Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*
 *  linux/arch/arm26/mm/init.c
 *
 *  Copyright (C) 1995-2002 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/blkdev.h>

#include <asm/segment.h>
#include <asm/mach-types.h>
#include <asm/dma.h>
#include <asm/hardware.h>
#include <asm/setup.h>
#include <asm/tlb.h>

#include <asm/map.h>


#define TABLE_SIZE	PTRS_PER_PTE * sizeof(pte_t))

struct mmu_gather mmu_gathers[NR_CPUS];

extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern char _stext, _text, _etext, _end, __init_begin, __init_end;
#ifdef CONFIG_XIP_KERNEL
extern char _endtext, _sdata;
#endif
extern unsigned long phys_initrd_start;
extern unsigned long phys_initrd_size;

/*
 * The sole use of this is to pass memory configuration
 * data from paging_init to mem_init.
 */
static struct meminfo meminfo __initdata = { 0, };

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;

void show_mem(void)
{
	int free = 0, total = 0, reserved = 0;
	int shared = 0, cached = 0, slab = 0;
	struct page *page, *end;

	printk("Mem-info:\n");
	show_free_areas();
	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));


	page = NODE_MEM_MAP(0);
	end  = page + NODE_DATA(0)->node_spanned_pages;

	do {
		total++;
		if (PageReserved(page))
			reserved++;
		else if (PageSwapCache(page))
			cached++;
		else if (PageSlab(page))
			slab++;
		else if (!page_count(page))
			free++;
		else
			shared += page_count(page) - 1;
		page++;
	} while (page < end);

	printk("%d pages of RAM\n", total);
	printk("%d free pages\n", free);
	printk("%d reserved pages\n", reserved);
	printk("%d slab pages\n", slab);
	printk("%d pages shared\n", shared);
	printk("%d pages swap cached\n", cached);
}

struct node_info {
	unsigned int start;
	unsigned int end;
	int bootmap_pages;
};

#define PFN_DOWN(x)	((x) >> PAGE_SHIFT)
#define PFN_UP(x)	(PAGE_ALIGN(x) >> PAGE_SHIFT)
#define PFN_SIZE(x)	((x) >> PAGE_SHIFT)
#define PFN_RANGE(s,e)	PFN_SIZE(PAGE_ALIGN((unsigned long)(e)) - \
				(((unsigned long)(s)) & PAGE_MASK))

/*
 * FIXME: We really want to avoid allocating the bootmap bitmap
 * over the top of the initrd.  Hopefully, this is located towards
 * the start of a bank, so if we allocate the bootmap bitmap at
 * the end, we won't clash.
 */
static unsigned int __init
find_bootmap_pfn(struct meminfo *mi, unsigned int bootmap_pages)
{
	unsigned int start_pfn, bootmap_pfn;
	unsigned int start, end;

	start_pfn   = PFN_UP((unsigned long)&_end);
	bootmap_pfn = 0;

	/* ARM26 machines only have one node */
	if (mi->bank->node != 0)
		BUG();

	start = PFN_UP(mi->bank->start);
	end   = PFN_DOWN(mi->bank->size + mi->bank->start);

	if (start < start_pfn)
		start = start_pfn;

	if (end <= start)
		BUG();

	if (end - start >= bootmap_pages) 
		bootmap_pfn = start;
	else
		BUG();

	return bootmap_pfn;
}

/*
 * Scan the memory info structure and pull out:
 *  - the end of memory
 *  - the number of nodes
 *  - the pfn range of each node
 *  - the number of bootmem bitmap pages
 */
static void __init
find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
{
	unsigned int memend_pfn = 0;

	nodes_clear(node_online_map);
	node_set_online(0);

	np->bootmap_pages = 0;

	if (mi->bank->size == 0) {
		BUG();
	}

	/*
	 * Get the start and end pfns for this bank
	 */
	np->start = PFN_UP(mi->bank->start);
	np->end   = PFN_DOWN(mi->bank->start + mi->bank->size);

	if (memend_pfn < np->end)
		memend_pfn = np->end;

	/*
	 * Calculate the number of pages we require to
	 * store the bootmem bitmaps.
	 */
	np->bootmap_pages = bootmem_bootmap_pages(np->end - np->start);

	/*
	 * This doesn't seem to be used by the Linux memory
	 * manager any more.  If we can get rid of it, we
	 * also get rid of some of the stuff above as well.
	 */
	max_low_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
	max_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
	mi->end = memend_pfn << PAGE_SHIFT;

}

/*
 * Initialise the bootmem allocator for all nodes.  This is called
 * early during the architecture specific initialisation.
 */
void __init bootmem_init(struct meminfo *mi)
{
	struct node_info node_info;
	unsigned int bootmap_pfn;
	pg_data_t *pgdat = NODE_DATA(0);

	find_memend_and_nodes(mi, &node_info);

	bootmap_pfn   = find_bootmap_pfn(mi, node_info.bootmap_pages);

	/*
	 * Note that node 0 must always have some pages.
	 */
	if (node_info.end == 0)
		BUG();

	/*
	 * Initialise the bootmem allocator.
	 */
	init_bootmem_node(pgdat, bootmap_pfn, node_info.start, node_info.end);

 	/*
	 * Register all available RAM in this node with the bootmem allocator. 
	 */
	free_bootmem_node(pgdat, mi->bank->start, mi->bank->size);

        /*
         * Register the kernel text and data with bootmem.
         * Note: with XIP we dont register .text since
         * its in ROM.
         */
#ifdef CONFIG_XIP_KERNEL
        reserve_bootmem_node(pgdat, __pa(&_sdata), &_end - &_sdata);
#else
        reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
#endif

        /*
         * And don't forget to reserve the allocator bitmap,
         * which will be freed later.
         */
        reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
                             node_info.bootmap_pages << PAGE_SHIFT);

        /*
         * These should likewise go elsewhere.  They pre-reserve
         * the screen memory region at the start of main system
         * memory. FIXME - screen RAM is not 512K!
         */
        reserve_bootmem_node(pgdat, 0x02000000, 0x00080000);

#ifdef CONFIG_BLK_DEV_INITRD
        initrd_start = phys_initrd_start;
        initrd_end = initrd_start + phys_initrd_size;

        /* Achimedes machines only have one node, so initrd is in node 0 */
#ifdef CONFIG_XIP_KERNEL
	/* Only reserve initrd space if it is in RAM */
        if(initrd_start && initrd_start < 0x03000000){
#else
        if(initrd_start){
#endif
                reserve_bootmem_node(pgdat, __pa(initrd_start),
                                             initrd_end - initrd_start);
	}
#endif   /* CONFIG_BLK_DEV_INITRD */


}

/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
void __init paging_init(struct meminfo *mi)
{
	void *zero_page;
	unsigned long zone_size[MAX_NR_ZONES];
        unsigned long zhole_size[MAX_NR_ZONES];
        struct bootmem_data *bdata;
        pg_data_t *pgdat;
	int i;

	memcpy(&meminfo, mi, sizeof(meminfo));

	/*
	 * allocate the zero page.  Note that we count on this going ok.
	 */
	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);

	/*
	 * initialise the page tables.
	 */
	memtable_init(mi);
	flush_tlb_all();

	/*
	 * initialise the zones in node 0 (archimedes have only 1 node)
	 */

	for (i = 0; i < MAX_NR_ZONES; i++) {
		zone_size[i]  = 0;
		zhole_size[i] = 0;
	}

	pgdat = NODE_DATA(0);
	bdata = pgdat->bdata;
	zone_size[0] = bdata->node_low_pfn -
			(bdata->node_boot_start >> PAGE_SHIFT);
	if (!zone_size[0])
		BUG();
	pgdat->node_mem_map = NULL;
	free_area_init_node(0, pgdat, zone_size,
			bdata->node_boot_start >> PAGE_SHIFT, zhole_size);

	/*
	 * finish off the bad pages once
	 * the mem_map is initialised
	 */
	memzero(zero_page, PAGE_SIZE);
	empty_zero_page = virt_to_page(zero_page);
}

static inline void free_area(unsigned long addr, unsigned long end, char *s)
{
	unsigned int size = (end - addr) >> 10;

	for (; addr < end; addr += PAGE_SIZE) {
		struct page *page = virt_to_page(addr);
		ClearPageReserved(page);
		set_page_count(page, 1);
		free_page(addr);
		totalram_pages++;
	}

	if (size && s)
		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
}

/*
 * mem_init() marks the free areas in the mem_map and tells us how much
 * memory is free.  This is done after various parts of the system have
 * claimed their memory after the kernel image.
 */
void __init mem_init(void)
{
	unsigned int codepages, datapages, initpages;
	pg_data_t *pgdat = NODE_DATA(0);
	extern int sysctl_overcommit_memory;


	/* Note: data pages includes BSS */
#ifdef CONFIG_XIP_KERNEL
	codepages = &_endtext - &_text;
	datapages = &_end - &_sdata;
#else
	codepages = &_etext - &_text;
	datapages = &_end - &_etext;
#endif
	initpages = &__init_end - &__init_begin;

	high_memory = (void *)__va(meminfo.end);
	max_mapnr   = virt_to_page(high_memory) - mem_map;

	/* this will put all unused low memory onto the freelists */
	if (pgdat->node_spanned_pages != 0)
		totalram_pages += free_all_bootmem_node(pgdat);

	num_physpages = meminfo.bank[0].size >> PAGE_SHIFT;

	printk(KERN_INFO "Memory: %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
		"%dK data, %dK init)\n",
		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
		codepages >> 10, datapages >> 10, initpages >> 10);

	/*
	 * Turn on overcommit on tiny machines
	 */
	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
		printk("Turning on overcommit\n");
	}
}

void free_initmem(void){
#ifndef CONFIG_XIP_KERNEL
	free_area((unsigned long)(&__init_begin),
		  (unsigned long)(&__init_end),
		  "init");
#endif
}

#ifdef CONFIG_BLK_DEV_INITRD

static int keep_initrd;

void free_initrd_mem(unsigned long start, unsigned long end)
{
#ifdef CONFIG_XIP_KERNEL
	/* Only bin initrd if it is in RAM... */
	if(!keep_initrd && start < 0x03000000)
#else
	if (!keep_initrd)
#endif
		free_area(start, end, "initrd");
}

static int __init keepinitrd_setup(char *__unused)
{
	keep_initrd = 1;
	return 1;
}

__setup("keepinitrd", keepinitrd_setup);
#endif