Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
 * SPU scheduler, based on Linux thread priority.  For now use
 * a simple "cooperative" yield model with no preemption.  SPU
 * scheduling will eventually be preemptive: When a thread with
 * a higher static priority gets ready to run, then an active SPU
 * context will be preempted and returned to the waitq.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#undef DEBUG

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
#include <asm/spu_priv1.h>
#include "spufs.h"

#define SPU_MIN_TIMESLICE 	(100 * HZ / 1000)

#define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
struct spu_prio_array {
	atomic_t nr_blocked;
	unsigned long bitmap[SPU_BITMAP_SIZE];
	wait_queue_head_t waitq[MAX_PRIO];
};

/* spu_runqueue - This is the main runqueue data structure for SPUs. */
struct spu_runqueue {
	struct semaphore sem;
	unsigned long nr_active;
	unsigned long nr_idle;
	unsigned long nr_switches;
	struct list_head active_list;
	struct list_head idle_list;
	struct spu_prio_array prio;
};

static struct spu_runqueue *spu_runqueues = NULL;

static inline struct spu_runqueue *spu_rq(void)
{
	/* Future: make this a per-NODE array,
	 * and use cpu_to_node(smp_processor_id())
	 */
	return spu_runqueues;
}

static inline struct spu *del_idle(struct spu_runqueue *rq)
{
	struct spu *spu;

	BUG_ON(rq->nr_idle <= 0);
	BUG_ON(list_empty(&rq->idle_list));
	/* Future: Move SPU out of low-power SRI state. */
	spu = list_entry(rq->idle_list.next, struct spu, sched_list);
	list_del_init(&spu->sched_list);
	rq->nr_idle--;
	return spu;
}

static inline void del_active(struct spu_runqueue *rq, struct spu *spu)
{
	BUG_ON(rq->nr_active <= 0);
	BUG_ON(list_empty(&rq->active_list));
	list_del_init(&spu->sched_list);
	rq->nr_active--;
}

static inline void add_idle(struct spu_runqueue *rq, struct spu *spu)
{
	/* Future: Put SPU into low-power SRI state. */
	list_add_tail(&spu->sched_list, &rq->idle_list);
	rq->nr_idle++;
}

static inline void add_active(struct spu_runqueue *rq, struct spu *spu)
{
	rq->nr_active++;
	rq->nr_switches++;
	list_add_tail(&spu->sched_list, &rq->active_list);
}

static void prio_wakeup(struct spu_runqueue *rq)
{
	if (atomic_read(&rq->prio.nr_blocked) && rq->nr_idle) {
		int best = sched_find_first_bit(rq->prio.bitmap);
		if (best < MAX_PRIO) {
			wait_queue_head_t *wq = &rq->prio.waitq[best];
			wake_up_interruptible_nr(wq, 1);
		}
	}
}

static void prio_wait(struct spu_runqueue *rq, struct spu_context *ctx,
		      u64 flags)
{
	int prio = current->prio;
	wait_queue_head_t *wq = &rq->prio.waitq[prio];
	DEFINE_WAIT(wait);

	__set_bit(prio, rq->prio.bitmap);
	atomic_inc(&rq->prio.nr_blocked);
	prepare_to_wait_exclusive(wq, &wait, TASK_INTERRUPTIBLE);
	if (!signal_pending(current)) {
		up(&rq->sem);
		up_write(&ctx->state_sema);
		pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
			 current->pid, current->prio);
		schedule();
		down_write(&ctx->state_sema);
		down(&rq->sem);
	}
	finish_wait(wq, &wait);
	atomic_dec(&rq->prio.nr_blocked);
	if (!waitqueue_active(wq))
		__clear_bit(prio, rq->prio.bitmap);
}

static inline int is_best_prio(struct spu_runqueue *rq)
{
	int best_prio;

	best_prio = sched_find_first_bit(rq->prio.bitmap);
	return (current->prio < best_prio) ? 1 : 0;
}

static inline void mm_needs_global_tlbie(struct mm_struct *mm)
{
	/* Global TLBIE broadcast required with SPEs. */
#if (NR_CPUS > 1)
	__cpus_setall(&mm->cpu_vm_mask, NR_CPUS);
#else
	__cpus_setall(&mm->cpu_vm_mask, NR_CPUS+1); /* is this ok? */
#endif
}

static inline void bind_context(struct spu *spu, struct spu_context *ctx)
{
	pr_debug("%s: pid=%d SPU=%d\n", __FUNCTION__, current->pid,
		 spu->number);
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
	spu->prio = current->prio;
	spu->mm = ctx->owner;
	mm_needs_global_tlbie(spu->mm);
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
	spu->stop_callback = spufs_stop_callback;
	spu->mfc_callback = spufs_mfc_callback;
	mb();
	spu_unmap_mappings(ctx);
	spu_restore(&ctx->csa, spu);
	spu->timestamp = jiffies;
}

static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
{
	pr_debug("%s: unbind pid=%d SPU=%d\n", __FUNCTION__,
		 spu->pid, spu->number);
	spu_unmap_mappings(ctx);
	spu_save(&ctx->csa, spu);
	spu->timestamp = jiffies;
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
	spu->stop_callback = NULL;
	spu->mfc_callback = NULL;
	spu->mm = NULL;
	spu->pid = 0;
	spu->prio = MAX_PRIO;
	ctx->ops = &spu_backing_ops;
	ctx->spu = NULL;
	ctx->flags = 0;
	spu->flags = 0;
	spu->ctx = NULL;
}

static void spu_reaper(void *data)
{
	struct spu_context *ctx = data;
	struct spu *spu;

	down_write(&ctx->state_sema);
	spu = ctx->spu;
	if (spu && test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
		if (atomic_read(&spu->rq->prio.nr_blocked)) {
			pr_debug("%s: spu=%d\n", __func__, spu->number);
			ctx->ops->runcntl_stop(ctx);
			spu_deactivate(ctx);
			wake_up_all(&ctx->stop_wq);
		} else {
			clear_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
		}
	}
	up_write(&ctx->state_sema);
	put_spu_context(ctx);
}

static void schedule_spu_reaper(struct spu_runqueue *rq, struct spu *spu)
{
	struct spu_context *ctx = get_spu_context(spu->ctx);
	unsigned long now = jiffies;
	unsigned long expire = spu->timestamp + SPU_MIN_TIMESLICE;

	set_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
	INIT_WORK(&ctx->reap_work, spu_reaper, ctx);
	if (time_after(now, expire))
		schedule_work(&ctx->reap_work);
	else
		schedule_delayed_work(&ctx->reap_work, expire - now);
}

static void check_preempt_active(struct spu_runqueue *rq)
{
	struct list_head *p;
	struct spu *worst = NULL;

	list_for_each(p, &rq->active_list) {
		struct spu *spu = list_entry(p, struct spu, sched_list);
		struct spu_context *ctx = spu->ctx;
		if (!test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
			if (!worst || (spu->prio > worst->prio)) {
				worst = spu;
			}
		}
	}
	if (worst && (current->prio < worst->prio))
		schedule_spu_reaper(rq, worst);
}

static struct spu *get_idle_spu(struct spu_context *ctx, u64 flags)
{
	struct spu_runqueue *rq;
	struct spu *spu = NULL;

	rq = spu_rq();
	down(&rq->sem);
	for (;;) {
		if (rq->nr_idle > 0) {
			if (is_best_prio(rq)) {
				/* Fall through. */
				spu = del_idle(rq);
				break;
			} else {
				prio_wakeup(rq);
				up(&rq->sem);
				yield();
				if (signal_pending(current)) {
					return NULL;
				}
				rq = spu_rq();
				down(&rq->sem);
				continue;
			}
		} else {
			check_preempt_active(rq);
			prio_wait(rq, ctx, flags);
			if (signal_pending(current)) {
				prio_wakeup(rq);
				spu = NULL;
				break;
			}
			continue;
		}
	}
	up(&rq->sem);
	return spu;
}

static void put_idle_spu(struct spu *spu)
{
	struct spu_runqueue *rq = spu->rq;

	down(&rq->sem);
	add_idle(rq, spu);
	prio_wakeup(rq);
	up(&rq->sem);
}

static int get_active_spu(struct spu *spu)
{
	struct spu_runqueue *rq = spu->rq;
	struct list_head *p;
	struct spu *tmp;
	int rc = 0;

	down(&rq->sem);
	list_for_each(p, &rq->active_list) {
		tmp = list_entry(p, struct spu, sched_list);
		if (tmp == spu) {
			del_active(rq, spu);
			rc = 1;
			break;
		}
	}
	up(&rq->sem);
	return rc;
}

static void put_active_spu(struct spu *spu)
{
	struct spu_runqueue *rq = spu->rq;

	down(&rq->sem);
	add_active(rq, spu);
	up(&rq->sem);
}

/* Lock order:
 *	spu_activate() & spu_deactivate() require the
 *	caller to have down_write(&ctx->state_sema).
 *
 *	The rq->sem is breifly held (inside or outside a
 *	given ctx lock) for list management, but is never
 *	held during save/restore.
 */

int spu_activate(struct spu_context *ctx, u64 flags)
{
	struct spu *spu;

	if (ctx->spu)
		return 0;
	spu = get_idle_spu(ctx, flags);
	if (!spu)
		return (signal_pending(current)) ? -ERESTARTSYS : -EAGAIN;
	bind_context(spu, ctx);
	/*
	 * We're likely to wait for interrupts on the same
	 * CPU that we are now on, so send them here.
	 */
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
	put_active_spu(spu);
	return 0;
}

void spu_deactivate(struct spu_context *ctx)
{
	struct spu *spu;
	int needs_idle;

	spu = ctx->spu;
	if (!spu)
		return;
	needs_idle = get_active_spu(spu);
	unbind_context(spu, ctx);
	if (needs_idle)
		put_idle_spu(spu);
}

void spu_yield(struct spu_context *ctx)
{
	struct spu *spu;
	int need_yield = 0;

	down_write(&ctx->state_sema);
	spu = ctx->spu;
	if (spu && (sched_find_first_bit(spu->rq->prio.bitmap) < MAX_PRIO)) {
		pr_debug("%s: yielding SPU %d\n", __FUNCTION__, spu->number);
		spu_deactivate(ctx);
		ctx->state = SPU_STATE_SAVED;
		need_yield = 1;
	} else if (spu) {
		spu->prio = MAX_PRIO;
	}
	up_write(&ctx->state_sema);
	if (unlikely(need_yield))
		yield();
}

int __init spu_sched_init(void)
{
	struct spu_runqueue *rq;
	struct spu *spu;
	int i;

	rq = spu_runqueues = kmalloc(sizeof(struct spu_runqueue), GFP_KERNEL);
	if (!rq) {
		printk(KERN_WARNING "%s: Unable to allocate runqueues.\n",
		       __FUNCTION__);
		return 1;
	}
	memset(rq, 0, sizeof(struct spu_runqueue));
	init_MUTEX(&rq->sem);
	INIT_LIST_HEAD(&rq->active_list);
	INIT_LIST_HEAD(&rq->idle_list);
	rq->nr_active = 0;
	rq->nr_idle = 0;
	rq->nr_switches = 0;
	atomic_set(&rq->prio.nr_blocked, 0);
	for (i = 0; i < MAX_PRIO; i++) {
		init_waitqueue_head(&rq->prio.waitq[i]);
		__clear_bit(i, rq->prio.bitmap);
	}
	__set_bit(MAX_PRIO, rq->prio.bitmap);
	for (;;) {
		spu = spu_alloc();
		if (!spu)
			break;
		pr_debug("%s: adding SPU[%d]\n", __FUNCTION__, spu->number);
		add_idle(rq, spu);
		spu->rq = rq;
		spu->timestamp = jiffies;
	}
	if (!rq->nr_idle) {
		printk(KERN_WARNING "%s: No available SPUs.\n", __FUNCTION__);
		kfree(rq);
		return 1;
	}
	return 0;
}

void __exit spu_sched_exit(void)
{
	struct spu_runqueue *rq = spu_rq();
	struct spu *spu;

	if (!rq) {
		printk(KERN_WARNING "%s: no runqueues!\n", __FUNCTION__);
		return;
	}
	while (rq->nr_idle > 0) {
		spu = del_idle(rq);
		if (!spu)
			break;
		spu_free(spu);
	}
	kfree(rq);
}