Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/* $Id: sbus.c,v 1.100 2002/01/24 15:36:24 davem Exp $
 * sbus.c:  SBus support routines.
 *
 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/pci.h>

#include <asm/system.h>
#include <asm/sbus.h>
#include <asm/dma.h>
#include <asm/oplib.h>
#include <asm/bpp.h>
#include <asm/irq.h>

struct sbus_bus *sbus_root = NULL;

static struct linux_prom_irqs irqs[PROMINTR_MAX] __initdata = { { 0 } };
#ifdef CONFIG_SPARC32
static int interrupts[PROMINTR_MAX] __initdata = { 0 };
#endif

#ifdef CONFIG_PCI
extern int pcic_present(void);
#endif

/* Perhaps when I figure out more about the iommu we'll put a
 * device registration routine here that probe_sbus() calls to
 * setup the iommu for each Sbus.
 */

/* We call this for each SBus device, and fill the structure based
 * upon the prom device tree.  We return the start of memory after
 * the things we have allocated.
 */

/* #define DEBUG_FILL */

static void __init fill_sbus_device(int prom_node, struct sbus_dev *sdev)
{
	unsigned long address, base;
	int len;

	sdev->prom_node = prom_node;
	prom_getstring(prom_node, "name",
		       sdev->prom_name, sizeof(sdev->prom_name));
	address = prom_getint(prom_node, "address");
	len = prom_getproperty(prom_node, "reg",
			       (char *) sdev->reg_addrs,
			       sizeof(sdev->reg_addrs));
	if (len == -1) {
		sdev->num_registers = 0;
		goto no_regs;
	}

	if (len % sizeof(struct linux_prom_registers)) {
		prom_printf("fill_sbus_device: proplen for regs of %s "
			    " was %d, need multiple of %d\n",
			    sdev->prom_name, len,
			    (int) sizeof(struct linux_prom_registers));
		prom_halt();
	}
	if (len > (sizeof(struct linux_prom_registers) * PROMREG_MAX)) {
		prom_printf("fill_sbus_device: Too many register properties "
			    "for device %s, len=%d\n",
			    sdev->prom_name, len);
		prom_halt();
	}
	sdev->num_registers = len / sizeof(struct linux_prom_registers);
	sdev->ranges_applied = 0;

	base = (unsigned long) sdev->reg_addrs[0].phys_addr;

	/* Compute the slot number. */
	if (base >= SUN_SBUS_BVADDR && sparc_cpu_model == sun4m) {
		sdev->slot = sbus_dev_slot(base);
	} else {
		sdev->slot = sdev->reg_addrs[0].which_io;
	}

no_regs:
	len = prom_getproperty(prom_node, "ranges",
			       (char *)sdev->device_ranges,
			       sizeof(sdev->device_ranges));
	if (len == -1) {
		sdev->num_device_ranges = 0;
		goto no_ranges;
	}
	if (len % sizeof(struct linux_prom_ranges)) {
		prom_printf("fill_sbus_device: proplen for ranges of %s "
			    " was %d, need multiple of %d\n",
			    sdev->prom_name, len,
			    (int) sizeof(struct linux_prom_ranges));
		prom_halt();
	}
	if (len > (sizeof(struct linux_prom_ranges) * PROMREG_MAX)) {
		prom_printf("fill_sbus_device: Too many range properties "
			    "for device %s, len=%d\n",
			    sdev->prom_name, len);
		prom_halt();
	}
	sdev->num_device_ranges =
		len / sizeof(struct linux_prom_ranges);

no_ranges:
	/* XXX Unfortunately, IRQ issues are very arch specific.
	 * XXX Pull this crud out into an arch specific area
	 * XXX at some point. -DaveM
	 */
#ifdef CONFIG_SPARC64
	len = prom_getproperty(prom_node, "interrupts",
			       (char *) irqs, sizeof(irqs));
	if (len == -1 || len == 0) {
		sdev->irqs[0] = 0;
		sdev->num_irqs = 0;
	} else {
		unsigned int pri = irqs[0].pri;

		sdev->num_irqs = 1;
		if (pri < 0x20)
			pri += sdev->slot * 8;

		sdev->irqs[0] =	sbus_build_irq(sdev->bus, pri);
	}
#endif /* CONFIG_SPARC64 */

#ifdef CONFIG_SPARC32
	len = prom_getproperty(prom_node, "intr",
			       (char *)irqs, sizeof(irqs));
	if (len != -1) {
		sdev->num_irqs = len / 8;
		if (sdev->num_irqs == 0) {
			sdev->irqs[0] = 0;
		} else if (sparc_cpu_model == sun4d) {
			extern unsigned int sun4d_build_irq(struct sbus_dev *sdev, int irq);

			for (len = 0; len < sdev->num_irqs; len++)
				sdev->irqs[len] = sun4d_build_irq(sdev, irqs[len].pri);
		} else {
			for (len = 0; len < sdev->num_irqs; len++)
				sdev->irqs[len] = irqs[len].pri;
		}
	} else {
		/* No "intr" node found-- check for "interrupts" node.
		 * This node contains SBus interrupt levels, not IPLs
		 * as in "intr", and no vector values.  We convert 
		 * SBus interrupt levels to PILs (platform specific).
		 */
		len = prom_getproperty(prom_node, "interrupts", 
					(char *)interrupts, sizeof(interrupts));
		if (len == -1) {
			sdev->irqs[0] = 0;
			sdev->num_irqs = 0;
		} else {
			sdev->num_irqs = len / sizeof(int);
			for (len = 0; len < sdev->num_irqs; len++) {
				sdev->irqs[len] = sbint_to_irq(sdev, interrupts[len]);
			}
		}
	} 
#endif /* CONFIG_SPARC32 */
}

/* This routine gets called from whoever needs the sbus first, to scan
 * the SBus device tree.  Currently it just prints out the devices
 * found on the bus and builds trees of SBUS structs and attached
 * devices.
 */

extern void iommu_init(int iommu_node, struct sbus_bus *sbus);
extern void iounit_init(int sbi_node, int iounit_node, struct sbus_bus *sbus);
void sun4_init(void);
#ifdef CONFIG_SUN_AUXIO
extern void auxio_probe(void);
#endif

static void __init sbus_do_child_siblings(int start_node,
					  struct sbus_dev *child,
					  struct sbus_dev *parent,
					  struct sbus_bus *sbus)
{
	struct sbus_dev *this_dev = child;
	int this_node = start_node;

	/* Child already filled in, just need to traverse siblings. */
	child->child = NULL;
	child->parent = parent;
	while((this_node = prom_getsibling(this_node)) != 0) {
		this_dev->next = kmalloc(sizeof(struct sbus_dev), GFP_ATOMIC);
		this_dev = this_dev->next;
		this_dev->next = NULL;
		this_dev->parent = parent;

		this_dev->bus = sbus;
		fill_sbus_device(this_node, this_dev);

		if(prom_getchild(this_node)) {
			this_dev->child = kmalloc(sizeof(struct sbus_dev),
						  GFP_ATOMIC);
			this_dev->child->bus = sbus;
			this_dev->child->next = NULL;
			fill_sbus_device(prom_getchild(this_node), this_dev->child);
			sbus_do_child_siblings(prom_getchild(this_node),
					       this_dev->child, this_dev, sbus);
		} else {
			this_dev->child = NULL;
		}
	}
}

/*
 * XXX This functions appears to be a distorted version of
 * prom_sbus_ranges_init(), with all sun4d stuff cut away.
 * Ask DaveM what is going on here, how is sun4d supposed to work... XXX
 */
/* added back sun4d patch from Thomas Bogendoerfer - should be OK (crn) */

static void __init sbus_bus_ranges_init(int parent_node, struct sbus_bus *sbus)
{
	int len;

	len = prom_getproperty(sbus->prom_node, "ranges",
			       (char *) sbus->sbus_ranges,
			       sizeof(sbus->sbus_ranges));
	if (len == -1 || len == 0) {
		sbus->num_sbus_ranges = 0;
		return;
	}
	sbus->num_sbus_ranges = len / sizeof(struct linux_prom_ranges);
#ifdef CONFIG_SPARC32
	if (sparc_cpu_model == sun4d) {
		struct linux_prom_ranges iounit_ranges[PROMREG_MAX];
		int num_iounit_ranges;

		len = prom_getproperty(parent_node, "ranges",
				       (char *) iounit_ranges,
				       sizeof (iounit_ranges));
		if (len != -1) {
			num_iounit_ranges = (len/sizeof(struct linux_prom_ranges));
			prom_adjust_ranges (sbus->sbus_ranges, sbus->num_sbus_ranges, iounit_ranges, num_iounit_ranges);
		}
	}
#endif
}

static void __init __apply_ranges_to_regs(struct linux_prom_ranges *ranges,
					  int num_ranges,
					  struct linux_prom_registers *regs,
					  int num_regs)
{
	if (num_ranges) {
		int regnum;

		for (regnum = 0; regnum < num_regs; regnum++) {
			int rngnum;

			for (rngnum = 0; rngnum < num_ranges; rngnum++) {
				if (regs[regnum].which_io == ranges[rngnum].ot_child_space)
					break;
			}
			if (rngnum == num_ranges) {
				/* We used to flag this as an error.  Actually
				 * some devices do not report the regs as we expect.
				 * For example, see SUNW,pln device.  In that case
				 * the reg property is in a format internal to that
				 * node, ie. it is not in the SBUS register space
				 * per se. -DaveM
				 */
				return;
			}
			regs[regnum].which_io = ranges[rngnum].ot_parent_space;
			regs[regnum].phys_addr -= ranges[rngnum].ot_child_base;
			regs[regnum].phys_addr += ranges[rngnum].ot_parent_base;
		}
	}
}

static void __init __fixup_regs_sdev(struct sbus_dev *sdev)
{
	if (sdev->num_registers != 0) {
		struct sbus_dev *parent = sdev->parent;
		int i;

		while (parent != NULL) {
			__apply_ranges_to_regs(parent->device_ranges,
					       parent->num_device_ranges,
					       sdev->reg_addrs,
					       sdev->num_registers);

			parent = parent->parent;
		}

		__apply_ranges_to_regs(sdev->bus->sbus_ranges,
				       sdev->bus->num_sbus_ranges,
				       sdev->reg_addrs,
				       sdev->num_registers);

		for (i = 0; i < sdev->num_registers; i++) {
			struct resource *res = &sdev->resource[i];

			res->start = sdev->reg_addrs[i].phys_addr;
			res->end = (res->start +
				    (unsigned long)sdev->reg_addrs[i].reg_size - 1UL);
			res->flags = IORESOURCE_IO |
				(sdev->reg_addrs[i].which_io & 0xff);
		}
	}
}

static void __init sbus_fixup_all_regs(struct sbus_dev *first_sdev)
{
	struct sbus_dev *sdev;

	for (sdev = first_sdev; sdev; sdev = sdev->next) {
		if (sdev->child)
			sbus_fixup_all_regs(sdev->child);
		__fixup_regs_sdev(sdev);
	}
}

extern void register_proc_sparc_ioport(void);
extern void firetruck_init(void);

#ifdef CONFIG_SUN4
extern void sun4_dvma_init(void);
#endif

static int __init sbus_init(void)
{
	int nd, this_sbus, sbus_devs, topnd, iommund;
	unsigned int sbus_clock;
	struct sbus_bus *sbus;
	struct sbus_dev *this_dev;
	int num_sbus = 0;  /* How many did we find? */

#ifdef CONFIG_SPARC32
	register_proc_sparc_ioport();
#endif

#ifdef CONFIG_SUN4
	sun4_dvma_init();
	return 0;
#endif

	topnd = prom_getchild(prom_root_node);
	
	/* Finding the first sbus is a special case... */
	iommund = 0;
	if(sparc_cpu_model == sun4u) {
		nd = prom_searchsiblings(topnd, "sbus");
		if(nd == 0) {
#ifdef CONFIG_PCI
			if (!pcic_present()) {
				prom_printf("Neither SBUS nor PCI found.\n");
				prom_halt();
			} else {
#ifdef CONFIG_SPARC64
				firetruck_init();
#endif
			}
			return 0;
#else
			prom_printf("YEEE, UltraSparc sbus not found\n");
			prom_halt();
#endif
		}
	} else if(sparc_cpu_model == sun4d) {
		if((iommund = prom_searchsiblings(topnd, "io-unit")) == 0 ||
		   (nd = prom_getchild(iommund)) == 0 ||
		   (nd = prom_searchsiblings(nd, "sbi")) == 0) {
		   	panic("sbi not found");
		}
	} else if((nd = prom_searchsiblings(topnd, "sbus")) == 0) {
		if((iommund = prom_searchsiblings(topnd, "iommu")) == 0 ||
		   (nd = prom_getchild(iommund)) == 0 ||
		   (nd = prom_searchsiblings(nd, "sbus")) == 0) {
#ifdef CONFIG_PCI
                        if (!pcic_present()) {
                                prom_printf("Neither SBUS nor PCI found.\n");
                                prom_halt();
                        }
                        return 0;
#else
			/* No reason to run further - the data access trap will occur. */
			panic("sbus not found");
#endif
		}
	}

	/* Ok, we've found the first one, allocate first SBus struct
	 * and place in chain.
	 */
	sbus = sbus_root = kmalloc(sizeof(struct sbus_bus), GFP_ATOMIC);
	sbus->next = NULL;
	sbus->prom_node = nd;
	this_sbus = nd;

	if(iommund && sparc_cpu_model != sun4u && sparc_cpu_model != sun4d)
		iommu_init(iommund, sbus);

	/* Loop until we find no more SBUS's */
	while(this_sbus) {
#ifdef CONFIG_SPARC64
		/* IOMMU hides inside SBUS/SYSIO prom node on Ultra. */
		if(sparc_cpu_model == sun4u) {
			extern void sbus_iommu_init(int prom_node, struct sbus_bus *sbus);

			sbus_iommu_init(this_sbus, sbus);
		}
#endif /* CONFIG_SPARC64 */

#ifdef CONFIG_SPARC32
		if (sparc_cpu_model == sun4d)
			iounit_init(this_sbus, iommund, sbus);
#endif /* CONFIG_SPARC32 */
		printk("sbus%d: ", num_sbus);
		sbus_clock = prom_getint(this_sbus, "clock-frequency");
		if(sbus_clock == -1)
			sbus_clock = (25*1000*1000);
		printk("Clock %d.%d MHz\n", (int) ((sbus_clock/1000)/1000),
		       (int) (((sbus_clock/1000)%1000 != 0) ? 
			      (((sbus_clock/1000)%1000) + 1000) : 0));

		prom_getstring(this_sbus, "name",
			       sbus->prom_name, sizeof(sbus->prom_name));
		sbus->clock_freq = sbus_clock;
#ifdef CONFIG_SPARC32
		if (sparc_cpu_model == sun4d) {
			sbus->devid = prom_getint(iommund, "device-id");
			sbus->board = prom_getint(iommund, "board#");
		}
#endif
		
		sbus_bus_ranges_init(iommund, sbus);

		sbus_devs = prom_getchild(this_sbus);
		if (!sbus_devs) {
			sbus->devices = NULL;
			goto next_bus;
		}

		sbus->devices = kmalloc(sizeof(struct sbus_dev), GFP_ATOMIC);

		this_dev = sbus->devices;
		this_dev->next = NULL;

		this_dev->bus = sbus;
		this_dev->parent = NULL;
		fill_sbus_device(sbus_devs, this_dev);

		/* Should we traverse for children? */
		if(prom_getchild(sbus_devs)) {
			/* Allocate device node */
			this_dev->child = kmalloc(sizeof(struct sbus_dev),
						  GFP_ATOMIC);
			/* Fill it */
			this_dev->child->bus = sbus;
			this_dev->child->next = NULL;
			fill_sbus_device(prom_getchild(sbus_devs),
					 this_dev->child);
			sbus_do_child_siblings(prom_getchild(sbus_devs),
					       this_dev->child,
					       this_dev,
					       sbus);
		} else {
			this_dev->child = NULL;
		}

		while((sbus_devs = prom_getsibling(sbus_devs)) != 0) {
			/* Allocate device node */
			this_dev->next = kmalloc(sizeof(struct sbus_dev),
						 GFP_ATOMIC);
			this_dev = this_dev->next;
			this_dev->next = NULL;

			/* Fill it */
			this_dev->bus = sbus;
			this_dev->parent = NULL;
			fill_sbus_device(sbus_devs, this_dev);

			/* Is there a child node hanging off of us? */
			if(prom_getchild(sbus_devs)) {
				/* Get new device struct */
				this_dev->child = kmalloc(sizeof(struct sbus_dev),
							  GFP_ATOMIC);
				/* Fill it */
				this_dev->child->bus = sbus;
				this_dev->child->next = NULL;
				fill_sbus_device(prom_getchild(sbus_devs),
						 this_dev->child);
				sbus_do_child_siblings(prom_getchild(sbus_devs),
						       this_dev->child,
						       this_dev,
						       sbus);
			} else {
				this_dev->child = NULL;
			}
		}

		/* Walk all devices and apply parent ranges. */
		sbus_fixup_all_regs(sbus->devices);

		dvma_init(sbus);
	next_bus:
		num_sbus++;
		if(sparc_cpu_model == sun4u) {
			this_sbus = prom_getsibling(this_sbus);
			if(!this_sbus)
				break;
			this_sbus = prom_searchsiblings(this_sbus, "sbus");
		} else if(sparc_cpu_model == sun4d) {
			iommund = prom_getsibling(iommund);
			if(!iommund)
				break;
			iommund = prom_searchsiblings(iommund, "io-unit");
			if(!iommund)
				break;
			this_sbus = prom_searchsiblings(prom_getchild(iommund), "sbi");
		} else {
			this_sbus = prom_getsibling(this_sbus);
			if(!this_sbus)
				break;
			this_sbus = prom_searchsiblings(this_sbus, "sbus");
		}
		if(this_sbus) {
			sbus->next = kmalloc(sizeof(struct sbus_bus), GFP_ATOMIC);
			sbus = sbus->next;
			sbus->next = NULL;
			sbus->prom_node = this_sbus;
		} else {
			break;
		}
	} /* while(this_sbus) */

	if (sparc_cpu_model == sun4d) {
		extern void sun4d_init_sbi_irq(void);
		sun4d_init_sbi_irq();
	}
	
#ifdef CONFIG_SPARC64
	if (sparc_cpu_model == sun4u) {
		firetruck_init();
	}
#endif
#ifdef CONFIG_SUN_AUXIO
	if (sparc_cpu_model == sun4u)
		auxio_probe ();
#endif
#ifdef CONFIG_SPARC64
	if (sparc_cpu_model == sun4u) {
		extern void clock_probe(void);

		clock_probe();
	}
#endif

	return 0;
}

subsys_initcall(sbus_init);