Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
 *  linux/arch/ppc/kernel/setup.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 *  Adapted from 'alpha' version by Gary Thomas
 *  Modified by Cort Dougan (cort@cs.nmt.edu)
 *  Modified by PPC64 Team, IBM Corp
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/*
 * bootup setup stuff..
 */

#undef DEBUG

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/major.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/pci.h>
#include <linux/version.h>
#include <linux/adb.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>

#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/pci-bridge.h>
#include <asm/iommu.h>
#include <asm/dma.h>
#include <asm/machdep.h>
#include <asm/irq.h>
#include <asm/time.h>
#include <asm/nvram.h>
#include <asm/plpar_wrappers.h>
#include <asm/xics.h>
#include <asm/cputable.h>

#include "i8259.h"
#include "mpic.h"
#include "pci.h"

#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

extern void pSeries_final_fixup(void);

extern void pSeries_get_boot_time(struct rtc_time *rtc_time);
extern void pSeries_get_rtc_time(struct rtc_time *rtc_time);
extern int  pSeries_set_rtc_time(struct rtc_time *rtc_time);
extern void find_udbg_vterm(void);
extern void system_reset_fwnmi(void);	/* from head.S */
extern void machine_check_fwnmi(void);	/* from head.S */
extern void generic_find_legacy_serial_ports(u64 *physport,
		unsigned int *default_speed);

int fwnmi_active;  /* TRUE if an FWNMI handler is present */

extern unsigned long ppc_proc_freq;
extern unsigned long ppc_tb_freq;

extern void pSeries_system_reset_exception(struct pt_regs *regs);
extern int pSeries_machine_check_exception(struct pt_regs *regs);

static volatile void __iomem * chrp_int_ack_special;
struct mpic *pSeries_mpic;

void pSeries_get_cpuinfo(struct seq_file *m)
{
	struct device_node *root;
	const char *model = "";

	root = of_find_node_by_path("/");
	if (root)
		model = get_property(root, "model", NULL);
	seq_printf(m, "machine\t\t: CHRP %s\n", model);
	of_node_put(root);
}

/* Initialize firmware assisted non-maskable interrupts if
 * the firmware supports this feature.
 *
 */
static void __init fwnmi_init(void)
{
	int ret;
	int ibm_nmi_register = rtas_token("ibm,nmi-register");
	if (ibm_nmi_register == RTAS_UNKNOWN_SERVICE)
		return;
	ret = rtas_call(ibm_nmi_register, 2, 1, NULL,
			__pa((unsigned long)system_reset_fwnmi),
			__pa((unsigned long)machine_check_fwnmi));
	if (ret == 0)
		fwnmi_active = 1;
}

static int pSeries_irq_cascade(struct pt_regs *regs, void *data)
{
	if (chrp_int_ack_special)
		return readb(chrp_int_ack_special);
	else
		return i8259_irq(smp_processor_id());
}

static void __init pSeries_init_mpic(void)
{
        unsigned int *addrp;
	struct device_node *np;
        int i;

	/* All ISUs are setup, complete initialization */
	mpic_init(pSeries_mpic);

	/* Check what kind of cascade ACK we have */
        if (!(np = of_find_node_by_name(NULL, "pci"))
            || !(addrp = (unsigned int *)
                 get_property(np, "8259-interrupt-acknowledge", NULL)))
                printk(KERN_ERR "Cannot find pci to get ack address\n");
        else
		chrp_int_ack_special = ioremap(addrp[prom_n_addr_cells(np)-1], 1);
	of_node_put(np);

	/* Setup the legacy interrupts & controller */
        for (i = 0; i < NUM_ISA_INTERRUPTS; i++)
                irq_desc[i].handler = &i8259_pic;
	i8259_init(0);

	/* Hook cascade to mpic */
	mpic_setup_cascade(NUM_ISA_INTERRUPTS, pSeries_irq_cascade, NULL);
}

static void __init pSeries_setup_mpic(void)
{
	unsigned int *opprop;
	unsigned long openpic_addr = 0;
        unsigned char senses[NR_IRQS - NUM_ISA_INTERRUPTS];
        struct device_node *root;
	int irq_count;

	/* Find the Open PIC if present */
	root = of_find_node_by_path("/");
	opprop = (unsigned int *) get_property(root, "platform-open-pic", NULL);
	if (opprop != 0) {
		int n = prom_n_addr_cells(root);

		for (openpic_addr = 0; n > 0; --n)
			openpic_addr = (openpic_addr << 32) + *opprop++;
		printk(KERN_DEBUG "OpenPIC addr: %lx\n", openpic_addr);
	}
	of_node_put(root);

	BUG_ON(openpic_addr == 0);

	/* Get the sense values from OF */
	prom_get_irq_senses(senses, NUM_ISA_INTERRUPTS, NR_IRQS);
	
	/* Setup the openpic driver */
	irq_count = NR_IRQS - NUM_ISA_INTERRUPTS - 4; /* leave room for IPIs */
	pSeries_mpic = mpic_alloc(openpic_addr, MPIC_PRIMARY,
				  16, 16, irq_count, /* isu size, irq offset, irq count */ 
				  NR_IRQS - 4, /* ipi offset */
				  senses, irq_count, /* sense & sense size */
				  " MPIC     ");
}

static void __init pSeries_setup_arch(void)
{
	/* Fixup ppc_md depending on the type of interrupt controller */
	if (ppc64_interrupt_controller == IC_OPEN_PIC) {
		ppc_md.init_IRQ       = pSeries_init_mpic; 
		ppc_md.get_irq        = mpic_get_irq;
		/* Allocate the mpic now, so that find_and_init_phbs() can
		 * fill the ISUs */
		pSeries_setup_mpic();
	} else {
		ppc_md.init_IRQ       = xics_init_IRQ;
		ppc_md.get_irq        = xics_get_irq;
	}

#ifdef CONFIG_SMP
	smp_init_pSeries();
#endif
	/* openpic global configuration register (64-bit format). */
	/* openpic Interrupt Source Unit pointer (64-bit format). */
	/* python0 facility area (mmio) (64-bit format) REAL address. */

	/* init to some ~sane value until calibrate_delay() runs */
	loops_per_jiffy = 50000000;

	if (ROOT_DEV == 0) {
		printk("No ramdisk, default root is /dev/sda2\n");
		ROOT_DEV = Root_SDA2;
	}

	fwnmi_init();

	/* Find and initialize PCI host bridges */
	init_pci_config_tokens();
	eeh_init();
	find_and_init_phbs();

#ifdef CONFIG_DUMMY_CONSOLE
	conswitchp = &dummy_con;
#endif

	pSeries_nvram_init();

	if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR)
		vpa_init(boot_cpuid);
}

static int __init pSeries_init_panel(void)
{
	/* Manually leave the kernel version on the panel. */
	ppc_md.progress("Linux ppc64\n", 0);
	ppc_md.progress(UTS_RELEASE, 0);

	return 0;
}
arch_initcall(pSeries_init_panel);


/* Build up the firmware_features bitmask field
 * using contents of device-tree/ibm,hypertas-functions.
 * Ultimately this functionality may be moved into prom.c prom_init().
 */
void __init fw_feature_init(void)
{
	struct device_node * dn;
	char * hypertas;
	unsigned int len;

	DBG(" -> fw_feature_init()\n");

	cur_cpu_spec->firmware_features = 0;
	dn = of_find_node_by_path("/rtas");
	if (dn == NULL) {
		printk(KERN_ERR "WARNING ! Cannot find RTAS in device-tree !\n");
		goto no_rtas;
	}

	hypertas = get_property(dn, "ibm,hypertas-functions", &len);
	if (hypertas) {
		while (len > 0){
			int i, hypertas_len;
			/* check value against table of strings */
			for(i=0; i < FIRMWARE_MAX_FEATURES ;i++) {
				if ((firmware_features_table[i].name) &&
				    (strcmp(firmware_features_table[i].name,hypertas))==0) {
					/* we have a match */
					cur_cpu_spec->firmware_features |= 
						(firmware_features_table[i].val);
					break;
				} 
			}
			hypertas_len = strlen(hypertas);
			len -= hypertas_len +1;
			hypertas+= hypertas_len +1;
		}
	}

	of_node_put(dn);
 no_rtas:
	printk(KERN_INFO "firmware_features = 0x%lx\n", 
	       cur_cpu_spec->firmware_features);

	DBG(" <- fw_feature_init()\n");
}


static  void __init pSeries_discover_pic(void)
{
	struct device_node *np;
	char *typep;

	/*
	 * Setup interrupt mapping options that are needed for finish_device_tree
	 * to properly parse the OF interrupt tree & do the virtual irq mapping
	 */
	__irq_offset_value = NUM_ISA_INTERRUPTS;
	ppc64_interrupt_controller = IC_INVALID;
	for (np = NULL; (np = of_find_node_by_name(np, "interrupt-controller"));) {
		typep = (char *)get_property(np, "compatible", NULL);
		if (strstr(typep, "open-pic"))
			ppc64_interrupt_controller = IC_OPEN_PIC;
		else if (strstr(typep, "ppc-xicp"))
			ppc64_interrupt_controller = IC_PPC_XIC;
		else
			printk("pSeries_discover_pic: failed to recognize"
			       " interrupt-controller\n");
		break;
	}
}

static void pSeries_mach_cpu_die(void)
{
	local_irq_disable();
	idle_task_exit();
	/* Some hardware requires clearing the CPPR, while other hardware does not
	 * it is safe either way
	 */
	pSeriesLP_cppr_info(0, 0);
	rtas_stop_self();
	/* Should never get here... */
	BUG();
	for(;;);
}


/*
 * Early initialization.  Relocation is on but do not reference unbolted pages
 */
static void __init pSeries_init_early(void)
{
	void *comport;
	int iommu_off = 0;
	unsigned int default_speed;
	u64 physport;

	DBG(" -> pSeries_init_early()\n");

	fw_feature_init();
	
	if (systemcfg->platform & PLATFORM_LPAR)
		hpte_init_lpar();
	else {
		hpte_init_native();
		iommu_off = (of_chosen &&
			     get_property(of_chosen, "linux,iommu-off", NULL));
	}

	generic_find_legacy_serial_ports(&physport, &default_speed);

	if (systemcfg->platform & PLATFORM_LPAR)
		find_udbg_vterm();
	else if (physport) {
		/* Map the uart for udbg. */
		comport = (void *)ioremap(physport, 16);
		udbg_init_uart(comport, default_speed);

		ppc_md.udbg_putc = udbg_putc;
		ppc_md.udbg_getc = udbg_getc;
		ppc_md.udbg_getc_poll = udbg_getc_poll;
		DBG("Hello World !\n");
	}


	iommu_init_early_pSeries();

	pSeries_discover_pic();

	DBG(" <- pSeries_init_early()\n");
}


static void pSeries_progress(char *s, unsigned short hex)
{
	struct device_node *root;
	int width, *p;
	char *os;
	static int display_character, set_indicator;
	static int max_width;
	static DEFINE_SPINLOCK(progress_lock);
	static int pending_newline = 0;  /* did last write end with unprinted newline? */

	if (!rtas.base)
		return;

	if (max_width == 0) {
		if ((root = find_path_device("/rtas")) &&
		     (p = (unsigned int *)get_property(root,
						       "ibm,display-line-length",
						       NULL)))
			max_width = *p;
		else
			max_width = 0x10;
		display_character = rtas_token("display-character");
		set_indicator = rtas_token("set-indicator");
	}

	if (display_character == RTAS_UNKNOWN_SERVICE) {
		/* use hex display if available */
		if (set_indicator != RTAS_UNKNOWN_SERVICE)
			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
		return;
	}

	spin_lock(&progress_lock);

	/*
	 * Last write ended with newline, but we didn't print it since
	 * it would just clear the bottom line of output. Print it now
	 * instead.
	 *
	 * If no newline is pending, print a CR to start output at the
	 * beginning of the line.
	 */
	if (pending_newline) {
		rtas_call(display_character, 1, 1, NULL, '\r');
		rtas_call(display_character, 1, 1, NULL, '\n');
		pending_newline = 0;
	} else {
		rtas_call(display_character, 1, 1, NULL, '\r');
	}
 
	width = max_width;
	os = s;
	while (*os) {
		if (*os == '\n' || *os == '\r') {
			/* Blank to end of line. */
			while (width-- > 0)
				rtas_call(display_character, 1, 1, NULL, ' ');
 
			/* If newline is the last character, save it
			 * until next call to avoid bumping up the
			 * display output.
			 */
			if (*os == '\n' && !os[1]) {
				pending_newline = 1;
				spin_unlock(&progress_lock);
				return;
			}
 
			/* RTAS wants CR-LF, not just LF */
 
			if (*os == '\n') {
				rtas_call(display_character, 1, 1, NULL, '\r');
				rtas_call(display_character, 1, 1, NULL, '\n');
			} else {
				/* CR might be used to re-draw a line, so we'll
				 * leave it alone and not add LF.
				 */
				rtas_call(display_character, 1, 1, NULL, *os);
			}
 
			width = max_width;
		} else {
			width--;
			rtas_call(display_character, 1, 1, NULL, *os);
		}
 
		os++;
 
		/* if we overwrite the screen length */
		if (width <= 0)
			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
				os++;
	}
 
	/* Blank to end of line. */
	while (width-- > 0)
		rtas_call(display_character, 1, 1, NULL, ' ');

	spin_unlock(&progress_lock);
}

extern void setup_default_decr(void);

/* Some sane defaults: 125 MHz timebase, 1GHz processor */
#define DEFAULT_TB_FREQ		125000000UL
#define DEFAULT_PROC_FREQ	(DEFAULT_TB_FREQ * 8)

static void __init pSeries_calibrate_decr(void)
{
	struct device_node *cpu;
	struct div_result divres;
	unsigned int *fp;
	int node_found;

	/*
	 * The cpu node should have a timebase-frequency property
	 * to tell us the rate at which the decrementer counts.
	 */
	cpu = of_find_node_by_type(NULL, "cpu");

	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
	node_found = 0;
	if (cpu != 0) {
		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
						  NULL);
		if (fp != 0) {
			node_found = 1;
			ppc_tb_freq = *fp;
		}
	}
	if (!node_found)
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");

	ppc_proc_freq = DEFAULT_PROC_FREQ;
	node_found = 0;
	if (cpu != 0) {
		fp = (unsigned int *)get_property(cpu, "clock-frequency",
						  NULL);
		if (fp != 0) {
			node_found = 1;
			ppc_proc_freq = *fp;
		}
	}
	if (!node_found)
		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");

	of_node_put(cpu);

	printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
	       ppc_tb_freq/1000000, ppc_tb_freq%1000000);
	printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
	       ppc_proc_freq/1000000, ppc_proc_freq%1000000);

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
	div128_by_32(1024*1024, 0, tb_ticks_per_sec, &divres);
	tb_to_xs = divres.result_low;

	setup_default_decr();
}

static int pSeries_check_legacy_ioport(unsigned int baseport)
{
	struct device_node *np;

#define I8042_DATA_REG	0x60
#define FDC_BASE	0x3f0


	switch(baseport) {
	case I8042_DATA_REG:
		np = of_find_node_by_type(NULL, "8042");
		if (np == NULL)
			return -ENODEV;
		of_node_put(np);
		break;
	case FDC_BASE:
		np = of_find_node_by_type(NULL, "fdc");
		if (np == NULL)
			return -ENODEV;
		of_node_put(np);
		break;
	}
	return 0;
}

/*
 * Called very early, MMU is off, device-tree isn't unflattened
 */
extern struct machdep_calls pSeries_md;

static int __init pSeries_probe(int platform)
{
	if (platform != PLATFORM_PSERIES &&
	    platform != PLATFORM_PSERIES_LPAR)
		return 0;

	/* if we have some ppc_md fixups for LPAR to do, do
	 * it here ...
	 */

	return 1;
}

struct machdep_calls __initdata pSeries_md = {
	.probe			= pSeries_probe,
	.setup_arch		= pSeries_setup_arch,
	.init_early		= pSeries_init_early,
	.get_cpuinfo		= pSeries_get_cpuinfo,
	.log_error		= pSeries_log_error,
	.pcibios_fixup		= pSeries_final_fixup,
	.restart		= rtas_restart,
	.power_off		= rtas_power_off,
	.halt			= rtas_halt,
	.panic			= rtas_os_term,
	.cpu_die		= pSeries_mach_cpu_die,
	.get_boot_time		= pSeries_get_boot_time,
	.get_rtc_time		= pSeries_get_rtc_time,
	.set_rtc_time		= pSeries_set_rtc_time,
	.calibrate_decr		= pSeries_calibrate_decr,
	.progress		= pSeries_progress,
	.check_legacy_ioport	= pSeries_check_legacy_ioport,
	.system_reset_exception = pSeries_system_reset_exception,
	.machine_check_exception = pSeries_machine_check_exception,
};