Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/*
 * Time of Day Clock support for the M48T35, M48T37, M48T59, and MC146818
 * Real Time Clocks/Timekeepers.
 *
 * Author: Mark A. Greer
 *         mgreer@mvista.com
 *
 * 2001-2004 (c) MontaVista, Software, Inc.  This file is licensed under
 * the terms of the GNU General Public License version 2.  This program
 * is licensed "as is" without any warranty of any kind, whether express
 * or implied.
 */
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/bcd.h>
#include <linux/mc146818rtc.h>

#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/time.h>
#include <asm/todc.h>

/*
 * Depending on the hardware on your board and your board design, the
 * RTC/NVRAM may be accessed either directly (like normal memory) or via
 * address/data registers.  If your board uses the direct method, set
 * 'nvram_data' to the base address of your nvram and leave 'nvram_as0' and
 * 'nvram_as1' NULL.  If your board uses address/data regs to access nvram,
 * set 'nvram_as0' to the address of the lower byte, set 'nvram_as1' to the
 * address of the upper byte (leave NULL if using mc146818), and set
 * 'nvram_data' to the address of the 8-bit data register.
 *
 * In order to break the assumption that the RTC and NVRAM are accessed by
 * the same mechanism, you need to explicitly set 'ppc_md.rtc_read_val' and
 * 'ppc_md.rtc_write_val', otherwise the values of 'ppc_md.rtc_read_val'
 * and 'ppc_md.rtc_write_val' will be used.
 *
 * Note: Even though the documentation for the various RTC chips say that it
 * 	 take up to a second before it starts updating once the 'R' bit is
 * 	 cleared, they always seem to update even though we bang on it many
 * 	 times a second.  This is true, except for the Dallas Semi 1746/1747
 * 	 (possibly others).  Those chips seem to have a real problem whenever
 * 	 we set the 'R' bit before reading them, they basically stop counting.
 * 	 					--MAG
 */

/*
 * 'todc_info' should be initialized in your *_setup.c file to
 * point to a fully initialized 'todc_info_t' structure.
 * This structure holds all the register offsets for your particular
 * TODC/RTC chip.
 * TODC_ALLOC()/TODC_INIT() will allocate and initialize this table for you.
 */

#ifdef	RTC_FREQ_SELECT
#undef	RTC_FREQ_SELECT
#define	RTC_FREQ_SELECT		control_b	/* Register A */
#endif

#ifdef	RTC_CONTROL
#undef	RTC_CONTROL
#define	RTC_CONTROL		control_a	/* Register B */
#endif

#ifdef	RTC_INTR_FLAGS
#undef	RTC_INTR_FLAGS
#define	RTC_INTR_FLAGS		watchdog	/* Register C */
#endif

#ifdef	RTC_VALID
#undef	RTC_VALID
#define	RTC_VALID		interrupts	/* Register D */
#endif

/* Access routines when RTC accessed directly (like normal memory) */
u_char
todc_direct_read_val(int addr)
{
	return readb((void __iomem *)(todc_info->nvram_data + addr));
}

void
todc_direct_write_val(int addr, unsigned char val)
{
	writeb(val, (void __iomem *)(todc_info->nvram_data + addr));
	return;
}

/* Access routines for accessing m48txx type chips via addr/data regs */
u_char
todc_m48txx_read_val(int addr)
{
	outb(addr, todc_info->nvram_as0);
	outb(addr>>todc_info->as0_bits, todc_info->nvram_as1);
	return inb(todc_info->nvram_data);
}

void
todc_m48txx_write_val(int addr, unsigned char val)
{
	outb(addr, todc_info->nvram_as0);
	outb(addr>>todc_info->as0_bits, todc_info->nvram_as1);
   	outb(val, todc_info->nvram_data);
	return;
}

/* Access routines for accessing mc146818 type chips via addr/data regs */
u_char
todc_mc146818_read_val(int addr)
{
	outb_p(addr, todc_info->nvram_as0);
	return inb_p(todc_info->nvram_data);
}

void
todc_mc146818_write_val(int addr, unsigned char val)
{
	outb_p(addr, todc_info->nvram_as0);
   	outb_p(val, todc_info->nvram_data);
}


/*
 * Routines to make RTC chips with NVRAM buried behind an addr/data pair
 * have the NVRAM and clock regs appear at the same level.
 * The NVRAM will appear to start at addr 0 and the clock regs will appear
 * to start immediately after the NVRAM (actually, start at offset
 * todc_info->nvram_size).
 */
static inline u_char
todc_read_val(int addr)
{
	u_char	val;

	if (todc_info->sw_flags & TODC_FLAG_2_LEVEL_NVRAM) {
		if (addr < todc_info->nvram_size) { /* NVRAM */
			ppc_md.rtc_write_val(todc_info->nvram_addr_reg, addr);
			val = ppc_md.rtc_read_val(todc_info->nvram_data_reg);
		}
		else { /* Clock Reg */
			addr -= todc_info->nvram_size;
			val = ppc_md.rtc_read_val(addr);
		}
	}
	else {
		val = ppc_md.rtc_read_val(addr);
	}

	return val;
}

static inline void
todc_write_val(int addr, u_char val)
{
	if (todc_info->sw_flags & TODC_FLAG_2_LEVEL_NVRAM) {
		if (addr < todc_info->nvram_size) { /* NVRAM */
			ppc_md.rtc_write_val(todc_info->nvram_addr_reg, addr);
			ppc_md.rtc_write_val(todc_info->nvram_data_reg, val);
		}
		else { /* Clock Reg */
			addr -= todc_info->nvram_size;
			ppc_md.rtc_write_val(addr, val);
		}
	}
	else {
		ppc_md.rtc_write_val(addr, val);
	}
}

/*
 * TODC routines
 *
 * There is some ugly stuff in that there are assumptions for the mc146818.
 *
 * Assumptions:
 *	- todc_info->control_a has the offset as mc146818 Register B reg
 *	- todc_info->control_b has the offset as mc146818 Register A reg
 *	- m48txx control reg's write enable or 'W' bit is same as
 *	  mc146818 Register B 'SET' bit (i.e., 0x80)
 *
 * These assumptions were made to make the code simpler.
 */
long __init
todc_time_init(void)
{
	u_char	cntl_b;

	if (!ppc_md.rtc_read_val)
		ppc_md.rtc_read_val = ppc_md.nvram_read_val;
	if (!ppc_md.rtc_write_val)
		ppc_md.rtc_write_val = ppc_md.nvram_write_val;
	
	cntl_b = todc_read_val(todc_info->control_b);

	if (todc_info->rtc_type == TODC_TYPE_MC146818) {
		if ((cntl_b & 0x70) != 0x20) {
			printk(KERN_INFO "TODC %s %s\n",
				"real-time-clock was stopped.",
				"Now starting...");
			cntl_b &= ~0x70;
			cntl_b |= 0x20;
		}

		todc_write_val(todc_info->control_b, cntl_b);
	} else if (todc_info->rtc_type == TODC_TYPE_DS17285) {
		u_char mode;

		mode = todc_read_val(TODC_TYPE_DS17285_CNTL_A);
		/* Make sure countdown clear is not set */
		mode &= ~0x40;
		/* Enable oscillator, extended register set */
		mode |= 0x30;
		todc_write_val(TODC_TYPE_DS17285_CNTL_A, mode);

	} else if (todc_info->rtc_type == TODC_TYPE_DS1501) {
		u_char	month;

		todc_info->enable_read = TODC_DS1501_CNTL_B_TE;
		todc_info->enable_write = TODC_DS1501_CNTL_B_TE;

		month = todc_read_val(todc_info->month);

		if ((month & 0x80) == 0x80) {
			printk(KERN_INFO "TODC %s %s\n",
				"real-time-clock was stopped.",
				"Now starting...");
			month &= ~0x80;
			todc_write_val(todc_info->month, month);
		}

		cntl_b &= ~TODC_DS1501_CNTL_B_TE;
		todc_write_val(todc_info->control_b, cntl_b);
	} else { /* must be a m48txx type */
		u_char	cntl_a;

		todc_info->enable_read = TODC_MK48TXX_CNTL_A_R;
		todc_info->enable_write = TODC_MK48TXX_CNTL_A_W;

		cntl_a = todc_read_val(todc_info->control_a);

		/* Check & clear STOP bit in control B register */
		if (cntl_b & TODC_MK48TXX_DAY_CB) {
			printk(KERN_INFO "TODC %s %s\n",
				"real-time-clock was stopped.",
				"Now starting...");

			cntl_a |= todc_info->enable_write;
			cntl_b &= ~TODC_MK48TXX_DAY_CB;/* Start Oscil */

			todc_write_val(todc_info->control_a, cntl_a);
			todc_write_val(todc_info->control_b, cntl_b);
		}

		/* Make sure READ & WRITE bits are cleared. */
		cntl_a &= ~(todc_info->enable_write |
			    todc_info->enable_read);
		todc_write_val(todc_info->control_a, cntl_a);
	}

	return 0;
}

/*
 * There is some ugly stuff in that there are assumptions that for a mc146818,
 * the todc_info->control_a has the offset of the mc146818 Register B reg and
 * that the register'ss 'SET' bit is the same as the m48txx's write enable
 * bit in the control register of the m48txx (i.e., 0x80).
 *
 * It was done to make the code look simpler.
 */
ulong
todc_get_rtc_time(void)
{
	uint	year = 0, mon = 0, day = 0, hour = 0, min = 0, sec = 0;
	uint	limit, i;
	u_char	save_control, uip = 0;

	spin_lock(&rtc_lock);
	save_control = todc_read_val(todc_info->control_a);

	if (todc_info->rtc_type != TODC_TYPE_MC146818) {
		limit = 1;

		switch (todc_info->rtc_type) {
			case TODC_TYPE_DS1553:
			case TODC_TYPE_DS1557:
			case TODC_TYPE_DS1743:
			case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */
			case TODC_TYPE_DS1747:
			case TODC_TYPE_DS17285:
				break;
			default:
				todc_write_val(todc_info->control_a,
				       (save_control | todc_info->enable_read));
		}
	}
	else {
		limit = 100000000;
	}

	for (i=0; i<limit; i++) {
		if (todc_info->rtc_type == TODC_TYPE_MC146818) {
			uip = todc_read_val(todc_info->RTC_FREQ_SELECT);
		}

		sec = todc_read_val(todc_info->seconds) & 0x7f;
		min = todc_read_val(todc_info->minutes) & 0x7f;
		hour = todc_read_val(todc_info->hours) & 0x3f;
		day = todc_read_val(todc_info->day_of_month) & 0x3f;
		mon = todc_read_val(todc_info->month) & 0x1f;
		year = todc_read_val(todc_info->year) & 0xff;

		if (todc_info->rtc_type == TODC_TYPE_MC146818) {
			uip |= todc_read_val(todc_info->RTC_FREQ_SELECT);
			if ((uip & RTC_UIP) == 0) break;
		}
	}

	if (todc_info->rtc_type != TODC_TYPE_MC146818) {
		switch (todc_info->rtc_type) {
			case TODC_TYPE_DS1553:
			case TODC_TYPE_DS1557:
			case TODC_TYPE_DS1743:
			case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */
			case TODC_TYPE_DS1747:
			case TODC_TYPE_DS17285:
				break;
			default:
				save_control &= ~(todc_info->enable_read);
				todc_write_val(todc_info->control_a,
						       save_control);
		}
	}
	spin_unlock(&rtc_lock);

	if ((todc_info->rtc_type != TODC_TYPE_MC146818) ||
	    ((save_control & RTC_DM_BINARY) == 0) ||
	    RTC_ALWAYS_BCD) {

		BCD_TO_BIN(sec);
		BCD_TO_BIN(min);
		BCD_TO_BIN(hour);
		BCD_TO_BIN(day);
		BCD_TO_BIN(mon);
		BCD_TO_BIN(year);
	}

	year = year + 1900;
	if (year < 1970) {
		year += 100;
	}

	return mktime(year, mon, day, hour, min, sec);
}

int
todc_set_rtc_time(unsigned long nowtime)
{
	struct rtc_time	tm;
	u_char		save_control, save_freq_select = 0;

	spin_lock(&rtc_lock);
	to_tm(nowtime, &tm);

	save_control = todc_read_val(todc_info->control_a);

	/* Assuming MK48T59_RTC_CA_WRITE & RTC_SET are equal */
	todc_write_val(todc_info->control_a,
			       (save_control | todc_info->enable_write));
	save_control &= ~(todc_info->enable_write); /* in case it was set */

	if (todc_info->rtc_type == TODC_TYPE_MC146818) {
		save_freq_select = todc_read_val(todc_info->RTC_FREQ_SELECT);
		todc_write_val(todc_info->RTC_FREQ_SELECT,
				       save_freq_select | RTC_DIV_RESET2);
	}


        tm.tm_year = (tm.tm_year - 1900) % 100;

	if ((todc_info->rtc_type != TODC_TYPE_MC146818) ||
	    ((save_control & RTC_DM_BINARY) == 0) ||
	    RTC_ALWAYS_BCD) {

		BIN_TO_BCD(tm.tm_sec);
		BIN_TO_BCD(tm.tm_min);
		BIN_TO_BCD(tm.tm_hour);
		BIN_TO_BCD(tm.tm_mon);
		BIN_TO_BCD(tm.tm_mday);
		BIN_TO_BCD(tm.tm_year);
	}

	todc_write_val(todc_info->seconds,      tm.tm_sec);
	todc_write_val(todc_info->minutes,      tm.tm_min);
	todc_write_val(todc_info->hours,        tm.tm_hour);
	todc_write_val(todc_info->month,        tm.tm_mon);
	todc_write_val(todc_info->day_of_month, tm.tm_mday);
	todc_write_val(todc_info->year,         tm.tm_year);

	todc_write_val(todc_info->control_a, save_control);

	if (todc_info->rtc_type == TODC_TYPE_MC146818) {
		todc_write_val(todc_info->RTC_FREQ_SELECT, save_freq_select);
	}
	spin_unlock(&rtc_lock);

	return 0;
}

/*
 * Manipulates read bit to reliably read seconds at a high rate.
 */
static unsigned char __init todc_read_timereg(int addr)
{
	unsigned char save_control = 0, val;

	switch (todc_info->rtc_type) {
		case TODC_TYPE_DS1553:
		case TODC_TYPE_DS1557:
		case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */
		case TODC_TYPE_DS1747:
		case TODC_TYPE_DS17285:
		case TODC_TYPE_MC146818:
			break;
		default:
			save_control = todc_read_val(todc_info->control_a);
			todc_write_val(todc_info->control_a,
				       (save_control | todc_info->enable_read));
	}
	val = todc_read_val(addr);

	switch (todc_info->rtc_type) {
		case TODC_TYPE_DS1553:
		case TODC_TYPE_DS1557:
		case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */
		case TODC_TYPE_DS1747:
		case TODC_TYPE_DS17285:
		case TODC_TYPE_MC146818:
			break;
		default:
			save_control &= ~(todc_info->enable_read);
			todc_write_val(todc_info->control_a, save_control);
	}

	return val;
}

/*
 * This was taken from prep_setup.c
 * Use the NVRAM RTC to time a second to calibrate the decrementer.
 */
void __init
todc_calibrate_decr(void)
{
	ulong	freq;
	ulong	tbl, tbu;
        long	i, loop_count;
        u_char	sec;

	todc_time_init();

	/*
	 * Actually this is bad for precision, we should have a loop in
	 * which we only read the seconds counter. todc_read_val writes
	 * the address bytes on every call and this takes a lot of time.
	 * Perhaps an nvram_wait_change method returning a time
	 * stamp with a loop count as parameter would be the solution.
	 */
	/*
	 * Need to make sure the tbl doesn't roll over so if tbu increments
	 * during this test, we need to do it again.
	 */
	loop_count = 0;

	sec = todc_read_timereg(todc_info->seconds) & 0x7f;

	do {
		tbu = get_tbu();

		for (i = 0 ; i < 10000000 ; i++) {/* may take up to 1 second */
		   tbl = get_tbl();

		   if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) {
		      break;
		   }
		}

		sec = todc_read_timereg(todc_info->seconds) & 0x7f;

		for (i = 0 ; i < 10000000 ; i++) { /* Should take 1 second */
		   freq = get_tbl();

		   if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) {
		      break;
		   }
		}

		freq -= tbl;
	} while ((get_tbu() != tbu) && (++loop_count < 2));

	printk("time_init: decrementer frequency = %lu.%.6lu MHz\n",
	       freq/1000000, freq%1000000);

	tb_ticks_per_jiffy = freq / HZ;
	tb_to_us = mulhwu_scale_factor(freq, 1000000);

	return;
}