  __u32 * p_s_le_u32, * p_s_cpu_u32;
  int n_key_length = REISERFS_SHORT_KEY_LEN;

  p_s_le_u32 = (__u32 *)le_key;
  p_s_cpu_u32 = (__u32 *)&cpu_key->on_disk_key;
  for( ; n_key_length--; ++p_s_le_u32, ++p_s_cpu_u32 ) {
    if ( le32_to_cpu (*p_s_le_u32) < *p_s_cpu_u32 )
      return -1;
    if ( le32_to_cpu (*p_s_le_u32) > *p_s_cpu_u32 )
      return 1;
  }

  return 0;
}


/* k1 is pointer to on-disk structure which is stored in little-endian
   form. k2 is pointer to cpu variable.
   Compare keys using all 4 key fields.
   Returns: -1 if key1 < key2 0
   if key1 = key2 1 if key1 > key2 */
inline int  comp_keys (const struct key * le_key, const struct cpu_key * cpu_key)
{
  int retval;

  retval = comp_short_keys (le_key, cpu_key);
  if (retval)
      return retval;
  if (le_key_k_offset (le_key_version(le_key), le_key) < cpu_key_k_offset (cpu_key))
      return -1;
  if (le_key_k_offset (le_key_version(le_key), le_key) > cpu_key_k_offset (cpu_key))
      return 1;

  if (cpu_key->key_length == 3)
      return 0;

  /* this part is needed only when tail conversion is in progress */
  if (le_key_k_type (le_key_version(le_key), le_key) < cpu_key_k_type (cpu_key))
    return -1;

  if (le_key_k_type (le_key_version(le_key), le_key) > cpu_key_k_type (cpu_key))
    return 1;

  return 0;
}


//
// FIXME: not used yet
//
inline int comp_cpu_keys (const struct cpu_key * key1, 
			  const struct cpu_key * key2)
{
    if (key1->on_disk_key.k_dir_id < key2->on_disk_key.k_dir_id)
	return -1;
    if (key1->on_disk_key.k_dir_id > key2->on_disk_key.k_dir_id)
	return 1;

    if (key1->on_disk_key.k_objectid < key2->on_disk_key.k_objectid)
	return -1;
    if (key1->on_disk_key.k_objectid > key2->on_disk_key.k_objectid)
	return 1;

    if (cpu_key_k_offset (key1) < cpu_key_k_offset (key2))
	return -1;
    if (cpu_key_k_offset (key1) > cpu_key_k_offset (key2))
	return 1;

    reiserfs_warning ("comp_cpu_keys: type are compared for %K and %K\n",
		      key1, key2);

    if (cpu_key_k_type (key1) < cpu_key_k_type (key2))
	return -1;
    if (cpu_key_k_type (key1) > cpu_key_k_type (key2))
	return 1;
    return 0;
}

inline int comp_short_le_keys (const struct key * key1, const struct key * key2)
{
  __u32 * p_s_1_u32, * p_s_2_u32;
  int n_key_length = REISERFS_SHORT_KEY_LEN;

  p_s_1_u32 = (__u32 *)key1;
  p_s_2_u32 = (__u32 *)key2;
  for( ; n_key_length--; ++p_s_1_u32, ++p_s_2_u32 ) {
    if ( le32_to_cpu (*p_s_1_u32) < le32_to_cpu (*p_s_2_u32) )
      return -1;
    if ( le32_to_cpu (*p_s_1_u32) > le32_to_cpu (*p_s_2_u32) )
      return 1;
  }
  return 0;
}

inline int comp_short_cpu_keys (const struct cpu_key * key1, 
				const struct cpu_key * key2)
{
  __u32 * p_s_1_u32, * p_s_2_u32;
  int n_key_length = REISERFS_SHORT_KEY_LEN;

  p_s_1_u32 = (__u32 *)key1;
  p_s_2_u32 = (__u32 *)key2;

  for( ; n_key_length--; ++p_s_1_u32, ++p_s_2_u32 ) {
    if ( *p_s_1_u32 < *p_s_2_u32 )
      return -1;
    if ( *p_s_1_u32 > *p_s_2_u32 )
      return 1;
  }
  return 0;
}



inline void cpu_key2cpu_key (struct cpu_key * to, const struct cpu_key * from)
{
    memcpy (to, from, sizeof (struct cpu_key));
}


inline void le_key2cpu_key (struct cpu_key * to, const struct key * from)
{
    to->on_disk_key.k_dir_id = le32_to_cpu (from->k_dir_id);
    to->on_disk_key.k_objectid = le32_to_cpu (from->k_objectid);
    
    // find out version of the key
    to->version = le_key_version (from);
    if (to->version == KEY_FORMAT_3_5) {
	to->on_disk_key.u.k_offset_v1.k_offset = le32_to_cpu (from->u.k_offset_v1.k_offset);
	to->on_disk_key.u.k_offset_v1.k_uniqueness = le32_to_cpu (from->u.k_offset_v1.k_uniqueness);
    } else {
	to->on_disk_key.u.k_offset_v2.k_offset = offset_v2_k_offset(&from->u.k_offset_v2);
	to->on_disk_key.u.k_offset_v2.k_type = offset_v2_k_type(&from->u.k_offset_v2);
    } 
}



// this does not say which one is bigger, it only returns 1 if keys
// are not equal, 0 otherwise
inline int comp_le_keys (const struct key * k1, const struct key * k2)
{
    return memcmp (k1, k2, sizeof (struct key));
}

/**************************************************************************
 *  Binary search toolkit function                                        *
 *  Search for an item in the array by the item key                       *
 *  Returns:    1 if found,  0 if not found;                              *
 *        *p_n_pos = number of the searched element if found, else the    *
 *        number of the first element that is larger than p_v_key.        *
 **************************************************************************/
/* For those not familiar with binary search: n_lbound is the leftmost item that it
 could be, n_rbound the rightmost item that it could be.  We examine the item
 halfway between n_lbound and n_rbound, and that tells us either that we can increase
 n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that
 there are no possible items, and we have not found it. With each examination we
 cut the number of possible items it could be by one more than half rounded down,
 or we find it. */
inline	int bin_search (
              const void * p_v_key, /* Key to search for.                   */
	      const void * p_v_base,/* First item in the array.             */
	      int       p_n_num,    /* Number of items in the array.        */
	      int       p_n_width,  /* Item size in the array.
				       searched. Lest the reader be
				       confused, note that this is crafted
				       as a general function, and when it
				       is applied specifically to the array
				       of item headers in a node, p_n_width
				       is actually the item header size not
				       the item size.                      */
	      int     * p_n_pos     /* Number of the searched for element. */
            ) {
    int   n_rbound, n_lbound, n_j;

   for ( n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0))/2; n_lbound <= n_rbound; n_j = (n_rbound + n_lbound)/2 )
     switch( COMP_KEYS((struct key *)((char * )p_v_base + n_j * p_n_width), (struct cpu_key *)p_v_key) )  {
     case -1: n_lbound = n_j + 1; continue;
     case  1: n_rbound = n_j - 1; continue;
     case  0: *p_n_pos = n_j;     return ITEM_FOUND; /* Key found in the array.  */
        }

    /* bin_search did not find given key, it returns position of key,
        that is minimal and greater than the given one. */
    *p_n_pos = n_lbound;
    return ITEM_NOT_FOUND;
}

#ifdef CONFIG_REISERFS_CHECK
extern struct tree_balance * cur_tb;
#endif



/* Minimal possible key. It is never in the tree. */
const struct key  MIN_KEY = {0, 0, {{0, 0},}};

/* Maximal possible key. It is never in the tree. */
const struct key  MAX_KEY = {0xffffffff, 0xffffffff, {{0xffffffff, 0xffffffff},}};


/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
   of the path, and going upwards.  We must check the path's validity at each step.  If the key is not in
   the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
   case we return a special key, either MIN_KEY or MAX_KEY. */
inline	const struct  key * get_lkey  (
	                const struct path         * p_s_chk_path,
                        const struct super_block  * p_s_sb
                      ) {
  int                   n_position, n_path_offset = p_s_chk_path->path_length;
  struct buffer_head  * p_s_parent;
  
  RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET, 
	  "PAP-5010: invalid offset in the path");

  /* While not higher in path than first element. */
  while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {

    RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
	    "PAP-5020: parent is not uptodate");

    /* Parent at the path is not in the tree now. */
    if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
      return &MAX_KEY;
    /* Check whether position in the parent is correct. */
    if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
       return &MAX_KEY;
    /* Check whether parent at the path really points to the child. */
    if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
	 PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
      return &MAX_KEY;
    /* Return delimiting key if position in the parent is not equal to zero. */
    if ( n_position )
      return B_N_PDELIM_KEY(p_s_parent, n_position - 1);
  }
  /* Return MIN_KEY if we are in the root of the buffer tree. */
  if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
       SB_ROOT_BLOCK (p_s_sb) )
    return &MIN_KEY;
  return  &MAX_KEY;
}


/* Get delimiting key of the buffer at the path and its right neighbor. */
inline	const struct  key * get_rkey  (
	                const struct path         * p_s_chk_path,
                        const struct super_block  * p_s_sb
                      ) {
  int                   n_position,
    			n_path_offset = p_s_chk_path->path_length;
  struct buffer_head  * p_s_parent;

  RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
	  "PAP-5030: invalid offset in the path");

  while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {

    RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
	    "PAP-5040: parent is not uptodate");

    /* Parent at the path is not in the tree now. */
    if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
      return &MIN_KEY;
    /* Check whether position in the parent is correct. */
    if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
      return &MIN_KEY;
    /* Check whether parent at the path really points to the child. */
    if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
                                        PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
      return &MIN_KEY;
    /* Return delimiting key if position in the parent is not the last one. */
    if ( n_position != B_NR_ITEMS(p_s_parent) )
      return B_N_PDELIM_KEY(p_s_parent, n_position);
  }
  /* Return MAX_KEY if we are in the root of the buffer tree. */
  if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
       SB_ROOT_BLOCK (p_s_sb) )
    return &MAX_KEY;
  return  &MIN_KEY;
}


/* Check whether a key is contained in the tree rooted from a buffer at a path. */
/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
   the path.  These delimiting keys are stored at least one level above that buffer in the tree. If the
   buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
   this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
static  inline  int key_in_buffer (
                      struct path         * p_s_chk_path, /* Path which should be checked.  */
                      const struct cpu_key      * p_s_key,      /* Key which should be checked.   */
                      struct super_block  * p_s_sb        /* Super block pointer.           */
		      ) {

  RFALSE( ! p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET ||
	  p_s_chk_path->path_length > MAX_HEIGHT,
	  "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
	  p_s_key, p_s_chk_path->path_length);
  RFALSE( !PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev,
	  "PAP-5060: device must not be NODEV");

  if ( COMP_KEYS(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1 )
    /* left delimiting key is bigger, that the key we look for */
    return 0;
  //  if ( COMP_KEYS(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 )
  if ( COMP_KEYS(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1 )
    /* p_s_key must be less than right delimitiing key */
    return 0;
  return 1;
}


inline void decrement_bcount(
              struct buffer_head  * p_s_bh
            ) { 
  if ( p_s_bh ) {
    if ( atomic_read (&(p_s_bh->b_count)) ) {
      put_bh(p_s_bh) ;
      return;
    }
    reiserfs_panic(NULL, "PAP-5070: decrement_bcount: trying to free free buffer %b", p_s_bh);
  }
}


/* Decrement b_count field of the all buffers in the path. */
void decrement_counters_in_path (
              struct path * p_s_search_path
            ) {
  int n_path_offset = p_s_search_path->path_length;

  RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET ||
	  n_path_offset > EXTENDED_MAX_HEIGHT - 1,
	  "PAP-5080: invalid path offset of %d", n_path_offset);

  while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
    struct buffer_head * bh;

    bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
    decrement_bcount (bh);
  }
  p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
}


int reiserfs_check_path(struct path *p) {
  RFALSE( p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
	  "path not properly relsed") ;
  return 0 ;
}


/* Release all buffers in the path. Restore dirty bits clean
** when preparing the buffer for the log
**
** only called from fix_nodes()
*/
void  pathrelse_and_restore (
	struct super_block *s, 
        struct path * p_s_search_path
      ) {
  int n_path_offset = p_s_search_path->path_length;

  RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, 
	  "clm-4000: invalid path offset");
  
  while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET )  {
    reiserfs_restore_prepared_buffer(s, PATH_OFFSET_PBUFFER(p_s_search_path, 
                                     n_path_offset));
    brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
  }
  p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
}

/* Release all buffers in the path. */
void  pathrelse (
        struct path * p_s_search_path
      ) {
  int n_path_offset = p_s_search_path->path_length;

  RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
	  "PAP-5090: invalid path offset");
  
  while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET )  
    brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));

  p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
}



static int is_leaf (char * buf, int blocksize, struct buffer_head * bh)
{
    struct block_head * blkh;
    struct item_head * ih;
    int used_space;
    int prev_location;
    int i;
    int nr;

    blkh = (struct block_head *)buf;
    if ( blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
	printk ("is_leaf: this should be caught earlier\n");
	return 0;
    }

    nr = blkh_nr_item(blkh);
    if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
	/* item number is too big or too small */
	reiserfs_warning ("is_leaf: nr_item seems wrong: %z\n", bh);
	return 0;
    }
    ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
    used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location (ih));
    if (used_space != blocksize - blkh_free_space(blkh)) {
	/* free space does not match to calculated amount of use space */
	reiserfs_warning ("is_leaf: free space seems wrong: %z\n", bh);
	return 0;
    }

    // FIXME: it is_leaf will hit performance too much - we may have
    // return 1 here

    /* check tables of item heads */
    ih = (struct item_head *)(buf + BLKH_SIZE);
    prev_location = blocksize;
    for (i = 0; i < nr; i ++, ih ++) {
	if ( le_ih_k_type(ih) == TYPE_ANY) {
	    reiserfs_warning ("is_leaf: wrong item type for item %h\n",ih);
	    return 0;
	}
	if (ih_location (ih) >= blocksize || ih_location (ih) < IH_SIZE * nr) {
	    reiserfs_warning ("is_leaf: item location seems wrong: %h\n", ih);
	    return 0;
	}
	if (ih_item_len (ih) < 1 || ih_item_len (ih) > MAX_ITEM_LEN (blocksize)) {
	    reiserfs_warning ("is_leaf: item length seems wrong: %h\n", ih);
	    return 0;
	}
	if (prev_location - ih_location (ih) != ih_item_len (ih)) {
	    reiserfs_warning ("is_leaf: item location seems wrong (second one): %h\n", ih);
	    return 0;
	}
	prev_location = ih_location (ih);
    }

    // one may imagine much more checks
    return 1;
}


/* returns 1 if buf looks like an internal node, 0 otherwise */
static int is_internal (char * buf, int blocksize, struct buffer_head * bh)
{
    struct block_head * blkh;
    int nr;
    int used_space;

    blkh = (struct block_head *)buf;
    nr = blkh_level(blkh);
    if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
	/* this level is not possible for internal nodes */
	printk ("is_internal: this should be caught earlier\n");
	return 0;
    }
    
    nr = blkh_nr_item(blkh);
    if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
	/* for internal which is not root we might check min number of keys */
	reiserfs_warning ("is_internal: number of key seems wrong: %z\n", bh);
	return 0;
    }

    used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
    if (used_space != blocksize - blkh_free_space(blkh)) {
	reiserfs_warning ("is_internal: free space seems wrong: %z\n", bh);
	return 0;
    }

    // one may imagine much more checks
    return 1;
}


// make sure that bh contains formatted node of reiserfs tree of
// 'level'-th level
static int is_tree_node (struct buffer_head * bh, int level)
{
    if (B_LEVEL (bh) != level) {
	printk ("is_tree_node: node level %d does not match to the expected one %d\n",
		B_LEVEL (bh), level);
	return 0;
    }
    if (level == DISK_LEAF_NODE_LEVEL)
	return is_leaf (bh->b_data, bh->b_size, bh);

    return is_internal (bh->b_data, bh->b_size, bh);
}



#ifdef SEARCH_BY_KEY_READA

/* The function is NOT SCHEDULE-SAFE! */
static void search_by_key_reada (struct super_block * s, int blocknr)
{
    struct buffer_head * bh;
  
    if (blocknr == 0)
	return;

    bh = sb_getblk (s, blocknr);
  
    if (!buffer_uptodate (bh)) {
	ll_rw_block (READA, 1, &bh);
    }
    bh->b_count --;
}

#endif

/**************************************************************************
 * Algorithm   SearchByKey                                                *
 *             look for item in the Disk S+Tree by its key                *
 * Input:  p_s_sb   -  super block                                        *
 *         p_s_key  - pointer to the key to search                        *
 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR                         *
 *         p_s_search_path - path from the root to the needed leaf        *
 **************************************************************************/

/* This function fills up the path from the root to the leaf as it
   descends the tree looking for the key.  It uses reiserfs_bread to
   try to find buffers in the cache given their block number.  If it
   does not find them in the cache it reads them from disk.  For each
   node search_by_key finds using reiserfs_bread it then uses
   bin_search to look through that node.  bin_search will find the
   position of the block_number of the next node if it is looking
   through an internal node.  If it is looking through a leaf node
   bin_search will find the position of the item which has key either
   equal to given key, or which is the maximal key less than the given
   key.  search_by_key returns a path that must be checked for the
   correctness of the top of the path but need not be checked for the
   correctness of the bottom of the path */
/* The function is NOT SCHEDULE-SAFE! */
int search_by_key (struct super_block * p_s_sb,
		   const struct cpu_key * p_s_key, /* Key to search. */
		   struct path * p_s_search_path, /* This structure was
						     allocated and initialized
						     by the calling
						     function. It is filled up
						     by this function.  */
		   int n_stop_level /* How far down the tree to search. To
                                       stop at leaf level - set to
                                       DISK_LEAF_NODE_LEVEL */
    ) {
    int  n_block_number = SB_ROOT_BLOCK (p_s_sb),
      expected_level = SB_TREE_HEIGHT (p_s_sb);
    struct buffer_head  *       p_s_bh;
    struct path_element *       p_s_last_element;
    int				n_node_level, n_retval;
    int 			right_neighbor_of_leaf_node;
    int				fs_gen;

#ifdef CONFIG_REISERFS_CHECK
    int n_repeat_counter = 0;
#endif
    
    PROC_INFO_INC( p_s_sb, search_by_key );
    
    /* As we add each node to a path we increase its count.  This means that
       we must be careful to release all nodes in a path before we either
       discard the path struct or re-use the path struct, as we do here. */

    decrement_counters_in_path(p_s_search_path);

    right_neighbor_of_leaf_node = 0;

    /* With each iteration of this loop we search through the items in the
       current node, and calculate the next current node(next path element)
       for the next iteration of this loop.. */
    while ( 1 ) {

#ifdef CONFIG_REISERFS_CHECK
	if ( !(++n_repeat_counter % 50000) )
	    reiserfs_warning ("PAP-5100: search_by_key: %s:"
			      "there were %d iterations of while loop "
			      "looking for key %K\n",
			      current->comm, n_repeat_counter, p_s_key);
#endif

	/* prep path to have another element added to it. */
	p_s_last_element = PATH_OFFSET_PELEMENT(p_s_search_path, ++p_s_search_path->path_length);
	fs_gen = get_generation (p_s_sb);
	expected_level --;

#ifdef SEARCH_BY_KEY_READA
	/* schedule read of right neighbor */
	search_by_key_reada (p_s_sb, right_neighbor_of_leaf_node);
#endif

	/* Read the next tree node, and set the last element in the path to
           have a pointer to it. */
	if ( ! (p_s_bh = p_s_last_element->pe_buffer =
		sb_bread(p_s_sb, n_block_number)) ) {
	    p_s_search_path->path_length --;
	    pathrelse(p_s_search_path);
	    return IO_ERROR;
	}

 	if( fs_changed (fs_gen, p_s_sb) ) {
 		PROC_INFO_INC( p_s_sb, search_by_key_fs_changed );
 		PROC_INFO_INC( p_s_sb, sbk_fs_changed[ expected_level - 1 ] );
 	}

	/* It is possible that schedule occurred. We must check whether the key
	   to search is still in the tree rooted from the current buffer. If
	   not then repeat search from the root. */
	if ( fs_changed (fs_gen, p_s_sb) && 
	     (!B_IS_IN_TREE (p_s_bh) || !key_in_buffer(p_s_search_path, p_s_key, p_s_sb)) ) {
 	    PROC_INFO_INC( p_s_sb, search_by_key_restarted );
	    PROC_INFO_INC( p_s_sb, sbk_restarted[ expected_level - 1 ] );
	    decrement_counters_in_path(p_s_search_path);
	    
	    /* Get the root block number so that we can repeat the search
               starting from the root. */
	    n_block_number = SB_ROOT_BLOCK (p_s_sb);
	    expected_level = SB_TREE_HEIGHT (p_s_sb);
	    right_neighbor_of_leaf_node = 0;
	    
	    /* repeat search from the root */
	    continue;
	}

        /* only check that the key is in the buffer if p_s_key is not
           equal to the MAX_KEY. Latter case is only possible in
           "finish_unfinished()" processing during mount. */
        RFALSE( COMP_KEYS( &MAX_KEY, p_s_key ) && 
                ! key_in_buffer(p_s_search_path, p_s_key, p_s_sb),
		"PAP-5130: key is not in the buffer");
#ifdef CONFIG_REISERFS_CHECK
	if ( cur_tb ) {
	    print_cur_tb ("5140");
	    reiserfs_panic(p_s_sb, "PAP-5140: search_by_key: schedule occurred in do_balance!");
	}
#endif

	// make sure, that the node contents look like a node of
	// certain level
	if (!is_tree_node (p_s_bh, expected_level)) {
	    reiserfs_warning ("vs-5150: search_by_key: "
			      "invalid format found in block %ld. Fsck?\n", 
			      p_s_bh->b_blocknr);
	    pathrelse (p_s_search_path);
	    return IO_ERROR;
	}
	
	/* ok, we have acquired next formatted node in the tree */
	n_node_level = B_LEVEL (p_s_bh);

	PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level - 1 );

	RFALSE( n_node_level < n_stop_level,
		"vs-5152: tree level (%d) is less than stop level (%d)",
		n_node_level, n_stop_level);

	n_retval = bin_search( p_s_key, B_N_PITEM_HEAD(p_s_bh, 0),
                B_NR_ITEMS(p_s_bh),
                ( n_node_level == DISK_LEAF_NODE_LEVEL ) ? IH_SIZE : KEY_SIZE,
                &(p_s_last_element->pe_position));
	if (n_node_level == n_stop_level) {
	    return n_retval;
	}

	/* we are not in the stop level */
	if (n_retval == ITEM_FOUND)
	    /* item has been found, so we choose the pointer which is to the right of the found one */
	    p_s_last_element->pe_position++;

	/* if item was not found we choose the position which is to
	   the left of the found item. This requires no code,
	   bin_search did it already.*/

	/* So we have chosen a position in the current node which is
	   an internal node.  Now we calculate child block number by
	   position in the node. */
	n_block_number = B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position);

#ifdef SEARCH_BY_KEY_READA
	/* if we are going to read leaf node, then calculate its right neighbor if possible */
	if (n_node_level == DISK_LEAF_NODE_LEVEL + 1 && p_s_last_element->pe_position < B_NR_ITEMS (p_s_bh))
	    right_neighbor_of_leaf_node = B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position + 1);
#endif
    }
}


/* Form the path to an item and position in this item which contains
   file byte defined by p_s_key. If there is no such item
   corresponding to the key, we point the path to the item with
   maximal key less than p_s_key, and *p_n_pos_in_item is set to one
   past the last entry/byte in the item.  If searching for entry in a
   directory item, and it is not found, *p_n_pos_in_item is set to one
   entry more than the entry with maximal key which is less than the
   sought key.

   Note that if there is no entry in this same node which is one more,
   then we point to an imaginary entry.  for direct items, the
   position is in units of bytes, for indirect items the position is
   in units of blocknr entries, for directory items the position is in
   units of directory entries.  */

/* The function is NOT SCHEDULE-SAFE! */
int search_for_position_by_key (struct super_block  * p_s_sb,         /* Pointer to the super block.          */
				const struct cpu_key  * p_cpu_key,      /* Key to search (cpu variable)         */
				struct path         * p_s_search_path /* Filled up by this function.          */
    ) {
    struct item_head    * p_le_ih; /* pointer to on-disk structure */
    int                   n_blk_size;
    loff_t item_offset, offset;
    struct reiserfs_dir_entry de;
    int retval;

    /* If searching for directory entry. */
    if ( is_direntry_cpu_key (p_cpu_key) )
	return  search_by_entry_key (p_s_sb, p_cpu_key, p_s_search_path, &de);

    /* If not searching for directory entry. */
    
    /* If item is found. */
    retval = search_item (p_s_sb, p_cpu_key, p_s_search_path);
    if (retval == IO_ERROR)
	return retval;
    if ( retval == ITEM_FOUND )  {

	RFALSE( ! ih_item_len(
                B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
			       PATH_LAST_POSITION(p_s_search_path))),
	        "PAP-5165: item length equals zero");

	pos_in_item(p_s_search_path) = 0;
	return POSITION_FOUND;
    }

    RFALSE( ! PATH_LAST_POSITION(p_s_search_path),
	    "PAP-5170: position equals zero");

    /* Item is not found. Set path to the previous item. */
    p_le_ih = B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), --PATH_LAST_POSITION(p_s_search_path));
    n_blk_size = p_s_sb->s_blocksize;

    if (comp_short_keys (&(p_le_ih->ih_key), p_cpu_key)) {
	return FILE_NOT_FOUND;
    }

    // FIXME: quite ugly this far

    item_offset = le_ih_k_offset (p_le_ih);
    offset = cpu_key_k_offset (p_cpu_key);

    /* Needed byte is contained in the item pointed to by the path.*/
    if (item_offset <= offset &&
	item_offset + op_bytes_number (p_le_ih, n_blk_size) > offset) {
	pos_in_item (p_s_search_path) = offset - item_offset;
	if ( is_indirect_le_ih(p_le_ih) ) {
	    pos_in_item (p_s_search_path) /= n_blk_size;
	}
	return POSITION_FOUND;
    }

    /* Needed byte is not contained in the item pointed to by the
     path. Set pos_in_item out of the item. */
    if ( is_indirect_le_ih (p_le_ih) )
	pos_in_item (p_s_search_path) = ih_item_len(p_le_ih) / UNFM_P_SIZE;
    else
        pos_in_item (p_s_search_path) = ih_item_len( p_le_ih );
  
    return POSITION_NOT_FOUND;
}


/* Compare given item and item pointed to by the path. */
int comp_items (const struct item_head * stored_ih, const struct path * p_s_path)
{
    struct buffer_head  * p_s_bh;
    struct item_head    * ih;

    /* Last buffer at the path is not in the tree. */
    if ( ! B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)) )
	return 1;

    /* Last path position is invalid. */
    if ( PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh) )
	return 1;

    /* we need only to know, whether it is the same item */
    ih = get_ih (p_s_path);
    return memcmp (stored_ih, ih, IH_SIZE);
}


/* unformatted nodes are not logged anymore, ever.  This is safe
** now
*/
#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)

// block can not be forgotten as it is in I/O or held by someone
#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))



// prepare for delete or cut of direct item
static inline int prepare_for_direct_item (struct path * path,
					   struct item_head * le_ih,
					   struct inode * inode,
					   loff_t new_file_length,
					   int * cut_size)
{
    loff_t round_len;


    if ( new_file_length == max_reiserfs_offset (inode) ) {
	/* item has to be deleted */
	*cut_size = -(IH_SIZE + ih_item_len(le_ih));
	return M_DELETE;
    }
	
    // new file gets truncated
    if (get_inode_item_key_version (inode) == KEY_FORMAT_3_6) {
	// 
	round_len = ROUND_UP (new_file_length); 
	/* this was n_new_file_length < le_ih ... */
	if ( round_len < le_ih_k_offset (le_ih) )  {
	    *cut_size = -(IH_SIZE + ih_item_len(le_ih));
	    return M_DELETE; /* Delete this item. */
	}
	/* Calculate first position and size for cutting from item. */
	pos_in_item (path) = round_len - (le_ih_k_offset (le_ih) - 1);
	*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
	
	return M_CUT; /* Cut from this item. */
    }


    // old file: items may have any length

    if ( new_file_length < le_ih_k_offset (le_ih) )  {
	*cut_size = -(IH_SIZE + ih_item_len(le_ih));
	return M_DELETE; /* Delete this item. */
    }
    /* Calculate first position and size for cutting from item. */
    *cut_size = -(ih_item_len(le_ih) -
		      (pos_in_item (path) = new_file_length + 1 - le_ih_k_offset (le_ih)));
    return M_CUT; /* Cut from this item. */
}


static inline int prepare_for_direntry_item (struct path * path,
					     struct item_head * le_ih,
					     struct inode * inode,
					     loff_t new_file_length,
					     int * cut_size)
{
    if (le_ih_k_offset (le_ih) == DOT_OFFSET && 
	new_file_length == max_reiserfs_offset (inode)) {
	RFALSE( ih_entry_count (le_ih) != 2,
	        "PAP-5220: incorrect empty directory item (%h)", le_ih);
	*cut_size = -(IH_SIZE + ih_item_len(le_ih));
	return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
    }
    
    if ( ih_entry_count (le_ih) == 1 )  {
	/* Delete the directory item such as there is one record only
	   in this item*/
	*cut_size = -(IH_SIZE + ih_item_len(le_ih));
	return M_DELETE;
    }
    
    /* Cut one record from the directory item. */
    *cut_size = -(DEH_SIZE + entry_length (get_last_bh (path), le_ih, pos_in_item (path)));
    return M_CUT; 
}


/*  If the path points to a directory or direct item, calculate mode and the size cut, for balance.
    If the path points to an indirect item, remove some number of its unformatted nodes.
    In case of file truncate calculate whether this item must be deleted/truncated or last
    unformatted node of this item will be converted to a direct item.
    This function returns a determination of what balance mode the calling function should employ. */
static char  prepare_for_delete_or_cut(
				       struct reiserfs_transaction_handle *th, 
				       struct inode * inode,
				       struct path         * p_s_path,
				       const struct cpu_key      * p_s_item_key,
				       int                 * p_n_removed,      /* Number of unformatted nodes which were removed
										  from end of the file. */
				       int                 * p_n_cut_size,
				       unsigned long long    n_new_file_length /* MAX_KEY_OFFSET in case of delete. */
    ) {
    struct super_block  * p_s_sb = inode->i_sb;
    struct item_head    * p_le_ih = PATH_PITEM_HEAD(p_s_path);
    struct buffer_head  * p_s_bh = PATH_PLAST_BUFFER(p_s_path);

    /* Stat_data item. */
    if ( is_statdata_le_ih (p_le_ih) ) {

	RFALSE( n_new_file_length != max_reiserfs_offset (inode),
		"PAP-5210: mode must be M_DELETE");

	*p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
	return M_DELETE;
    }


    /* Directory item. */
    if ( is_direntry_le_ih (p_le_ih) )
	return prepare_for_direntry_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);

    /* Direct item. */
    if ( is_direct_le_ih (p_le_ih) )
	return prepare_for_direct_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);


    /* Case of an indirect item. */
    {
	int                   n_unfm_number,    /* Number of the item unformatted nodes. */
	    n_counter,
	    n_blk_size;
	__u32               * p_n_unfm_pointer; /* Pointer to the unformatted node number. */
	__u32 tmp;
	struct item_head      s_ih;           /* Item header. */
	char                  c_mode;           /* Returned mode of the balance. */
	int need_research;


	n_blk_size = p_s_sb->s_blocksize;

	/* Search for the needed object indirect item until there are no unformatted nodes to be removed. */
	do  {
	    need_research = 0;
            p_s_bh = PATH_PLAST_BUFFER(p_s_path);
	    /* Copy indirect item header to a temp variable. */
	    copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
	    /* Calculate number of unformatted nodes in this item. */
	    n_unfm_number = I_UNFM_NUM(&s_ih);

	    RFALSE( ! is_indirect_le_ih(&s_ih) || ! n_unfm_number ||
		    pos_in_item (p_s_path) + 1 !=  n_unfm_number,
		    "PAP-5240: invalid item %h "
		    "n_unfm_number = %d *p_n_pos_in_item = %d", 
		    &s_ih, n_unfm_number, pos_in_item (p_s_path));

	    /* Calculate balance mode and position in the item to remove unformatted nodes. */
	    if ( n_new_file_length == max_reiserfs_offset (inode) ) {/* Case of delete. */
		pos_in_item (p_s_path) = 0;
		*p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih));
		c_mode = M_DELETE;
	    }
	    else  { /* Case of truncate. */
		if ( n_new_file_length < le_ih_k_offset (&s_ih) )  {
		    pos_in_item (p_s_path) = 0;
		    *p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih));
		    c_mode = M_DELETE; /* Delete this item. */
		}
		else  {
		    /* indirect item must be truncated starting from *p_n_pos_in_item-th position */
		    pos_in_item (p_s_path) = (n_new_file_length + n_blk_size - le_ih_k_offset (&s_ih) ) >> p_s_sb->s_blocksize_bits;

		    RFALSE( pos_in_item (p_s_path) > n_unfm_number,
			    "PAP-5250: invalid position in the item");

		    /* Either convert last unformatted node of indirect item to direct item or increase
		       its free space.  */
		    if ( pos_in_item (p_s_path) == n_unfm_number )  {
			*p_n_cut_size = 0; /* Nothing to cut. */
			return M_CONVERT; /* Maybe convert last unformatted node to the direct item. */
		    }
		    /* Calculate size to cut. */
		    *p_n_cut_size = -(ih_item_len(&s_ih) - pos_in_item(p_s_path) * UNFM_P_SIZE);

		    c_mode = M_CUT;     /* Cut from this indirect item. */
		}
	    }

	    RFALSE( n_unfm_number <= pos_in_item (p_s_path),
		    "PAP-5260: invalid position in the indirect item");

	    /* pointers to be cut */
	    n_unfm_number -= pos_in_item (p_s_path);
	    /* Set pointer to the last unformatted node pointer that is to be cut. */
	    p_n_unfm_pointer = (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1 - *p_n_removed;


	    /* We go through the unformatted nodes pointers of the indirect
	       item and look for the unformatted nodes in the cache. If we
	       found some of them we free it, zero corresponding indirect item
	       entry and log buffer containing that indirect item. For this we
	       need to prepare last path element for logging. If some
	       unformatted node has b_count > 1 we must not free this
	       unformatted node since it is in use. */
	    reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1);
	    // note: path could be changed, first line in for loop takes care
	    // of it

	    for (n_counter = *p_n_removed;
		 n_counter < n_unfm_number; n_counter++, p_n_unfm_pointer-- ) {

		if (item_moved (&s_ih, p_s_path)) {
		    need_research = 1 ;
		    break;
		}
		RFALSE( p_n_unfm_pointer < (__u32 *)B_I_PITEM(p_s_bh, &s_ih) ||
			p_n_unfm_pointer > (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1,
			"vs-5265: pointer out of range");

		/* Hole, nothing to remove. */
		if ( ! get_block_num(p_n_unfm_pointer,0) )  {
			(*p_n_removed)++;
			continue;
		}

		(*p_n_removed)++;

		tmp = get_block_num(p_n_unfm_pointer,0);
		put_block_num(p_n_unfm_pointer, 0, 0);
		journal_mark_dirty (th, p_s_sb, p_s_bh);
		inode->i_blocks -= p_s_sb->s_blocksize / 512;
		reiserfs_free_block(th, tmp);
		if ( item_moved (&s_ih, p_s_path) )  {
			need_research = 1;
			break ;
		}
	    }

	    /* a trick.  If the buffer has been logged, this
	    ** will do nothing.  If we've broken the loop without
	    ** logging it, it will restore the buffer
	    **
	    */
	    reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh);

	    /* This loop can be optimized. */
	} while ( (*p_n_removed < n_unfm_number || need_research) &&
		  search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND );

	RFALSE( *p_n_removed < n_unfm_number, 
		"PAP-5310: indirect item is not found");
	RFALSE( item_moved (&s_ih, p_s_path), 
		"after while, comp failed, retry") ;

	if (c_mode == M_CUT)
	    pos_in_item (p_s_path) *= UNFM_P_SIZE;
	return c_mode;
    }
}


/* Calculate bytes number which will be deleted or cutted in the balance. */
int calc_deleted_bytes_number(
    struct  tree_balance  * p_s_tb,
    char                    c_mode
    ) {
    int                     n_del_size;
    struct  item_head     * p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path);

    if ( is_statdata_le_ih (p_le_ih) )
	return 0;

    if ( is_direntry_le_ih (p_le_ih) ) {
	// return EMPTY_DIR_SIZE; /* We delete emty directoris only. */
	// we can't use EMPTY_DIR_SIZE, as old format dirs have a different
	// empty size.  ick. FIXME, is this right?
	//
	return ih_item_len(p_le_ih);
    }
    n_del_size = ( c_mode == M_DELETE ) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0];

    if ( is_indirect_le_ih (p_le_ih) )
	n_del_size = (n_del_size/UNFM_P_SIZE)*
	  (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size);// - get_ih_free_space (p_le_ih);
    return n_del_size;
}

static void init_tb_struct(
    struct reiserfs_transaction_handle *th,
    struct tree_balance * p_s_tb,
    struct super_block  * p_s_sb,
    struct path         * p_s_path,
    int                   n_size
    ) {
    memset (p_s_tb,'\0',sizeof(struct tree_balance));
    p_s_tb->transaction_handle = th ;
    p_s_tb->tb_sb = p_s_sb;
    p_s_tb->tb_path = p_s_path;
    PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
    PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
    p_s_tb->insert_size[0] = n_size;
}



void padd_item (char * item, int total_length, int length)
{
    int i;

    for (i = total_length; i > length; )
	item [--i] = 0;
}


/* Delete object item. */
int reiserfs_delete_item (struct reiserfs_transaction_handle *th, 
			  struct path * p_s_path, /* Path to the deleted item. */
			  const struct cpu_key * p_s_item_key, /* Key to search for the deleted item.  */
			  struct inode * p_s_inode,/* inode is here just to update i_blocks */
			  struct buffer_head  * p_s_un_bh)    /* NULL or unformatted node pointer.    */
{
    struct super_block * p_s_sb = p_s_inode->i_sb;
    struct tree_balance   s_del_balance;
    struct item_head      s_ih;
    int                   n_ret_value,
	n_del_size,
	n_removed;

#ifdef CONFIG_REISERFS_CHECK
    char                  c_mode;
    int			n_iter = 0;
#endif

    init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path, 0/*size is unknown*/);

    while ( 1 ) {
	n_removed = 0;

#ifdef CONFIG_REISERFS_CHECK
	n_iter++;
	c_mode =
#endif
	    prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, &n_del_size, max_reiserfs_offset (p_s_inode));

	RFALSE( c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE");

	copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
	s_del_balance.insert_size[0] = n_del_size;

	n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, 0);
	if ( n_ret_value != REPEAT_SEARCH )
	    break;

	PROC_INFO_INC( p_s_sb, delete_item_restarted );

	// file system changed, repeat search
	n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
	if (n_ret_value == IO_ERROR)
	    break;
	if (n_ret_value == FILE_NOT_FOUND) {
	    reiserfs_warning ("vs-5340: reiserfs_delete_item: "
			      "no items of the file %K found\n", p_s_item_key);
	    break;
	}
    } /* while (1) */

    if ( n_ret_value != CARRY_ON ) {
	unfix_nodes(&s_del_balance);
	return 0;
    }

    // reiserfs_delete_item returns item length when success
    n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);

    if ( p_s_un_bh )  {
	int off;
        char *data ;

	/* We are in direct2indirect conversion, so move tail contents
           to the unformatted node */
	/* note, we do the copy before preparing the buffer because we
	** don't care about the contents of the unformatted node yet.
	** the only thing we really care about is the direct item's data
	** is in the unformatted node.
	**
	** Otherwise, we would have to call reiserfs_prepare_for_journal on
	** the unformatted node, which might schedule, meaning we'd have to
	** loop all the way back up to the start of the while loop.
	**
	** The unformatted node must be dirtied later on.  We can't be
	** sure here if the entire tail has been deleted yet.
        **
        ** p_s_un_bh is from the page cache (all unformatted nodes are
        ** from the page cache) and might be a highmem page.  So, we
        ** can't use p_s_un_bh->b_data.
	** -clm
	*/

        data = kmap_atomic(p_s_un_bh->b_page, KM_USER0);
	off = ((le_ih_k_offset (&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
	memcpy(data + off,
	       B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih), n_ret_value);
	kunmap_atomic(data, KM_USER0);
    }

    /* Perform balancing after all resources have been collected at once. */ 
    do_balance(&s_del_balance, NULL, NULL, M_DELETE);

    /* Return deleted body length */
    return n_ret_value;
}


/* Summary Of Mechanisms For Handling Collisions Between Processes:

 deletion of the body of the object is performed by iput(), with the
 result that if multiple processes are operating on a file, the
 deletion of the body of the file is deferred until the last process
 that has an open inode performs its iput().

 writes and truncates are protected from collisions by use of
 semaphores.

 creates, linking, and mknod are protected from collisions with other
 processes by making the reiserfs_add_entry() the last step in the
 creation, and then rolling back all changes if there was a collision.
 - Hans
*/


/* this deletes item which never gets split */
void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
				 struct key * key)
{
    struct tree_balance tb;
    INITIALIZE_PATH (path);
    int item_len;
    int tb_init = 0 ;
    struct cpu_key cpu_key;
    int retval;
    
    le_key2cpu_key (&cpu_key, key);
    
    while (1) {
	retval = search_item (th->t_super, &cpu_key, &path);
	if (retval == IO_ERROR) {
	    reiserfs_warning ("vs-5350: reiserfs_delete_solid_item: "
			      "i/o failure occurred trying to delete %K\n", &cpu_key);
	    break;
	}
	if (retval != ITEM_FOUND) {
	    pathrelse (&path);
	    // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
	    if ( !( (unsigned long long) GET_HASH_VALUE (le_key_k_offset (le_key_version (key), key)) == 0 && \
		 (unsigned long long) GET_GENERATION_NUMBER (le_key_k_offset (le_key_version (key), key)) == 1 ) )
		reiserfs_warning ("vs-5355: reiserfs_delete_solid_item: %k not found", key);
	    break;
	}
	if (!tb_init) {
	    tb_init = 1 ;
	    item_len = ih_item_len( PATH_PITEM_HEAD(&path) );
	    init_tb_struct (th, &tb, th->t_super, &path, - (IH_SIZE + item_len));
	}

	retval = fix_nodes (M_DELETE, &tb, NULL, 0);
	if (retval == REPEAT_SEARCH) {
	    PROC_INFO_INC( th -> t_super, delete_solid_item_restarted );
	    continue;
	}

	if (retval == CARRY_ON) {
	    do_balance (&tb, 0, 0, M_DELETE);
	    break;
	}

	// IO_ERROR, NO_DISK_SPACE, etc
	reiserfs_warning ("vs-5360: reiserfs_delete_solid_item: "
			  "could not delete %K due to fix_nodes failure\n", &cpu_key);
	unfix_nodes (&tb);
	break;
    }

    reiserfs_check_path(&path) ;
}


void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * inode)
{
    inode->i_size = 0;

    /* for directory this deletes item containing "." and ".." */
    reiserfs_do_truncate (th, inode, NULL, 0/*no timestamp updates*/);
    
#if defined( USE_INODE_GENERATION_COUNTER )
    if( !old_format_only ( th -> t_super ) )
      {
       __u32 *inode_generation;
       
       inode_generation = 
         &REISERFS_SB(th -> t_super) -> s_rs -> s_inode_generation;
       *inode_generation = cpu_to_le32( le32_to_cpu( *inode_generation ) + 1 );
      }
/* USE_INODE_GENERATION_COUNTER */
#endif
    reiserfs_delete_solid_item (th, INODE_PKEY (inode));
}


static int maybe_indirect_to_direct (struct reiserfs_transaction_handle *th, 
			      struct inode * p_s_inode,
			      struct page *page, 
			      struct path         * p_s_path,
			      const struct cpu_key      * p_s_item_key,
			      loff_t         n_new_file_size,
			      char                * p_c_mode
			      ) {
    struct super_block * p_s_sb = p_s_inode->i_sb;
    int n_block_size = p_s_sb->s_blocksize;
    int cut_bytes;

    if (n_new_file_size != p_s_inode->i_size)
	BUG ();

    /* the page being sent in could be NULL if there was an i/o error
    ** reading in the last block.  The user will hit problems trying to
    ** read the file, but for now we just skip the indirect2direct
    */
    if (atomic_read(&p_s_inode->i_count) > 1 || 
        !tail_has_to_be_packed (p_s_inode) || 
	!page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) {
	// leave tail in an unformatted node	
	*p_c_mode = M_SKIP_BALANCING;
	cut_bytes = n_block_size - (n_new_file_size & (n_block_size - 1));
	pathrelse(p_s_path);
	return cut_bytes;
    }
    /* Permorm the conversion to a direct_item. */
    /*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);*/
    return indirect2direct (th, p_s_inode, page, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);
}


/* we did indirect_to_direct conversion. And we have inserted direct
   item successesfully, but there were no disk space to cut unfm
   pointer being converted. Therefore we have to delete inserted
   direct item(s) */
static void indirect_to_direct_roll_back (struct reiserfs_transaction_handle *th, struct inode * inode, struct path * path)
{
    struct cpu_key tail_key;
    int tail_len;
    int removed;

    make_cpu_key (&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);// !!!!
    tail_key.key_length = 4;

    tail_len = (cpu_key_k_offset (&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
    while (tail_len) {
	/* look for the last byte of the tail */
	if (search_for_position_by_key (inode->i_sb, &tail_key, path) == POSITION_NOT_FOUND)
	    reiserfs_panic (inode->i_sb, "vs-5615: indirect_to_direct_roll_back: found invalid item");
	RFALSE( path->pos_in_item != ih_item_len(PATH_PITEM_HEAD (path)) - 1,
	        "vs-5616: appended bytes found");
	PATH_LAST_POSITION (path) --;
	
	removed = reiserfs_delete_item (th, path, &tail_key, inode, 0/*unbh not needed*/);
	RFALSE( removed <= 0 || removed > tail_len,
	        "vs-5617: there was tail %d bytes, removed item length %d bytes",
                tail_len, removed);
	tail_len -= removed;
	set_cpu_key_k_offset (&tail_key, cpu_key_k_offset (&tail_key) - removed);
    }
    printk ("indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space\n");
    //mark_file_without_tail (inode);
    mark_inode_dirty (inode);
}


/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th, 
			    struct path * p_s_path,
			    struct cpu_key * p_s_item_key,
			    struct inode * p_s_inode,
			    struct page *page, 
			    loff_t n_new_file_size)
{
    struct super_block * p_s_sb = p_s_inode->i_sb;
    /* Every function which is going to call do_balance must first
       create a tree_balance structure.  Then it must fill up this
       structure by using the init_tb_struct and fix_nodes functions.
       After that we can make tree balancing. */
    struct tree_balance s_cut_balance;
    int n_cut_size = 0,        /* Amount to be cut. */
	n_ret_value = CARRY_ON,
	n_removed = 0,     /* Number of the removed unformatted nodes. */
	n_is_inode_locked = 0;
    char                c_mode;            /* Mode of the balance. */
    int retval2 = -1;
    
    
    init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path, n_cut_size);


    /* Repeat this loop until we either cut the item without needing
       to balance, or we fix_nodes without schedule occurring */
    while ( 1 ) {
	/* Determine the balance mode, position of the first byte to
	   be cut, and size to be cut.  In case of the indirect item
	   free unformatted nodes which are pointed to by the cut
	   pointers. */
      
	c_mode = prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, 
					   &n_cut_size, n_new_file_size);
	if ( c_mode == M_CONVERT )  {
	    /* convert last unformatted node to direct item or leave
               tail in the unformatted node */
	    RFALSE( n_ret_value != CARRY_ON, "PAP-5570: can not convert twice");

	    n_ret_value = maybe_indirect_to_direct (th, p_s_inode, page, p_s_path, p_s_item_key,
						    n_new_file_size, &c_mode);
	    if ( c_mode == M_SKIP_BALANCING )
		/* tail has been left in the unformatted node */
		return n_ret_value;

	    n_is_inode_locked = 1;
	  
	    /* removing of last unformatted node will change value we
               have to return to truncate. Save it */
	    retval2 = n_ret_value;
	    /*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1));*/
	  
	    /* So, we have performed the first part of the conversion:
	       inserting the new direct item.  Now we are removing the
	       last unformatted node pointer. Set key to search for
	       it. */
      	    set_cpu_key_k_type (p_s_item_key, TYPE_INDIRECT);
	    p_s_item_key->key_length = 4;
	    n_new_file_size -= (n_new_file_size & (p_s_sb->s_blocksize - 1));
	    set_cpu_key_k_offset (p_s_item_key, n_new_file_size + 1);
	    if ( search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_NOT_FOUND ){
		print_block (PATH_PLAST_BUFFER (p_s_path), 3, PATH_LAST_POSITION (p_s_path) - 1, PATH_LAST_POSITION (p_s_path) + 1);
		reiserfs_panic(p_s_sb, "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)", p_s_item_key);
	    }
	    continue;
	}
	if (n_cut_size == 0) {
	    pathrelse (p_s_path);
	    return 0;
	}

	s_cut_balance.insert_size[0] = n_cut_size;
	
	n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, 0);
      	if ( n_ret_value != REPEAT_SEARCH )
	    break;
	
	PROC_INFO_INC( p_s_sb, cut_from_item_restarted );

	n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
	if (n_ret_value == POSITION_FOUND)
	    continue;

	reiserfs_warning ("PAP-5610: reiserfs_cut_from_item: item %K not found\n", p_s_item_key);
	unfix_nodes (&s_cut_balance);
	return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT;
    } /* while */
  
    // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
    if ( n_ret_value != CARRY_ON ) {
	if ( n_is_inode_locked ) {
	    // FIXME: this seems to be not needed: we are always able
	    // to cut item
	    indirect_to_direct_roll_back (th, p_s_inode, p_s_path);
	}
	if (n_ret_value == NO_DISK_SPACE)
	    reiserfs_warning ("NO_DISK_SPACE");
	unfix_nodes (&s_cut_balance);
	return -EIO;
    }

    /* go ahead and perform balancing */
    
    RFALSE( c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode");

    /* Calculate number of bytes that need to be cut from the item. */
    if (retval2 == -1)
	n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode);
    else
	n_ret_value = retval2;
    
    if ( c_mode == M_DELETE ) {
	struct item_head * p_le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path);
	
	if ( is_direct_le_ih (p_le_ih) && (le_ih_k_offset (p_le_ih) & (p_s_sb->s_blocksize - 1)) == 1 ) {
	    /* we delete first part of tail which was stored in direct
               item(s) */
	    // FIXME: this is to keep 3.5 happy
	    REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX;
	    p_s_inode->i_blocks -= p_s_sb->s_blocksize / 512;
	}
    }

#ifdef CONFIG_REISERFS_CHECK
    if (n_is_inode_locked) {
	struct item_head * le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path);
	/* we are going to complete indirect2direct conversion. Make
           sure, that we exactly remove last unformatted node pointer
           of the item */
	if (!is_indirect_le_ih (le_ih))
	    reiserfs_panic (p_s_sb, "vs-5652: reiserfs_cut_from_item: "
			    "item must be indirect %h", le_ih);

	if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
	    reiserfs_panic (p_s_sb, "vs-5653: reiserfs_cut_from_item: "
			    "completing indirect2direct conversion indirect item %h "
			    "being deleted must be of 4 byte long", le_ih);

	if (c_mode == M_CUT && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
	    reiserfs_panic (p_s_sb, "vs-5654: reiserfs_cut_from_item: "
			    "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)",
			    le_ih, s_cut_balance.insert_size[0]);
	}
	/* it would be useful to make sure, that right neighboring
           item is direct item of this file */
    }
#endif
    
    do_balance(&s_cut_balance, NULL, NULL, c_mode);
    if ( n_is_inode_locked ) {
	/* we've done an indirect->direct conversion.  when the data block
	** was freed, it was removed from the list of blocks that must
	** be flushed before the transaction commits, so we don't need to
	** deal with it here.
	*/
	REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask ;
    }
    return n_ret_value;
}


static void truncate_directory (struct reiserfs_transaction_handle *th, struct inode * inode)
{
    if (inode->i_nlink)
	reiserfs_warning ("vs-5655: truncate_directory: link count != 0\n");

    set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), DOT_OFFSET);
    set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_DIRENTRY);
    reiserfs_delete_solid_item (th, INODE_PKEY (inode));

    set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), SD_OFFSET);
    set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_STAT_DATA);    
}




/* Truncate file to the new size. Note, this must be called with a transaction
   already started */
void reiserfs_do_truncate (struct reiserfs_transaction_handle *th, 
			   struct  inode * p_s_inode, /* ->i_size contains new
                                                         size */
			   struct page *page, /* up to date for last block */
			   int update_timestamps  /* when it is called by
						     file_release to convert
						     the tail - no timestamps
						     should be updated */
    ) {
    INITIALIZE_PATH (s_search_path);       /* Path to the current object item. */
    struct item_head    * p_le_ih;         /* Pointer to an item header. */
    struct cpu_key      s_item_key;     /* Key to search for a previous file item. */
    loff_t         n_file_size,    /* Old file size. */
	n_new_file_size;/* New file size. */
    int                   n_deleted;      /* Number of deleted or truncated bytes. */
    int retval;

    if ( ! (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode) || S_ISLNK(p_s_inode->i_mode)) )
	return;

    if (S_ISDIR(p_s_inode->i_mode)) {
	// deletion of directory - no need to update timestamps
	truncate_directory (th, p_s_inode);
	return;
    }

    /* Get new file size. */
    n_new_file_size = p_s_inode->i_size;

    // FIXME: note, that key type is unimportant here
    make_cpu_key (&s_item_key, p_s_inode, max_reiserfs_offset (p_s_inode), TYPE_DIRECT, 3);

    retval = search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path);
    if (retval == IO_ERROR) {
	reiserfs_warning ("vs-5657: reiserfs_do_truncate: "
			  "i/o failure occurred trying to truncate %K\n", &s_item_key);
	return;
    }
    if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
	pathrelse (&s_search_path);
	reiserfs_warning ("PAP-5660: reiserfs_do_truncate: "
			  "wrong result %d of search for %K\n", retval, &s_item_key);
	return;
    }

    s_search_path.pos_in_item --;

    /* Get real file size (total length of all file items) */
    p_le_ih = PATH_PITEM_HEAD(&s_search_path);
    if ( is_statdata_le_ih (p_le_ih) )
	n_file_size = 0;
    else {
	loff_t offset = le_ih_k_offset (p_le_ih);
	int bytes = op_bytes_number (p_le_ih,p_s_inode->i_sb->s_blocksize);

	/* this may mismatch with real file size: if last direct item
           had no padding zeros and last unformatted node had no free
           space, this file would have this file size */
	n_file_size = offset + bytes - 1;
    }

    if ( n_file_size == 0 || n_file_size < n_new_file_size ) {
	goto update_and_out ;
    }

    /* Update key to search for the last file item. */
    set_cpu_key_k_offset (&s_item_key, n_file_size);

    do  {
	/* Cut or delete file item. */
	n_deleted = reiserfs_cut_from_item(th, &s_search_path, &s_item_key, p_s_inode,  page, n_new_file_size);
	if (n_deleted < 0) {
	    reiserfs_warning ("vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed");
	    reiserfs_check_path(&s_search_path) ;
	    return;
	}

	RFALSE( n_deleted > n_file_size,
		"PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
		n_deleted, n_file_size, &s_item_key);

	/* Change key to search the last file item. */
	n_file_size -= n_deleted;

	set_cpu_key_k_offset (&s_item_key, n_file_size);

	/* While there are bytes to truncate and previous file item is presented in the tree. */

	/*
	** This loop could take a really long time, and could log 
	** many more blocks than a transaction can hold.  So, we do a polite
	** journal end here, and if the transaction needs ending, we make
	** sure the file is consistent before ending the current trans
	** and starting a new one
	*/
        if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
	  int orig_len_alloc = th->t_blocks_allocated ;
	  decrement_counters_in_path(&s_search_path) ;

	  if (update_timestamps) {
	      p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME;
	  } 
	  reiserfs_update_sd(th, p_s_inode) ;

	  journal_end(th, p_s_inode->i_sb, orig_len_alloc) ;
	  journal_begin(th, p_s_inode->i_sb, orig_len_alloc) ;
	  reiserfs_update_inode_transaction(p_s_inode) ;
	}
    } while ( n_file_size > ROUND_UP (n_new_file_size) &&
	      search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path) == POSITION_FOUND )  ;

    RFALSE( n_file_size > ROUND_UP (n_new_file_size),
	    "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d\n",
	    n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid);

update_and_out:
    if (update_timestamps) {
	// this is truncate, not file closing
	p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME;
    }
    reiserfs_update_sd (th, p_s_inode);

    pathrelse(&s_search_path) ;
}


#ifdef CONFIG_REISERFS_CHECK
// this makes sure, that we __append__, not overwrite or add holes
static void check_research_for_paste (struct path * path, 
				      const struct cpu_key * p_s_key)
{
    struct item_head * found_ih = get_ih (path);
    
    if (is_direct_le_ih (found_ih)) {
	if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) !=
	    cpu_key_k_offset (p_s_key) ||
	    op_bytes_number (found_ih, get_last_bh (path)->b_size) != pos_in_item (path))
	    reiserfs_panic (0, "PAP-5720: check_research_for_paste: "
			    "found direct item %h or position (%d) does not match to key %K",
			    found_ih, pos_in_item (path), p_s_key);
    }
    if (is_indirect_le_ih (found_ih)) {
	if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) != cpu_key_k_offset (p_s_key) || 
	    I_UNFM_NUM (found_ih) != pos_in_item (path) ||
	    get_ih_free_space (found_ih) != 0)
	    reiserfs_panic (0, "PAP-5730: check_research_for_paste: "
			    "found indirect item (%h) or position (%d) does not match to key (%K)",
			    found_ih, pos_in_item (path), p_s_key);
    }
}
#endif /* config reiserfs check */


/* Paste bytes to the existing item. Returns bytes number pasted into the item. */
int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th, 
			      struct path         * p_s_search_path,	/* Path to the pasted item.          */
			      const struct cpu_key      * p_s_key,        	/* Key to search for the needed item.*/
			      const char          * p_c_body,       	/* Pointer to the bytes to paste.    */
			      int                   n_pasted_size)  	/* Size of pasted bytes.             */
{
    struct tree_balance s_paste_balance;
    int                 retval;

    init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path, n_pasted_size);
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
    s_paste_balance.key = p_s_key->on_disk_key;
#endif
    
    while ( (retval = fix_nodes(M_PASTE, &s_paste_balance, NULL, p_c_body)) == REPEAT_SEARCH ) {
	/* file system changed while we were in the fix_nodes */
	PROC_INFO_INC( th -> t_super, paste_into_item_restarted );
	retval = search_for_position_by_key (th->t_super, p_s_key, p_s_search_path);
	if (retval == IO_ERROR) {
	    retval = -EIO ;
	    goto error_out ;
	}
	if (retval == POSITION_FOUND) {
	    reiserfs_warning ("PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists\n", p_s_key);
	    retval = -EEXIST ;
	    goto error_out ;
	}
	
#ifdef CONFIG_REISERFS_CHECK
	check_research_for_paste (p_s_search_path, p_s_key);
#endif
    }

    /* Perform balancing after all resources are collected by fix_nodes, and
       accessing them will not risk triggering schedule. */
    if ( retval == CARRY_ON ) {
	do_balance(&s_paste_balance, NULL/*ih*/, p_c_body, M_PASTE);
	return 0;
    }
    retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
error_out:
    /* this also releases the path */
    unfix_nodes(&s_paste_balance);
    return retval ;
}


/* Insert new item into the buffer at the path. */
int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 
			 struct path         * 	p_s_path,         /* Path to the inserteded item.         */
			 const struct cpu_key      * key,
			 struct item_head    * 	p_s_ih,           /* Pointer to the item header to insert.*/
			 const char          * 	p_c_body)         /* Pointer to the bytes to insert.      */
{
    struct tree_balance s_ins_balance;
    int                 retval;

    init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path, IH_SIZE + ih_item_len(p_s_ih));
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
    s_ins_balance.key = key->on_disk_key;
#endif

    /*
    if (p_c_body == 0)
      n_zeros_num = ih_item_len(p_s_ih);
    */
    //    le_key2cpu_key (&key, &(p_s_ih->ih_key));

    while ( (retval = fix_nodes(M_INSERT, &s_ins_balance, p_s_ih, p_c_body)) == REPEAT_SEARCH) {
	/* file system changed while we were in the fix_nodes */
	PROC_INFO_INC( th -> t_super, insert_item_restarted );
	retval = search_item (th->t_super, key, p_s_path);
	if (retval == IO_ERROR) {
	    retval = -EIO;
	    goto error_out ;
	}
	if (retval == ITEM_FOUND) {
	    reiserfs_warning ("PAP-5760: reiserfs_insert_item: "
			      "key %K already exists in the tree\n", key);
	    retval = -EEXIST ;
	    goto error_out; 
	}
    }

    /* make balancing after all resources will be collected at a time */ 
    if ( retval == CARRY_ON ) {
	do_balance (&s_ins_balance, p_s_ih, p_c_body, M_INSERT);
	return 0;
    }

    retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
error_out:
    /* also releases the path */
    unfix_nodes(&s_ins_balance);
    return retval; 
}