Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
 * Copyright 1995, Russell King.
 * Various bits and pieces copyrights include:
 *  Linus Torvalds (test_bit).
 * Big endian support: Copyright 2001, Nicolas Pitre
 *  reworked by rmk.
 *
 * bit 0 is the LSB of an "unsigned long" quantity.
 *
 * Please note that the code in this file should never be included
 * from user space.  Many of these are not implemented in assembler
 * since they would be too costly.  Also, they require privileged
 * instructions (which are not available from user mode) to ensure
 * that they are atomic.
 */

#ifndef __ASM_ARM_BITOPS_H
#define __ASM_ARM_BITOPS_H

#ifdef __KERNEL__

#include <linux/compiler.h>
#include <asm/system.h>

#define smp_mb__before_clear_bit()	mb()
#define smp_mb__after_clear_bit()	mb()

/*
 * These functions are the basis of our bit ops.
 *
 * First, the atomic bitops. These use native endian.
 */
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned long mask = 1UL << (bit & 31);

	p += bit >> 5;

	local_irq_save(flags);
	*p |= mask;
	local_irq_restore(flags);
}

static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned long mask = 1UL << (bit & 31);

	p += bit >> 5;

	local_irq_save(flags);
	*p &= ~mask;
	local_irq_restore(flags);
}

static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned long mask = 1UL << (bit & 31);

	p += bit >> 5;

	local_irq_save(flags);
	*p ^= mask;
	local_irq_restore(flags);
}

static inline int
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned int res;
	unsigned long mask = 1UL << (bit & 31);

	p += bit >> 5;

	local_irq_save(flags);
	res = *p;
	*p = res | mask;
	local_irq_restore(flags);

	return res & mask;
}

static inline int
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned int res;
	unsigned long mask = 1UL << (bit & 31);

	p += bit >> 5;

	local_irq_save(flags);
	res = *p;
	*p = res & ~mask;
	local_irq_restore(flags);

	return res & mask;
}

static inline int
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
{
	unsigned long flags;
	unsigned int res;
	unsigned long mask = 1UL << (bit & 31);

	p += bit >> 5;

	local_irq_save(flags);
	res = *p;
	*p = res ^ mask;
	local_irq_restore(flags);

	return res & mask;
}

/*
 * Now the non-atomic variants.  We let the compiler handle all
 * optimisations for these.  These are all _native_ endian.
 */
static inline void __set_bit(int nr, volatile unsigned long *p)
{
	p[nr >> 5] |= (1UL << (nr & 31));
}

static inline void __clear_bit(int nr, volatile unsigned long *p)
{
	p[nr >> 5] &= ~(1UL << (nr & 31));
}

static inline void __change_bit(int nr, volatile unsigned long *p)
{
	p[nr >> 5] ^= (1UL << (nr & 31));
}

static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
{
	unsigned long oldval, mask = 1UL << (nr & 31);

	p += nr >> 5;

	oldval = *p;
	*p = oldval | mask;
	return oldval & mask;
}

static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
{
	unsigned long oldval, mask = 1UL << (nr & 31);

	p += nr >> 5;

	oldval = *p;
	*p = oldval & ~mask;
	return oldval & mask;
}

static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
{
	unsigned long oldval, mask = 1UL << (nr & 31);

	p += nr >> 5;

	oldval = *p;
	*p = oldval ^ mask;
	return oldval & mask;
}

/*
 * This routine doesn't need to be atomic.
 */
static inline int __test_bit(int nr, const volatile unsigned long * p)
{
	return (p[nr >> 5] >> (nr & 31)) & 1UL;
}

/*
 *  A note about Endian-ness.
 *  -------------------------
 *
 * When the ARM is put into big endian mode via CR15, the processor
 * merely swaps the order of bytes within words, thus:
 *
 *          ------------ physical data bus bits -----------
 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 * little     byte 3       byte 2       byte 1      byte 0
 * big        byte 0       byte 1       byte 2      byte 3
 *
 * This means that reading a 32-bit word at address 0 returns the same
 * value irrespective of the endian mode bit.
 *
 * Peripheral devices should be connected with the data bus reversed in
 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 * available from http://www.arm.com/.
 *
 * The following assumes that the data bus connectivity for big endian
 * mode has been followed.
 *
 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 */

/*
 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 */
extern void _set_bit_le(int nr, volatile unsigned long * p);
extern void _clear_bit_le(int nr, volatile unsigned long * p);
extern void _change_bit_le(int nr, volatile unsigned long * p);
extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
extern int _find_first_zero_bit_le(const void * p, unsigned size);
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);

/*
 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 */
extern void _set_bit_be(int nr, volatile unsigned long * p);
extern void _clear_bit_be(int nr, volatile unsigned long * p);
extern void _change_bit_be(int nr, volatile unsigned long * p);
extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
extern int _find_first_zero_bit_be(const void * p, unsigned size);
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);

#ifndef CONFIG_SMP
/*
 * The __* form of bitops are non-atomic and may be reordered.
 */
#define	ATOMIC_BITOP_LE(name,nr,p)		\
	(__builtin_constant_p(nr) ?		\
	 ____atomic_##name(nr, p) :		\
	 _##name##_le(nr,p))

#define	ATOMIC_BITOP_BE(name,nr,p)		\
	(__builtin_constant_p(nr) ?		\
	 ____atomic_##name(nr, p) :		\
	 _##name##_be(nr,p))
#else
#define ATOMIC_BITOP_LE(name,nr,p)	_##name##_le(nr,p)
#define ATOMIC_BITOP_BE(name,nr,p)	_##name##_be(nr,p)
#endif

#define NONATOMIC_BITOP(name,nr,p)		\
	(____nonatomic_##name(nr, p))

#ifndef __ARMEB__
/*
 * These are the little endian, atomic definitions.
 */
#define set_bit(nr,p)			ATOMIC_BITOP_LE(set_bit,nr,p)
#define clear_bit(nr,p)			ATOMIC_BITOP_LE(clear_bit,nr,p)
#define change_bit(nr,p)		ATOMIC_BITOP_LE(change_bit,nr,p)
#define test_and_set_bit(nr,p)		ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
#define test_and_clear_bit(nr,p)	ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
#define test_and_change_bit(nr,p)	ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
#define test_bit(nr,p)			__test_bit(nr,p)
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)

#define WORD_BITOFF_TO_LE(x)		((x))

#else

/*
 * These are the big endian, atomic definitions.
 */
#define set_bit(nr,p)			ATOMIC_BITOP_BE(set_bit,nr,p)
#define clear_bit(nr,p)			ATOMIC_BITOP_BE(clear_bit,nr,p)
#define change_bit(nr,p)		ATOMIC_BITOP_BE(change_bit,nr,p)
#define test_and_set_bit(nr,p)		ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
#define test_and_clear_bit(nr,p)	ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
#define test_and_change_bit(nr,p)	ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
#define test_bit(nr,p)			__test_bit(nr,p)
#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)

#define WORD_BITOFF_TO_LE(x)		((x) ^ 0x18)

#endif

#if __LINUX_ARM_ARCH__ < 5

/*
 * ffz = Find First Zero in word. Undefined if no zero exists,
 * so code should check against ~0UL first..
 */
static inline unsigned long ffz(unsigned long word)
{
	int k;

	word = ~word;
	k = 31;
	if (word & 0x0000ffff) { k -= 16; word <<= 16; }
	if (word & 0x00ff0000) { k -= 8;  word <<= 8;  }
	if (word & 0x0f000000) { k -= 4;  word <<= 4;  }
	if (word & 0x30000000) { k -= 2;  word <<= 2;  }
	if (word & 0x40000000) { k -= 1; }
        return k;
}

/*
 * ffz = Find First Zero in word. Undefined if no zero exists,
 * so code should check against ~0UL first..
 */
static inline unsigned long __ffs(unsigned long word)
{
	int k;

	k = 31;
	if (word & 0x0000ffff) { k -= 16; word <<= 16; }
	if (word & 0x00ff0000) { k -= 8;  word <<= 8;  }
	if (word & 0x0f000000) { k -= 4;  word <<= 4;  }
	if (word & 0x30000000) { k -= 2;  word <<= 2;  }
	if (word & 0x40000000) { k -= 1; }
        return k;
}

/*
 * fls: find last bit set.
 */

#define fls(x) generic_fls(x)
#define fls64(x)   generic_fls64(x)

/*
 * ffs: find first bit set. This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */

#define ffs(x) generic_ffs(x)

#else

/*
 * On ARMv5 and above those functions can be implemented around
 * the clz instruction for much better code efficiency.
 */

#define fls(x) \
	( __builtin_constant_p(x) ? generic_fls(x) : \
	  ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
#define fls64(x)   generic_fls64(x)
#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
#define __ffs(x) (ffs(x) - 1)
#define ffz(x) __ffs( ~(x) )

#endif

/*
 * Find first bit set in a 168-bit bitmap, where the first
 * 128 bits are unlikely to be set.
 */
static inline int sched_find_first_bit(const unsigned long *b)
{
	unsigned long v;
	unsigned int off;

	for (off = 0; v = b[off], off < 4; off++) {
		if (unlikely(v))
			break;
	}
	return __ffs(v) + off * 32;
}

/*
 * hweightN: returns the hamming weight (i.e. the number
 * of bits set) of a N-bit word
 */

#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)

/*
 * Ext2 is defined to use little-endian byte ordering.
 * These do not need to be atomic.
 */
#define ext2_set_bit(nr,p)			\
		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_set_bit_atomic(lock,nr,p)          \
                test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_clear_bit(nr,p)			\
		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_clear_bit_atomic(lock,nr,p)        \
                test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_test_bit(nr,p)			\
		__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define ext2_find_first_zero_bit(p,sz)		\
		_find_first_zero_bit_le(p,sz)
#define ext2_find_next_zero_bit(p,sz,off)	\
		_find_next_zero_bit_le(p,sz,off)

/*
 * Minix is defined to use little-endian byte ordering.
 * These do not need to be atomic.
 */
#define minix_set_bit(nr,p)			\
		__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_bit(nr,p)			\
		__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_and_set_bit(nr,p)		\
		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_test_and_clear_bit(nr,p)		\
		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
#define minix_find_first_zero_bit(p,sz)		\
		_find_first_zero_bit_le(p,sz)

#endif /* __KERNEL__ */

#endif /* _ARM_BITOPS_H */