Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
/*
 *  linux/mm/swapfile.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 */

#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/namei.h>
#include <linux/shm.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rmap.h>
#include <linux/security.h>
#include <linux/backing-dev.h>
#include <linux/mutex.h>
#include <linux/capability.h>
#include <linux/syscalls.h>

#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <linux/swapops.h>

DEFINE_SPINLOCK(swap_lock);
unsigned int nr_swapfiles;
long total_swap_pages;
static int swap_overflow;

static const char Bad_file[] = "Bad swap file entry ";
static const char Unused_file[] = "Unused swap file entry ";
static const char Bad_offset[] = "Bad swap offset entry ";
static const char Unused_offset[] = "Unused swap offset entry ";

struct swap_list_t swap_list = {-1, -1};

static struct swap_info_struct swap_info[MAX_SWAPFILES];

static DEFINE_MUTEX(swapon_mutex);

/*
 * We need this because the bdev->unplug_fn can sleep and we cannot
 * hold swap_lock while calling the unplug_fn. And swap_lock
 * cannot be turned into a mutex.
 */
static DECLARE_RWSEM(swap_unplug_sem);

void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
{
	swp_entry_t entry;

	down_read(&swap_unplug_sem);
	entry.val = page_private(page);
	if (PageSwapCache(page)) {
		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
		struct backing_dev_info *bdi;

		/*
		 * If the page is removed from swapcache from under us (with a
		 * racy try_to_unuse/swapoff) we need an additional reference
		 * count to avoid reading garbage from page_private(page) above.
		 * If the WARN_ON triggers during a swapoff it maybe the race
		 * condition and it's harmless. However if it triggers without
		 * swapoff it signals a problem.
		 */
		WARN_ON(page_count(page) <= 1);

		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
		blk_run_backing_dev(bdi, page);
	}
	up_read(&swap_unplug_sem);
}

#define SWAPFILE_CLUSTER	256
#define LATENCY_LIMIT		256

static inline unsigned long scan_swap_map(struct swap_info_struct *si)
{
	unsigned long offset, last_in_cluster;
	int latency_ration = LATENCY_LIMIT;

	/* 
	 * We try to cluster swap pages by allocating them sequentially
	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
	 * way, however, we resort to first-free allocation, starting
	 * a new cluster.  This prevents us from scattering swap pages
	 * all over the entire swap partition, so that we reduce
	 * overall disk seek times between swap pages.  -- sct
	 * But we do now try to find an empty cluster.  -Andrea
	 */

	si->flags += SWP_SCANNING;
	if (unlikely(!si->cluster_nr)) {
		si->cluster_nr = SWAPFILE_CLUSTER - 1;
		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
			goto lowest;
		spin_unlock(&swap_lock);

		offset = si->lowest_bit;
		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;

		/* Locate the first empty (unaligned) cluster */
		for (; last_in_cluster <= si->highest_bit; offset++) {
			if (si->swap_map[offset])
				last_in_cluster = offset + SWAPFILE_CLUSTER;
			else if (offset == last_in_cluster) {
				spin_lock(&swap_lock);
				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
				goto cluster;
			}
			if (unlikely(--latency_ration < 0)) {
				cond_resched();
				latency_ration = LATENCY_LIMIT;
			}
		}
		spin_lock(&swap_lock);
		goto lowest;
	}

	si->cluster_nr--;
cluster:
	offset = si->cluster_next;
	if (offset > si->highest_bit)
lowest:		offset = si->lowest_bit;
checks:	if (!(si->flags & SWP_WRITEOK))
		goto no_page;
	if (!si->highest_bit)
		goto no_page;
	if (!si->swap_map[offset]) {
		if (offset == si->lowest_bit)
			si->lowest_bit++;
		if (offset == si->highest_bit)
			si->highest_bit--;
		si->inuse_pages++;
		if (si->inuse_pages == si->pages) {
			si->lowest_bit = si->max;
			si->highest_bit = 0;
		}
		si->swap_map[offset] = 1;
		si->cluster_next = offset + 1;
		si->flags -= SWP_SCANNING;
		return offset;
	}

	spin_unlock(&swap_lock);
	while (++offset <= si->highest_bit) {
		if (!si->swap_map[offset]) {
			spin_lock(&swap_lock);
			goto checks;
		}
		if (unlikely(--latency_ration < 0)) {
			cond_resched();
			latency_ration = LATENCY_LIMIT;
		}
	}
	spin_lock(&swap_lock);
	goto lowest;

no_page:
	si->flags -= SWP_SCANNING;
	return 0;
}

swp_entry_t get_swap_page(void)
{
	struct swap_info_struct *si;
	pgoff_t offset;
	int type, next;
	int wrapped = 0;

	spin_lock(&swap_lock);
	if (nr_swap_pages <= 0)
		goto noswap;
	nr_swap_pages--;

	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
		si = swap_info + type;
		next = si->next;
		if (next < 0 ||
		    (!wrapped && si->prio != swap_info[next].prio)) {
			next = swap_list.head;
			wrapped++;
		}

		if (!si->highest_bit)
			continue;
		if (!(si->flags & SWP_WRITEOK))
			continue;

		swap_list.next = next;
		offset = scan_swap_map(si);
		if (offset) {
			spin_unlock(&swap_lock);
			return swp_entry(type, offset);
		}
		next = swap_list.next;
	}

	nr_swap_pages++;
noswap:
	spin_unlock(&swap_lock);
	return (swp_entry_t) {0};
}

swp_entry_t get_swap_page_of_type(int type)
{
	struct swap_info_struct *si;
	pgoff_t offset;

	spin_lock(&swap_lock);
	si = swap_info + type;
	if (si->flags & SWP_WRITEOK) {
		nr_swap_pages--;
		offset = scan_swap_map(si);
		if (offset) {
			spin_unlock(&swap_lock);
			return swp_entry(type, offset);
		}
		nr_swap_pages++;
	}
	spin_unlock(&swap_lock);
	return (swp_entry_t) {0};
}

static struct swap_info_struct * swap_info_get(swp_entry_t entry)
{
	struct swap_info_struct * p;
	unsigned long offset, type;

	if (!entry.val)
		goto out;
	type = swp_type(entry);
	if (type >= nr_swapfiles)
		goto bad_nofile;
	p = & swap_info[type];
	if (!(p->flags & SWP_USED))
		goto bad_device;
	offset = swp_offset(entry);
	if (offset >= p->max)
		goto bad_offset;
	if (!p->swap_map[offset])
		goto bad_free;
	spin_lock(&swap_lock);
	return p;

bad_free:
	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
	goto out;
bad_offset:
	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
	goto out;
bad_device:
	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
	goto out;
bad_nofile:
	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
out:
	return NULL;
}	

static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
{
	int count = p->swap_map[offset];

	if (count < SWAP_MAP_MAX) {
		count--;
		p->swap_map[offset] = count;
		if (!count) {
			if (offset < p->lowest_bit)
				p->lowest_bit = offset;
			if (offset > p->highest_bit)
				p->highest_bit = offset;
			if (p->prio > swap_info[swap_list.next].prio)
				swap_list.next = p - swap_info;
			nr_swap_pages++;
			p->inuse_pages--;
		}
	}
	return count;
}

/*
 * Caller has made sure that the swapdevice corresponding to entry
 * is still around or has not been recycled.
 */
void swap_free(swp_entry_t entry)
{
	struct swap_info_struct * p;

	p = swap_info_get(entry);
	if (p) {
		swap_entry_free(p, swp_offset(entry));
		spin_unlock(&swap_lock);
	}
}

/*
 * How many references to page are currently swapped out?
 */
static inline int page_swapcount(struct page *page)
{
	int count = 0;
	struct swap_info_struct *p;
	swp_entry_t entry;

	entry.val = page_private(page);
	p = swap_info_get(entry);
	if (p) {
		/* Subtract the 1 for the swap cache itself */
		count = p->swap_map[swp_offset(entry)] - 1;
		spin_unlock(&swap_lock);
	}
	return count;
}

/*
 * We can use this swap cache entry directly
 * if there are no other references to it.
 */
int can_share_swap_page(struct page *page)
{
	int count;

	BUG_ON(!PageLocked(page));
	count = page_mapcount(page);
	if (count <= 1 && PageSwapCache(page))
		count += page_swapcount(page);
	return count == 1;
}

/*
 * Work out if there are any other processes sharing this
 * swap cache page. Free it if you can. Return success.
 */
int remove_exclusive_swap_page(struct page *page)
{
	int retval;
	struct swap_info_struct * p;
	swp_entry_t entry;

	BUG_ON(PagePrivate(page));
	BUG_ON(!PageLocked(page));

	if (!PageSwapCache(page))
		return 0;
	if (PageWriteback(page))
		return 0;
	if (page_count(page) != 2) /* 2: us + cache */
		return 0;

	entry.val = page_private(page);
	p = swap_info_get(entry);
	if (!p)
		return 0;

	/* Is the only swap cache user the cache itself? */
	retval = 0;
	if (p->swap_map[swp_offset(entry)] == 1) {
		/* Recheck the page count with the swapcache lock held.. */
		write_lock_irq(&swapper_space.tree_lock);
		if ((page_count(page) == 2) && !PageWriteback(page)) {
			__delete_from_swap_cache(page);
			SetPageDirty(page);
			retval = 1;
		}
		write_unlock_irq(&swapper_space.tree_lock);
	}
	spin_unlock(&swap_lock);

	if (retval) {
		swap_free(entry);
		page_cache_release(page);
	}

	return retval;
}

/*
 * Free the swap entry like above, but also try to
 * free the page cache entry if it is the last user.
 */
void free_swap_and_cache(swp_entry_t entry)
{
	struct swap_info_struct * p;
	struct page *page = NULL;

	if (is_migration_entry(entry))
		return;

	p = swap_info_get(entry);
	if (p) {
		if (swap_entry_free(p, swp_offset(entry)) == 1) {
			page = find_get_page(&swapper_space, entry.val);
			if (page && unlikely(TestSetPageLocked(page))) {
				page_cache_release(page);
				page = NULL;
			}
		}
		spin_unlock(&swap_lock);
	}
	if (page) {
		int one_user;

		BUG_ON(PagePrivate(page));
		one_user = (page_count(page) == 2);
		/* Only cache user (+us), or swap space full? Free it! */
		/* Also recheck PageSwapCache after page is locked (above) */
		if (PageSwapCache(page) && !PageWriteback(page) &&
					(one_user || vm_swap_full())) {
			delete_from_swap_cache(page);
			SetPageDirty(page);
		}
		unlock_page(page);
		page_cache_release(page);
	}
}

#ifdef CONFIG_SOFTWARE_SUSPEND
/*
 * Find the swap type that corresponds to given device (if any).
 *
 * @offset - number of the PAGE_SIZE-sized block of the device, starting
 * from 0, in which the swap header is expected to be located.
 *
 * This is needed for the suspend to disk (aka swsusp).
 */
int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
{
	struct block_device *bdev = NULL;
	int i;

	if (device)
		bdev = bdget(device);

	spin_lock(&swap_lock);
	for (i = 0; i < nr_swapfiles; i++) {
		struct swap_info_struct *sis = swap_info + i;

		if (!(sis->flags & SWP_WRITEOK))
			continue;

		if (!bdev) {
			if (bdev_p)
				*bdev_p = sis->bdev;

			spin_unlock(&swap_lock);
			return i;
		}
		if (bdev == sis->bdev) {
			struct swap_extent *se;

			se = list_entry(sis->extent_list.next,
					struct swap_extent, list);
			if (se->start_block == offset) {
				if (bdev_p)
					*bdev_p = sis->bdev;

				spin_unlock(&swap_lock);
				bdput(bdev);
				return i;
			}
		}
	}
	spin_unlock(&swap_lock);
	if (bdev)
		bdput(bdev);

	return -ENODEV;
}

/*
 * Return either the total number of swap pages of given type, or the number
 * of free pages of that type (depending on @free)
 *
 * This is needed for software suspend
 */
unsigned int count_swap_pages(int type, int free)
{
	unsigned int n = 0;

	if (type < nr_swapfiles) {
		spin_lock(&swap_lock);
		if (swap_info[type].flags & SWP_WRITEOK) {
			n = swap_info[type].pages;
			if (free)
				n -= swap_info[type].inuse_pages;
		}
		spin_unlock(&swap_lock);
	}
	return n;
}
#endif

/*
 * No need to decide whether this PTE shares the swap entry with others,
 * just let do_wp_page work it out if a write is requested later - to
 * force COW, vm_page_prot omits write permission from any private vma.
 */
static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
		unsigned long addr, swp_entry_t entry, struct page *page)
{
	inc_mm_counter(vma->vm_mm, anon_rss);
	get_page(page);
	set_pte_at(vma->vm_mm, addr, pte,
		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
	page_add_anon_rmap(page, vma, addr);
	swap_free(entry);
	/*
	 * Move the page to the active list so it is not
	 * immediately swapped out again after swapon.
	 */
	activate_page(page);
}

static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
				unsigned long addr, unsigned long end,
				swp_entry_t entry, struct page *page)
{
	pte_t swp_pte = swp_entry_to_pte(entry);
	pte_t *pte;
	spinlock_t *ptl;
	int found = 0;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	do {
		/*
		 * swapoff spends a _lot_ of time in this loop!
		 * Test inline before going to call unuse_pte.
		 */
		if (unlikely(pte_same(*pte, swp_pte))) {
			unuse_pte(vma, pte++, addr, entry, page);
			found = 1;
			break;
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap_unlock(pte - 1, ptl);
	return found;
}

static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
				unsigned long addr, unsigned long end,
				swp_entry_t entry, struct page *page)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
			return 1;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				swp_entry_t entry, struct page *page)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
			return 1;
	} while (pud++, addr = next, addr != end);
	return 0;
}

static int unuse_vma(struct vm_area_struct *vma,
				swp_entry_t entry, struct page *page)
{
	pgd_t *pgd;
	unsigned long addr, end, next;

	if (page->mapping) {
		addr = page_address_in_vma(page, vma);
		if (addr == -EFAULT)
			return 0;
		else
			end = addr + PAGE_SIZE;
	} else {
		addr = vma->vm_start;
		end = vma->vm_end;
	}

	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
			return 1;
	} while (pgd++, addr = next, addr != end);
	return 0;
}

static int unuse_mm(struct mm_struct *mm,
				swp_entry_t entry, struct page *page)
{
	struct vm_area_struct *vma;

	if (!down_read_trylock(&mm->mmap_sem)) {
		/*
		 * Activate page so shrink_cache is unlikely to unmap its
		 * ptes while lock is dropped, so swapoff can make progress.
		 */
		activate_page(page);
		unlock_page(page);
		down_read(&mm->mmap_sem);
		lock_page(page);
	}
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (vma->anon_vma && unuse_vma(vma, entry, page))
			break;
	}
	up_read(&mm->mmap_sem);
	/*
	 * Currently unuse_mm cannot fail, but leave error handling
	 * at call sites for now, since we change it from time to time.
	 */
	return 0;
}

/*
 * Scan swap_map from current position to next entry still in use.
 * Recycle to start on reaching the end, returning 0 when empty.
 */
static unsigned int find_next_to_unuse(struct swap_info_struct *si,
					unsigned int prev)
{
	unsigned int max = si->max;
	unsigned int i = prev;
	int count;

	/*
	 * No need for swap_lock here: we're just looking
	 * for whether an entry is in use, not modifying it; false
	 * hits are okay, and sys_swapoff() has already prevented new
	 * allocations from this area (while holding swap_lock).
	 */
	for (;;) {
		if (++i >= max) {
			if (!prev) {
				i = 0;
				break;
			}
			/*
			 * No entries in use at top of swap_map,
			 * loop back to start and recheck there.
			 */
			max = prev + 1;
			prev = 0;
			i = 1;
		}
		count = si->swap_map[i];
		if (count && count != SWAP_MAP_BAD)
			break;
	}
	return i;
}

/*
 * We completely avoid races by reading each swap page in advance,
 * and then search for the process using it.  All the necessary
 * page table adjustments can then be made atomically.
 */
static int try_to_unuse(unsigned int type)
{
	struct swap_info_struct * si = &swap_info[type];
	struct mm_struct *start_mm;
	unsigned short *swap_map;
	unsigned short swcount;
	struct page *page;
	swp_entry_t entry;
	unsigned int i = 0;
	int retval = 0;
	int reset_overflow = 0;
	int shmem;

	/*
	 * When searching mms for an entry, a good strategy is to
	 * start at the first mm we freed the previous entry from
	 * (though actually we don't notice whether we or coincidence
	 * freed the entry).  Initialize this start_mm with a hold.
	 *
	 * A simpler strategy would be to start at the last mm we
	 * freed the previous entry from; but that would take less
	 * advantage of mmlist ordering, which clusters forked mms
	 * together, child after parent.  If we race with dup_mmap(), we
	 * prefer to resolve parent before child, lest we miss entries
	 * duplicated after we scanned child: using last mm would invert
	 * that.  Though it's only a serious concern when an overflowed
	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
	 */
	start_mm = &init_mm;
	atomic_inc(&init_mm.mm_users);

	/*
	 * Keep on scanning until all entries have gone.  Usually,
	 * one pass through swap_map is enough, but not necessarily:
	 * there are races when an instance of an entry might be missed.
	 */
	while ((i = find_next_to_unuse(si, i)) != 0) {
		if (signal_pending(current)) {
			retval = -EINTR;
			break;
		}

		/* 
		 * Get a page for the entry, using the existing swap
		 * cache page if there is one.  Otherwise, get a clean
		 * page and read the swap into it. 
		 */
		swap_map = &si->swap_map[i];
		entry = swp_entry(type, i);
		page = read_swap_cache_async(entry, NULL, 0);
		if (!page) {
			/*
			 * Either swap_duplicate() failed because entry
			 * has been freed independently, and will not be
			 * reused since sys_swapoff() already disabled
			 * allocation from here, or alloc_page() failed.
			 */
			if (!*swap_map)
				continue;
			retval = -ENOMEM;
			break;
		}

		/*
		 * Don't hold on to start_mm if it looks like exiting.
		 */
		if (atomic_read(&start_mm->mm_users) == 1) {
			mmput(start_mm);
			start_mm = &init_mm;
			atomic_inc(&init_mm.mm_users);
		}

		/*
		 * Wait for and lock page.  When do_swap_page races with
		 * try_to_unuse, do_swap_page can handle the fault much
		 * faster than try_to_unuse can locate the entry.  This
		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
		 * defer to do_swap_page in such a case - in some tests,
		 * do_swap_page and try_to_unuse repeatedly compete.
		 */
		wait_on_page_locked(page);
		wait_on_page_writeback(page);
		lock_page(page);
		wait_on_page_writeback(page);

		/*
		 * Remove all references to entry.
		 * Whenever we reach init_mm, there's no address space
		 * to search, but use it as a reminder to search shmem.
		 */
		shmem = 0;
		swcount = *swap_map;
		if (swcount > 1) {
			if (start_mm == &init_mm)
				shmem = shmem_unuse(entry, page);
			else
				retval = unuse_mm(start_mm, entry, page);
		}
		if (*swap_map > 1) {
			int set_start_mm = (*swap_map >= swcount);
			struct list_head *p = &start_mm->mmlist;
			struct mm_struct *new_start_mm = start_mm;
			struct mm_struct *prev_mm = start_mm;
			struct mm_struct *mm;

			atomic_inc(&new_start_mm->mm_users);
			atomic_inc(&prev_mm->mm_users);
			spin_lock(&mmlist_lock);
			while (*swap_map > 1 && !retval &&
					(p = p->next) != &start_mm->mmlist) {
				mm = list_entry(p, struct mm_struct, mmlist);
				if (!atomic_inc_not_zero(&mm->mm_users))
					continue;
				spin_unlock(&mmlist_lock);
				mmput(prev_mm);
				prev_mm = mm;

				cond_resched();

				swcount = *swap_map;
				if (swcount <= 1)
					;
				else if (mm == &init_mm) {
					set_start_mm = 1;
					shmem = shmem_unuse(entry, page);
				} else
					retval = unuse_mm(mm, entry, page);
				if (set_start_mm && *swap_map < swcount) {
					mmput(new_start_mm);
					atomic_inc(&mm->mm_users);
					new_start_mm = mm;
					set_start_mm = 0;
				}
				spin_lock(&mmlist_lock);
			}
			spin_unlock(&mmlist_lock);
			mmput(prev_mm);
			mmput(start_mm);
			start_mm = new_start_mm;
		}
		if (retval) {
			unlock_page(page);
			page_cache_release(page);
			break;
		}

		/*
		 * How could swap count reach 0x7fff when the maximum
		 * pid is 0x7fff, and there's no way to repeat a swap
		 * page within an mm (except in shmem, where it's the
		 * shared object which takes the reference count)?
		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
		 *
		 * If that's wrong, then we should worry more about
		 * exit_mmap() and do_munmap() cases described above:
		 * we might be resetting SWAP_MAP_MAX too early here.
		 * We know "Undead"s can happen, they're okay, so don't
		 * report them; but do report if we reset SWAP_MAP_MAX.
		 */
		if (*swap_map == SWAP_MAP_MAX) {
			spin_lock(&swap_lock);
			*swap_map = 1;
			spin_unlock(&swap_lock);
			reset_overflow = 1;
		}

		/*
		 * If a reference remains (rare), we would like to leave
		 * the page in the swap cache; but try_to_unmap could
		 * then re-duplicate the entry once we drop page lock,
		 * so we might loop indefinitely; also, that page could
		 * not be swapped out to other storage meanwhile.  So:
		 * delete from cache even if there's another reference,
		 * after ensuring that the data has been saved to disk -
		 * since if the reference remains (rarer), it will be
		 * read from disk into another page.  Splitting into two
		 * pages would be incorrect if swap supported "shared
		 * private" pages, but they are handled by tmpfs files.
		 *
		 * Note shmem_unuse already deleted a swappage from
		 * the swap cache, unless the move to filepage failed:
		 * in which case it left swappage in cache, lowered its
		 * swap count to pass quickly through the loops above,
		 * and now we must reincrement count to try again later.
		 */
		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
			struct writeback_control wbc = {
				.sync_mode = WB_SYNC_NONE,
			};

			swap_writepage(page, &wbc);
			lock_page(page);
			wait_on_page_writeback(page);
		}
		if (PageSwapCache(page)) {
			if (shmem)
				swap_duplicate(entry);
			else
				delete_from_swap_cache(page);
		}

		/*
		 * So we could skip searching mms once swap count went
		 * to 1, we did not mark any present ptes as dirty: must
		 * mark page dirty so shrink_list will preserve it.
		 */
		SetPageDirty(page);
		unlock_page(page);
		page_cache_release(page);

		/*
		 * Make sure that we aren't completely killing
		 * interactive performance.
		 */
		cond_resched();
	}

	mmput(start_mm);
	if (reset_overflow) {
		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
		swap_overflow = 0;
	}
	return retval;
}

/*
 * After a successful try_to_unuse, if no swap is now in use, we know
 * we can empty the mmlist.  swap_lock must be held on entry and exit.
 * Note that mmlist_lock nests inside swap_lock, and an mm must be
 * added to the mmlist just after page_duplicate - before would be racy.
 */
static void drain_mmlist(void)
{
	struct list_head *p, *next;
	unsigned int i;

	for (i = 0; i < nr_swapfiles; i++)
		if (swap_info[i].inuse_pages)
			return;
	spin_lock(&mmlist_lock);
	list_for_each_safe(p, next, &init_mm.mmlist)
		list_del_init(p);
	spin_unlock(&mmlist_lock);
}

/*
 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
 * corresponds to page offset `offset'.
 */
sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
{
	struct swap_extent *se = sis->curr_swap_extent;
	struct swap_extent *start_se = se;

	for ( ; ; ) {
		struct list_head *lh;

		if (se->start_page <= offset &&
				offset < (se->start_page + se->nr_pages)) {
			return se->start_block + (offset - se->start_page);
		}
		lh = se->list.next;
		if (lh == &sis->extent_list)
			lh = lh->next;
		se = list_entry(lh, struct swap_extent, list);
		sis->curr_swap_extent = se;
		BUG_ON(se == start_se);		/* It *must* be present */
	}
}

#ifdef CONFIG_SOFTWARE_SUSPEND
/*
 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 * corresponding to given index in swap_info (swap type).
 */
sector_t swapdev_block(int swap_type, pgoff_t offset)
{
	struct swap_info_struct *sis;

	if (swap_type >= nr_swapfiles)
		return 0;

	sis = swap_info + swap_type;
	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
}
#endif /* CONFIG_SOFTWARE_SUSPEND */

/*
 * Free all of a swapdev's extent information
 */
static void destroy_swap_extents(struct swap_info_struct *sis)
{
	while (!list_empty(&sis->extent_list)) {
		struct swap_extent *se;

		se = list_entry(sis->extent_list.next,
				struct swap_extent, list);
		list_del(&se->list);
		kfree(se);
	}
}

/*
 * Add a block range (and the corresponding page range) into this swapdev's
 * extent list.  The extent list is kept sorted in page order.
 *
 * This function rather assumes that it is called in ascending page order.
 */
static int
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
		unsigned long nr_pages, sector_t start_block)
{
	struct swap_extent *se;
	struct swap_extent *new_se;
	struct list_head *lh;

	lh = sis->extent_list.prev;	/* The highest page extent */
	if (lh != &sis->extent_list) {
		se = list_entry(lh, struct swap_extent, list);
		BUG_ON(se->start_page + se->nr_pages != start_page);
		if (se->start_block + se->nr_pages == start_block) {
			/* Merge it */
			se->nr_pages += nr_pages;
			return 0;
		}
	}

	/*
	 * No merge.  Insert a new extent, preserving ordering.
	 */
	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
	if (new_se == NULL)
		return -ENOMEM;
	new_se->start_page = start_page;
	new_se->nr_pages = nr_pages;
	new_se->start_block = start_block;

	list_add_tail(&new_se->list, &sis->extent_list);
	return 1;
}

/*
 * A `swap extent' is a simple thing which maps a contiguous range of pages
 * onto a contiguous range of disk blocks.  An ordered list of swap extents
 * is built at swapon time and is then used at swap_writepage/swap_readpage
 * time for locating where on disk a page belongs.
 *
 * If the swapfile is an S_ISBLK block device, a single extent is installed.
 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
 * swap files identically.
 *
 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
 * swapfiles are handled *identically* after swapon time.
 *
 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
 * requirements, they are simply tossed out - we will never use those blocks
 * for swapping.
 *
 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
 * which will scribble on the fs.
 *
 * The amount of disk space which a single swap extent represents varies.
 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
 * extents in the list.  To avoid much list walking, we cache the previous
 * search location in `curr_swap_extent', and start new searches from there.
 * This is extremely effective.  The average number of iterations in
 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
 */
static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
{
	struct inode *inode;
	unsigned blocks_per_page;
	unsigned long page_no;
	unsigned blkbits;
	sector_t probe_block;
	sector_t last_block;
	sector_t lowest_block = -1;
	sector_t highest_block = 0;
	int nr_extents = 0;
	int ret;

	inode = sis->swap_file->f_mapping->host;
	if (S_ISBLK(inode->i_mode)) {
		ret = add_swap_extent(sis, 0, sis->max, 0);
		*span = sis->pages;
		goto done;
	}

	blkbits = inode->i_blkbits;
	blocks_per_page = PAGE_SIZE >> blkbits;

	/*
	 * Map all the blocks into the extent list.  This code doesn't try
	 * to be very smart.
	 */
	probe_block = 0;
	page_no = 0;
	last_block = i_size_read(inode) >> blkbits;
	while ((probe_block + blocks_per_page) <= last_block &&
			page_no < sis->max) {
		unsigned block_in_page;
		sector_t first_block;

		first_block = bmap(inode, probe_block);
		if (first_block == 0)
			goto bad_bmap;

		/*
		 * It must be PAGE_SIZE aligned on-disk
		 */
		if (first_block & (blocks_per_page - 1)) {
			probe_block++;
			goto reprobe;
		}

		for (block_in_page = 1; block_in_page < blocks_per_page;
					block_in_page++) {
			sector_t block;

			block = bmap(inode, probe_block + block_in_page);
			if (block == 0)
				goto bad_bmap;
			if (block != first_block + block_in_page) {
				/* Discontiguity */
				probe_block++;
				goto reprobe;
			}
		}

		first_block >>= (PAGE_SHIFT - blkbits);
		if (page_no) {	/* exclude the header page */
			if (first_block < lowest_block)
				lowest_block = first_block;
			if (first_block > highest_block)
				highest_block = first_block;
		}

		/*
		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
		 */
		ret = add_swap_extent(sis, page_no, 1, first_block);
		if (ret < 0)
			goto out;
		nr_extents += ret;
		page_no++;
		probe_block += blocks_per_page;
reprobe:
		continue;
	}
	ret = nr_extents;
	*span = 1 + highest_block - lowest_block;
	if (page_no == 0)
		page_no = 1;	/* force Empty message */
	sis->max = page_no;
	sis->pages = page_no - 1;
	sis->highest_bit = page_no - 1;
done:
	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
					struct swap_extent, list);
	goto out;
bad_bmap:
	printk(KERN_ERR "swapon: swapfile has holes\n");
	ret = -EINVAL;
out:
	return ret;
}

#if 0	/* We don't need this yet */
#include <linux/backing-dev.h>
int page_queue_congested(struct page *page)
{
	struct backing_dev_info *bdi;

	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */

	if (PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		struct swap_info_struct *sis;

		sis = get_swap_info_struct(swp_type(entry));
		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
	} else
		bdi = page->mapping->backing_dev_info;
	return bdi_write_congested(bdi);
}
#endif

asmlinkage long sys_swapoff(const char __user * specialfile)
{
	struct swap_info_struct * p = NULL;
	unsigned short *swap_map;
	struct file *swap_file, *victim;
	struct address_space *mapping;
	struct inode *inode;
	char * pathname;
	int i, type, prev;
	int err;
	
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	pathname = getname(specialfile);
	err = PTR_ERR(pathname);
	if (IS_ERR(pathname))
		goto out;

	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
	putname(pathname);
	err = PTR_ERR(victim);
	if (IS_ERR(victim))
		goto out;

	mapping = victim->f_mapping;
	prev = -1;
	spin_lock(&swap_lock);
	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
		p = swap_info + type;
		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
			if (p->swap_file->f_mapping == mapping)
				break;
		}
		prev = type;
	}
	if (type < 0) {
		err = -EINVAL;
		spin_unlock(&swap_lock);
		goto out_dput;
	}
	if (!security_vm_enough_memory(p->pages))
		vm_unacct_memory(p->pages);
	else {
		err = -ENOMEM;
		spin_unlock(&swap_lock);
		goto out_dput;
	}
	if (prev < 0) {
		swap_list.head = p->next;
	} else {
		swap_info[prev].next = p->next;
	}
	if (type == swap_list.next) {
		/* just pick something that's safe... */
		swap_list.next = swap_list.head;
	}
	nr_swap_pages -= p->pages;
	total_swap_pages -= p->pages;
	p->flags &= ~SWP_WRITEOK;
	spin_unlock(&swap_lock);

	current->flags |= PF_SWAPOFF;
	err = try_to_unuse(type);
	current->flags &= ~PF_SWAPOFF;

	if (err) {
		/* re-insert swap space back into swap_list */
		spin_lock(&swap_lock);
		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
			if (p->prio >= swap_info[i].prio)
				break;
		p->next = i;
		if (prev < 0)
			swap_list.head = swap_list.next = p - swap_info;
		else
			swap_info[prev].next = p - swap_info;
		nr_swap_pages += p->pages;
		total_swap_pages += p->pages;
		p->flags |= SWP_WRITEOK;
		spin_unlock(&swap_lock);
		goto out_dput;
	}

	/* wait for any unplug function to finish */
	down_write(&swap_unplug_sem);
	up_write(&swap_unplug_sem);

	destroy_swap_extents(p);
	mutex_lock(&swapon_mutex);
	spin_lock(&swap_lock);
	drain_mmlist();

	/* wait for anyone still in scan_swap_map */
	p->highest_bit = 0;		/* cuts scans short */
	while (p->flags >= SWP_SCANNING) {
		spin_unlock(&swap_lock);
		schedule_timeout_uninterruptible(1);
		spin_lock(&swap_lock);
	}

	swap_file = p->swap_file;
	p->swap_file = NULL;
	p->max = 0;
	swap_map = p->swap_map;
	p->swap_map = NULL;
	p->flags = 0;
	spin_unlock(&swap_lock);
	mutex_unlock(&swapon_mutex);
	vfree(swap_map);
	inode = mapping->host;
	if (S_ISBLK(inode->i_mode)) {
		struct block_device *bdev = I_BDEV(inode);
		set_blocksize(bdev, p->old_block_size);
		bd_release(bdev);
	} else {
		mutex_lock(&inode->i_mutex);
		inode->i_flags &= ~S_SWAPFILE;
		mutex_unlock(&inode->i_mutex);
	}
	filp_close(swap_file, NULL);
	err = 0;

out_dput:
	filp_close(victim, NULL);
out:
	return err;
}

#ifdef CONFIG_PROC_FS
/* iterator */
static void *swap_start(struct seq_file *swap, loff_t *pos)
{
	struct swap_info_struct *ptr = swap_info;
	int i;
	loff_t l = *pos;

	mutex_lock(&swapon_mutex);

	if (!l)
		return SEQ_START_TOKEN;

	for (i = 0; i < nr_swapfiles; i++, ptr++) {
		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
			continue;
		if (!--l)
			return ptr;
	}

	return NULL;
}

static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
{
	struct swap_info_struct *ptr;
	struct swap_info_struct *endptr = swap_info + nr_swapfiles;

	if (v == SEQ_START_TOKEN)
		ptr = swap_info;
	else {
		ptr = v;
		ptr++;
	}

	for (; ptr < endptr; ptr++) {
		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
			continue;
		++*pos;
		return ptr;
	}

	return NULL;
}

static void swap_stop(struct seq_file *swap, void *v)
{
	mutex_unlock(&swapon_mutex);
}

static int swap_show(struct seq_file *swap, void *v)
{
	struct swap_info_struct *ptr = v;
	struct file *file;
	int len;

	if (ptr == SEQ_START_TOKEN) {
		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
		return 0;
	}

	file = ptr->swap_file;
	len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
		       len < 40 ? 40 - len : 1, " ",
		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
				"partition" : "file\t",
		       ptr->pages << (PAGE_SHIFT - 10),
		       ptr->inuse_pages << (PAGE_SHIFT - 10),
		       ptr->prio);
	return 0;
}

static const struct seq_operations swaps_op = {
	.start =	swap_start,
	.next =		swap_next,
	.stop =		swap_stop,
	.show =		swap_show
};

static int swaps_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &swaps_op);
}

static const struct file_operations proc_swaps_operations = {
	.open		= swaps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init procswaps_init(void)
{
	struct proc_dir_entry *entry;

	entry = create_proc_entry("swaps", 0, NULL);
	if (entry)
		entry->proc_fops = &proc_swaps_operations;
	return 0;
}
__initcall(procswaps_init);
#endif /* CONFIG_PROC_FS */

/*
 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
 *
 * The swapon system call
 */
asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
{
	struct swap_info_struct * p;
	char *name = NULL;
	struct block_device *bdev = NULL;
	struct file *swap_file = NULL;
	struct address_space *mapping;
	unsigned int type;
	int i, prev;
	int error;
	static int least_priority;
	union swap_header *swap_header = NULL;
	int swap_header_version;
	unsigned int nr_good_pages = 0;
	int nr_extents = 0;
	sector_t span;
	unsigned long maxpages = 1;
	int swapfilesize;
	unsigned short *swap_map;
	struct page *page = NULL;
	struct inode *inode = NULL;
	int did_down = 0;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	spin_lock(&swap_lock);
	p = swap_info;
	for (type = 0 ; type < nr_swapfiles ; type++,p++)
		if (!(p->flags & SWP_USED))
			break;
	error = -EPERM;
	if (type >= MAX_SWAPFILES) {
		spin_unlock(&swap_lock);
		goto out;
	}
	if (type >= nr_swapfiles)
		nr_swapfiles = type+1;
	INIT_LIST_HEAD(&p->extent_list);
	p->flags = SWP_USED;
	p->swap_file = NULL;
	p->old_block_size = 0;
	p->swap_map = NULL;
	p->lowest_bit = 0;
	p->highest_bit = 0;
	p->cluster_nr = 0;
	p->inuse_pages = 0;
	p->next = -1;
	if (swap_flags & SWAP_FLAG_PREFER) {
		p->prio =
		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
	} else {
		p->prio = --least_priority;
	}
	spin_unlock(&swap_lock);
	name = getname(specialfile);
	error = PTR_ERR(name);
	if (IS_ERR(name)) {
		name = NULL;
		goto bad_swap_2;
	}
	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
	error = PTR_ERR(swap_file);
	if (IS_ERR(swap_file)) {
		swap_file = NULL;
		goto bad_swap_2;
	}

	p->swap_file = swap_file;
	mapping = swap_file->f_mapping;
	inode = mapping->host;

	error = -EBUSY;
	for (i = 0; i < nr_swapfiles; i++) {
		struct swap_info_struct *q = &swap_info[i];

		if (i == type || !q->swap_file)
			continue;
		if (mapping == q->swap_file->f_mapping)
			goto bad_swap;
	}

	error = -EINVAL;
	if (S_ISBLK(inode->i_mode)) {
		bdev = I_BDEV(inode);
		error = bd_claim(bdev, sys_swapon);
		if (error < 0) {
			bdev = NULL;
			error = -EINVAL;
			goto bad_swap;
		}
		p->old_block_size = block_size(bdev);
		error = set_blocksize(bdev, PAGE_SIZE);
		if (error < 0)
			goto bad_swap;
		p->bdev = bdev;
	} else if (S_ISREG(inode->i_mode)) {
		p->bdev = inode->i_sb->s_bdev;
		mutex_lock(&inode->i_mutex);
		did_down = 1;
		if (IS_SWAPFILE(inode)) {
			error = -EBUSY;
			goto bad_swap;
		}
	} else {
		goto bad_swap;
	}

	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;

	/*
	 * Read the swap header.
	 */
	if (!mapping->a_ops->readpage) {
		error = -EINVAL;
		goto bad_swap;
	}
	page = read_mapping_page(mapping, 0, swap_file);
	if (IS_ERR(page)) {
		error = PTR_ERR(page);
		goto bad_swap;
	}
	wait_on_page_locked(page);
	if (!PageUptodate(page))
		goto bad_swap;
	kmap(page);
	swap_header = page_address(page);

	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
		swap_header_version = 1;
	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
		swap_header_version = 2;
	else {
		printk(KERN_ERR "Unable to find swap-space signature\n");
		error = -EINVAL;
		goto bad_swap;
	}
	
	switch (swap_header_version) {
	case 1:
		printk(KERN_ERR "version 0 swap is no longer supported. "
			"Use mkswap -v1 %s\n", name);
		error = -EINVAL;
		goto bad_swap;
	case 2:
		/* Check the swap header's sub-version and the size of
                   the swap file and bad block lists */
		if (swap_header->info.version != 1) {
			printk(KERN_WARNING
			       "Unable to handle swap header version %d\n",
			       swap_header->info.version);
			error = -EINVAL;
			goto bad_swap;
		}

		p->lowest_bit  = 1;
		p->cluster_next = 1;

		/*
		 * Find out how many pages are allowed for a single swap
		 * device. There are two limiting factors: 1) the number of
		 * bits for the swap offset in the swp_entry_t type and
		 * 2) the number of bits in the a swap pte as defined by
		 * the different architectures. In order to find the
		 * largest possible bit mask a swap entry with swap type 0
		 * and swap offset ~0UL is created, encoded to a swap pte,
		 * decoded to a swp_entry_t again and finally the swap
		 * offset is extracted. This will mask all the bits from
		 * the initial ~0UL mask that can't be encoded in either
		 * the swp_entry_t or the architecture definition of a
		 * swap pte.
		 */
		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
		if (maxpages > swap_header->info.last_page)
			maxpages = swap_header->info.last_page;
		p->highest_bit = maxpages - 1;

		error = -EINVAL;
		if (!maxpages)
			goto bad_swap;
		if (swapfilesize && maxpages > swapfilesize) {
			printk(KERN_WARNING
			       "Swap area shorter than signature indicates\n");
			goto bad_swap;
		}
		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
			goto bad_swap;
		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
			goto bad_swap;

		/* OK, set up the swap map and apply the bad block list */
		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
			error = -ENOMEM;
			goto bad_swap;
		}

		error = 0;
		memset(p->swap_map, 0, maxpages * sizeof(short));
		for (i = 0; i < swap_header->info.nr_badpages; i++) {
			int page_nr = swap_header->info.badpages[i];
			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
				error = -EINVAL;
			else
				p->swap_map[page_nr] = SWAP_MAP_BAD;
		}
		nr_good_pages = swap_header->info.last_page -
				swap_header->info.nr_badpages -
				1 /* header page */;
		if (error)
			goto bad_swap;
	}

	if (nr_good_pages) {
		p->swap_map[0] = SWAP_MAP_BAD;
		p->max = maxpages;
		p->pages = nr_good_pages;
		nr_extents = setup_swap_extents(p, &span);
		if (nr_extents < 0) {
			error = nr_extents;
			goto bad_swap;
		}
		nr_good_pages = p->pages;
	}
	if (!nr_good_pages) {
		printk(KERN_WARNING "Empty swap-file\n");
		error = -EINVAL;
		goto bad_swap;
	}

	mutex_lock(&swapon_mutex);
	spin_lock(&swap_lock);
	p->flags = SWP_ACTIVE;
	nr_swap_pages += nr_good_pages;
	total_swap_pages += nr_good_pages;

	printk(KERN_INFO "Adding %uk swap on %s.  "
			"Priority:%d extents:%d across:%lluk\n",
		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));

	/* insert swap space into swap_list: */
	prev = -1;
	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
		if (p->prio >= swap_info[i].prio) {
			break;
		}
		prev = i;
	}
	p->next = i;
	if (prev < 0) {
		swap_list.head = swap_list.next = p - swap_info;
	} else {
		swap_info[prev].next = p - swap_info;
	}
	spin_unlock(&swap_lock);
	mutex_unlock(&swapon_mutex);
	error = 0;
	goto out;
bad_swap:
	if (bdev) {
		set_blocksize(bdev, p->old_block_size);
		bd_release(bdev);
	}
	destroy_swap_extents(p);
bad_swap_2:
	spin_lock(&swap_lock);
	swap_map = p->swap_map;
	p->swap_file = NULL;
	p->swap_map = NULL;
	p->flags = 0;
	if (!(swap_flags & SWAP_FLAG_PREFER))
		++least_priority;
	spin_unlock(&swap_lock);
	vfree(swap_map);
	if (swap_file)
		filp_close(swap_file, NULL);
out:
	if (page && !IS_ERR(page)) {
		kunmap(page);
		page_cache_release(page);
	}
	if (name)
		putname(name);
	if (did_down) {
		if (!error)
			inode->i_flags |= S_SWAPFILE;
		mutex_unlock(&inode->i_mutex);
	}
	return error;
}

void si_swapinfo(struct sysinfo *val)
{
	unsigned int i;
	unsigned long nr_to_be_unused = 0;

	spin_lock(&swap_lock);
	for (i = 0; i < nr_swapfiles; i++) {
		if (!(swap_info[i].flags & SWP_USED) ||
		     (swap_info[i].flags & SWP_WRITEOK))
			continue;
		nr_to_be_unused += swap_info[i].inuse_pages;
	}
	val->freeswap = nr_swap_pages + nr_to_be_unused;
	val->totalswap = total_swap_pages + nr_to_be_unused;
	spin_unlock(&swap_lock);
}

/*
 * Verify that a swap entry is valid and increment its swap map count.
 *
 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
 * "permanent", but will be reclaimed by the next swapoff.
 */
int swap_duplicate(swp_entry_t entry)
{
	struct swap_info_struct * p;
	unsigned long offset, type;
	int result = 0;

	if (is_migration_entry(entry))
		return 1;

	type = swp_type(entry);
	if (type >= nr_swapfiles)
		goto bad_file;
	p = type + swap_info;
	offset = swp_offset(entry);

	spin_lock(&swap_lock);
	if (offset < p->max && p->swap_map[offset]) {
		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
			p->swap_map[offset]++;
			result = 1;
		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
			if (swap_overflow++ < 5)
				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
			p->swap_map[offset] = SWAP_MAP_MAX;
			result = 1;
		}
	}
	spin_unlock(&swap_lock);
out:
	return result;

bad_file:
	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
	goto out;
}

struct swap_info_struct *
get_swap_info_struct(unsigned type)
{
	return &swap_info[type];
}

/*
 * swap_lock prevents swap_map being freed. Don't grab an extra
 * reference on the swaphandle, it doesn't matter if it becomes unused.
 */
int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
{
	int our_page_cluster = page_cluster;
	int ret = 0, i = 1 << our_page_cluster;
	unsigned long toff;
	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;

	if (!our_page_cluster)	/* no readahead */
		return 0;
	toff = (swp_offset(entry) >> our_page_cluster) << our_page_cluster;
	if (!toff)		/* first page is swap header */
		toff++, i--;
	*offset = toff;

	spin_lock(&swap_lock);
	do {
		/* Don't read-ahead past the end of the swap area */
		if (toff >= swapdev->max)
			break;
		/* Don't read in free or bad pages */
		if (!swapdev->swap_map[toff])
			break;
		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
			break;
		toff++;
		ret++;
	} while (--i);
	spin_unlock(&swap_lock);
	return ret;
}