Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Definitions for the AF_INET socket handler.
 *
 * Version:	@(#)sock.h	1.0.4	05/13/93
 *
 * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche <flla@stud.uni-sb.de>
 *
 * Fixes:
 *		Alan Cox	:	Volatiles in skbuff pointers. See
 *					skbuff comments. May be overdone,
 *					better to prove they can be removed
 *					than the reverse.
 *		Alan Cox	:	Added a zapped field for tcp to note
 *					a socket is reset and must stay shut up
 *		Alan Cox	:	New fields for options
 *	Pauline Middelink	:	identd support
 *		Alan Cox	:	Eliminate low level recv/recvfrom
 *		David S. Miller	:	New socket lookup architecture.
 *              Steve Whitehouse:       Default routines for sock_ops
 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
 *              			protinfo be just a void pointer, as the
 *              			protocol specific parts were moved to
 *              			respective headers and ipv4/v6, etc now
 *              			use private slabcaches for its socks
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 */
#ifndef _SOCK_H
#define _SOCK_H

#include <linux/config.h>
#include <linux/timer.h>
#include <linux/cache.h>

#include <linux/netdevice.h>
#include <linux/skbuff.h>	/* struct sk_buff */

#ifdef CONFIG_FILTER
#include <linux/filter.h>
#endif

#include <asm/atomic.h>
#include <net/dst.h>

/*
 * This structure really needs to be cleaned up.
 * Most of it is for TCP, and not used by any of
 * the other protocols.
 */

/* Define this to get the sk->debug debugging facility. */
#define SOCK_DEBUGGING
#ifdef SOCK_DEBUGGING
#define SOCK_DEBUG(sk, msg...) do { if((sk) && ((sk)->debug)) printk(KERN_DEBUG msg); } while (0)
#else
#define SOCK_DEBUG(sk, msg...) do { } while (0)
#endif

/* This is the per-socket lock.  The spinlock provides a synchronization
 * between user contexts and software interrupt processing, whereas the
 * mini-semaphore synchronizes multiple users amongst themselves.
 */
typedef struct {
	spinlock_t		slock;
	unsigned int		users;
	wait_queue_head_t	wq;
} socket_lock_t;

#define sock_lock_init(__sk) \
do {	spin_lock_init(&((__sk)->lock.slock)); \
	(__sk)->lock.users = 0; \
	init_waitqueue_head(&((__sk)->lock.wq)); \
} while(0);

struct sock {
	/* Socket demultiplex comparisons on incoming packets. */
	__u32			daddr;		/* Foreign IPv4 addr			*/
	__u32			rcv_saddr;	/* Bound local IPv4 addr		*/
	__u16			dport;		/* Destination port			*/
	unsigned short		num;		/* Local port				*/
	int			bound_dev_if;	/* Bound device index if != 0		*/

	/* Main hash linkage for various protocol lookup tables. */
	struct sock		*next;
	struct sock		**pprev;
	struct sock		*bind_next;
	struct sock		**bind_pprev;

	volatile unsigned char	state,		/* Connection state			*/
				zapped;		/* In ax25 & ipx means not linked	*/
	__u16			sport;		/* Source port				*/

	unsigned short		family;		/* Address family			*/
	unsigned char		reuse;		/* SO_REUSEADDR setting			*/
	unsigned char		shutdown;
	atomic_t		refcnt;		/* Reference count			*/

	socket_lock_t		lock;		/* Synchronizer...			*/
	int			rcvbuf;		/* Size of receive buffer in bytes	*/

	wait_queue_head_t	*sleep;		/* Sock wait queue			*/
	struct dst_entry	*dst_cache;	/* Destination cache			*/
	rwlock_t		dst_lock;
	atomic_t		rmem_alloc;	/* Receive queue bytes committed	*/
	struct sk_buff_head	receive_queue;	/* Incoming packets			*/
	atomic_t		wmem_alloc;	/* Transmit queue bytes committed	*/
	struct sk_buff_head	write_queue;	/* Packet sending queue			*/
	atomic_t		omem_alloc;	/* "o" is "option" or "other" */
	int			wmem_queued;	/* Persistent queue size */
	int			forward_alloc;	/* Space allocated forward. */
	__u32			saddr;		/* Sending source			*/
	unsigned int		allocation;	/* Allocation mode			*/
	int			sndbuf;		/* Size of send buffer in bytes		*/
	struct sock		*prev;

	/* Not all are volatile, but some are, so we might as well say they all are.
	 * XXX Make this a flag word -DaveM
	 */
	volatile char		dead,
				done,
				urginline,
				keepopen,
				linger,
				destroy,
				no_check,
				broadcast,
				bsdism;
	unsigned char		debug;
	unsigned char		rcvtstamp;
	unsigned char		use_write_queue;
	unsigned char		userlocks;
	/* Hole of 3 bytes. Try to pack. */
	int			route_caps;
	int			proc;
	unsigned long	        lingertime;

	int			hashent;
	struct sock		*pair;

	/* The backlog queue is special, it is always used with
	 * the per-socket spinlock held and requires low latency
	 * access.  Therefore we special case it's implementation.
	 */
	struct {
		struct sk_buff *head;
		struct sk_buff *tail;
	} backlog;

	rwlock_t		callback_lock;

	/* Error queue, rarely used. */
	struct sk_buff_head	error_queue;

	struct proto		*prot;

	int			err, err_soft;	/* Soft holds errors that don't
						   cause failure but are the cause
						   of a persistent failure not just
						   'timed out' */
	unsigned short		ack_backlog;
	unsigned short		max_ack_backlog;
	__u32			priority;
	unsigned short		type;
	unsigned char		localroute;	/* Route locally only */
	unsigned char		protocol;
	struct ucred		peercred;
	int			rcvlowat;
	long			rcvtimeo;
	long			sndtimeo;

#ifdef CONFIG_FILTER
	/* Socket Filtering Instructions */
	struct sk_filter      	*filter;
#endif /* CONFIG_FILTER */

	/* This is where all the private (optional) areas that don't
	 * overlap will eventually live. 
	 */
	void *protinfo;

	/* The slabcache this instance was allocated from, it is sk_cachep for most
	 * protocols, but a private slab for protocols such as IPv4, IPv6, SPX
	 * and Unix.
	 */
	kmem_cache_t *slab;

	/* This part is used for the timeout functions. */
	struct timer_list	timer;		/* This is the sock cleanup timer. */
	struct timeval		stamp;

	/* Identd and reporting IO signals */
	struct socket		*socket;

	/* RPC layer private data */
	void			*user_data;
  
	/* Callbacks */
	void			(*state_change)(struct sock *sk);
	void			(*data_ready)(struct sock *sk,int bytes);
	void			(*write_space)(struct sock *sk);
	void			(*error_report)(struct sock *sk);

  	int			(*backlog_rcv) (struct sock *sk,
						struct sk_buff *skb);  
	void                    (*destruct)(struct sock *sk);
};

/* The per-socket spinlock must be held here. */
#define sk_add_backlog(__sk, __skb)			\
do {	if((__sk)->backlog.tail == NULL) {		\
		(__sk)->backlog.head =			\
		     (__sk)->backlog.tail = (__skb);	\
	} else {					\
		((__sk)->backlog.tail)->next = (__skb);	\
		(__sk)->backlog.tail = (__skb);		\
	}						\
	(__skb)->next = NULL;				\
} while(0)

/* IP protocol blocks we attach to sockets.
 * socket layer -> transport layer interface
 * transport -> network interface is defined by struct inet_proto
 */
struct proto {
	void			(*close)(struct sock *sk, 
					long timeout);
	int			(*connect)(struct sock *sk,
				        struct sockaddr *uaddr, 
					int addr_len);
	int			(*disconnect)(struct sock *sk, int flags);

	struct sock *		(*accept) (struct sock *sk, int flags, int *err);

	int			(*ioctl)(struct sock *sk, int cmd,
					 unsigned long arg);
	int			(*init)(struct sock *sk);
	int			(*destroy)(struct sock *sk);
	void			(*shutdown)(struct sock *sk, int how);
	int			(*setsockopt)(struct sock *sk, int level, 
					int optname, char *optval, int optlen);
	int			(*getsockopt)(struct sock *sk, int level, 
					int optname, char *optval, 
					int *option);  	 
	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
					   int len);
	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
					int len, int noblock, int flags, 
					int *addr_len);
	int			(*bind)(struct sock *sk, 
					struct sockaddr *uaddr, int addr_len);

	int			(*backlog_rcv) (struct sock *sk, 
						struct sk_buff *skb);

	/* Keeping track of sk's, looking them up, and port selection methods. */
	void			(*hash)(struct sock *sk);
	void			(*unhash)(struct sock *sk);
	int			(*get_port)(struct sock *sk, unsigned short snum);

	char			name[32];

	struct {
		int inuse;
		u8  __pad[SMP_CACHE_BYTES - sizeof(int)];
	} stats[NR_CPUS];
};

/* Called with local bh disabled */
static __inline__ void sock_prot_inc_use(struct proto *prot)
{
	prot->stats[smp_processor_id()].inuse++;
}

static __inline__ void sock_prot_dec_use(struct proto *prot)
{
	prot->stats[smp_processor_id()].inuse--;
}

/* About 10 seconds */
#define SOCK_DESTROY_TIME (10*HZ)

/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK	1024

#define SHUTDOWN_MASK	3
#define RCV_SHUTDOWN	1
#define SEND_SHUTDOWN	2

#define SOCK_SNDBUF_LOCK	1
#define SOCK_RCVBUF_LOCK	2
#define SOCK_BINDADDR_LOCK	4
#define SOCK_BINDPORT_LOCK	8

#include <linux/fs.h>	/* just for inode - yeuch.*/


/* Used by processes to "lock" a socket state, so that
 * interrupts and bottom half handlers won't change it
 * from under us. It essentially blocks any incoming
 * packets, so that we won't get any new data or any
 * packets that change the state of the socket.
 *
 * While locked, BH processing will add new packets to
 * the backlog queue.  This queue is processed by the
 * owner of the socket lock right before it is released.
 *
 * Since ~2.3.5 it is also exclusive sleep lock serializing
 * accesses from user process context.
 */
extern void __lock_sock(struct sock *sk);
extern void __release_sock(struct sock *sk);
#define lock_sock(__sk) \
do {	spin_lock_bh(&((__sk)->lock.slock)); \
	if ((__sk)->lock.users != 0) \
		__lock_sock(__sk); \
	(__sk)->lock.users = 1; \
	spin_unlock_bh(&((__sk)->lock.slock)); \
} while(0)

#define release_sock(__sk) \
do {	spin_lock_bh(&((__sk)->lock.slock)); \
	if ((__sk)->backlog.tail != NULL) \
		__release_sock(__sk); \
	(__sk)->lock.users = 0; \
        if (waitqueue_active(&((__sk)->lock.wq))) wake_up(&((__sk)->lock.wq)); \
	spin_unlock_bh(&((__sk)->lock.slock)); \
} while(0)

/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk)	spin_lock(&((__sk)->lock.slock))
#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->lock.slock))

extern struct sock *		sk_alloc(int family, int priority, int zero_it,
					 kmem_cache_t *slab);
extern void			sk_free(struct sock *sk);

extern struct sk_buff		*sock_wmalloc(struct sock *sk,
					      unsigned long size, int force,
					      int priority);
extern struct sk_buff		*sock_rmalloc(struct sock *sk,
					      unsigned long size, int force,
					      int priority);
extern void			sock_wfree(struct sk_buff *skb);
extern void			sock_rfree(struct sk_buff *skb);

extern int			sock_setsockopt(struct socket *sock, int level,
						int op, char *optval,
						int optlen);

extern int			sock_getsockopt(struct socket *sock, int level,
						int op, char *optval, 
						int *optlen);
extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
						     unsigned long size,
						     int noblock,
						     int *errcode);
extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
						      unsigned long header_len,
						      unsigned long data_len,
						      int noblock,
						      int *errcode);
extern void *sock_kmalloc(struct sock *sk, int size, int priority);
extern void sock_kfree_s(struct sock *sk, void *mem, int size);

/*
 * Functions to fill in entries in struct proto_ops when a protocol
 * does not implement a particular function.
 */
extern int                      sock_no_release(struct socket *);
extern int                      sock_no_bind(struct socket *, 
					     struct sockaddr *, int);
extern int                      sock_no_connect(struct socket *,
						struct sockaddr *, int, int);
extern int                      sock_no_socketpair(struct socket *,
						   struct socket *);
extern int                      sock_no_accept(struct socket *,
					       struct socket *, int);
extern int                      sock_no_getname(struct socket *,
						struct sockaddr *, int *, int);
extern unsigned int             sock_no_poll(struct file *, struct socket *,
					     struct poll_table_struct *);
extern int                      sock_no_ioctl(struct socket *, unsigned int,
					      unsigned long);
extern int			sock_no_listen(struct socket *, int);
extern int                      sock_no_shutdown(struct socket *, int);
extern int			sock_no_getsockopt(struct socket *, int , int,
						   char *, int *);
extern int			sock_no_setsockopt(struct socket *, int, int,
						   char *, int);
extern int 			sock_no_fcntl(struct socket *, 
					      unsigned int, unsigned long);
extern int                      sock_no_sendmsg(struct socket *,
						struct msghdr *, int,
						struct scm_cookie *);
extern int                      sock_no_recvmsg(struct socket *,
						struct msghdr *, int, int,
						struct scm_cookie *);
extern int			sock_no_mmap(struct file *file,
					     struct socket *sock,
					     struct vm_area_struct *vma);
extern ssize_t			sock_no_sendpage(struct socket *sock,
						struct page *page,
						int offset, size_t size, 
						int flags);

/*
 *	Default socket callbacks and setup code
 */
 
extern void sock_def_destruct(struct sock *);

/* Initialise core socket variables */
extern void sock_init_data(struct socket *sock, struct sock *sk);

extern void sklist_remove_socket(struct sock **list, struct sock *sk);
extern void sklist_insert_socket(struct sock **list, struct sock *sk);
extern void sklist_destroy_socket(struct sock **list, struct sock *sk);

#ifdef CONFIG_FILTER

/**
 *	sk_filter - run a packet through a socket filter
 *	@skb: buffer to filter
 *	@filter: filter to apply
 *
 * Run the filter code and then cut skb->data to correct size returned by
 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
 * than pkt_len we keep whole skb->data. This is the socket level
 * wrapper to sk_run_filter. It returns 0 if the packet should
 * be accepted or 1 if the packet should be tossed.
 */
 
static inline int sk_filter(struct sk_buff *skb, struct sk_filter *filter)
{
	int pkt_len;

        pkt_len = sk_run_filter(skb, filter->insns, filter->len);
        if(!pkt_len)
                return 1;	/* Toss Packet */
        else
                skb_trim(skb, pkt_len);

	return 0;
}

/**
 *	sk_filter_release: Release a socket filter
 *	@sk: socket
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
 
static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
{
	unsigned int size = sk_filter_len(fp);

	atomic_sub(size, &sk->omem_alloc);

	if (atomic_dec_and_test(&fp->refcnt))
		kfree(fp);
}

static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
{
	atomic_inc(&fp->refcnt);
	atomic_add(sk_filter_len(fp), &sk->omem_alloc);
}

#endif /* CONFIG_FILTER */

/*
 * Socket reference counting postulates.
 *
 * * Each user of socket SHOULD hold a reference count.
 * * Each access point to socket (an hash table bucket, reference from a list,
 *   running timer, skb in flight MUST hold a reference count.
 * * When reference count hits 0, it means it will never increase back.
 * * When reference count hits 0, it means that no references from
 *   outside exist to this socket and current process on current CPU
 *   is last user and may/should destroy this socket.
 * * sk_free is called from any context: process, BH, IRQ. When
 *   it is called, socket has no references from outside -> sk_free
 *   may release descendant resources allocated by the socket, but
 *   to the time when it is called, socket is NOT referenced by any
 *   hash tables, lists etc.
 * * Packets, delivered from outside (from network or from another process)
 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
 *   when they sit in queue. Otherwise, packets will leak to hole, when
 *   socket is looked up by one cpu and unhasing is made by another CPU.
 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
 *   (leak to backlog). Packet socket does all the processing inside
 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
 *   use separate SMP lock, so that they are prone too.
 */

/* Grab socket reference count. This operation is valid only
   when sk is ALREADY grabbed f.e. it is found in hash table
   or a list and the lookup is made under lock preventing hash table
   modifications.
 */

static inline void sock_hold(struct sock *sk)
{
	atomic_inc(&sk->refcnt);
}

/* Ungrab socket in the context, which assumes that socket refcnt
   cannot hit zero, f.e. it is true in context of any socketcall.
 */
static inline void __sock_put(struct sock *sk)
{
	atomic_dec(&sk->refcnt);
}

/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{
	if (atomic_dec_and_test(&sk->refcnt))
		sk_free(sk);
}

/* Detach socket from process context.
 * Announce socket dead, detach it from wait queue and inode.
 * Note that parent inode held reference count on this struct sock,
 * we do not release it in this function, because protocol
 * probably wants some additional cleanups or even continuing
 * to work with this socket (TCP).
 */
static inline void sock_orphan(struct sock *sk)
{
	write_lock_bh(&sk->callback_lock);
	sk->dead = 1;
	sk->socket = NULL;
	sk->sleep = NULL;
	write_unlock_bh(&sk->callback_lock);
}

static inline void sock_graft(struct sock *sk, struct socket *parent)
{
	write_lock_bh(&sk->callback_lock);
	sk->sleep = &parent->wait;
	parent->sk = sk;
	sk->socket = parent;
	write_unlock_bh(&sk->callback_lock);
}

static inline int sock_i_uid(struct sock *sk)
{
	int uid;

	read_lock(&sk->callback_lock);
	uid = sk->socket ? SOCK_INODE(sk->socket)->i_uid : 0;
	read_unlock(&sk->callback_lock);
	return uid;
}

static inline unsigned long sock_i_ino(struct sock *sk)
{
	unsigned long ino;

	read_lock(&sk->callback_lock);
	ino = sk->socket ? SOCK_INODE(sk->socket)->i_ino : 0;
	read_unlock(&sk->callback_lock);
	return ino;
}

static inline struct dst_entry *
__sk_dst_get(struct sock *sk)
{
	return sk->dst_cache;
}

static inline struct dst_entry *
sk_dst_get(struct sock *sk)
{
	struct dst_entry *dst;

	read_lock(&sk->dst_lock);
	dst = sk->dst_cache;
	if (dst)
		dst_hold(dst);
	read_unlock(&sk->dst_lock);
	return dst;
}

static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
	struct dst_entry *old_dst;

	old_dst = sk->dst_cache;
	sk->dst_cache = dst;
	dst_release(old_dst);
}

static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
	write_lock(&sk->dst_lock);
	__sk_dst_set(sk, dst);
	write_unlock(&sk->dst_lock);
}

static inline void
__sk_dst_reset(struct sock *sk)
{
	struct dst_entry *old_dst;

	old_dst = sk->dst_cache;
	sk->dst_cache = NULL;
	dst_release(old_dst);
}

static inline void
sk_dst_reset(struct sock *sk)
{
	write_lock(&sk->dst_lock);
	__sk_dst_reset(sk);
	write_unlock(&sk->dst_lock);
}

static inline struct dst_entry *
__sk_dst_check(struct sock *sk, u32 cookie)
{
	struct dst_entry *dst = sk->dst_cache;

	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
		sk->dst_cache = NULL;
		return NULL;
	}

	return dst;
}

static inline struct dst_entry *
sk_dst_check(struct sock *sk, u32 cookie)
{
	struct dst_entry *dst = sk_dst_get(sk);

	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
		sk_dst_reset(sk);
		return NULL;
	}

	return dst;
}


/*
 * 	Queue a received datagram if it will fit. Stream and sequenced
 *	protocols can't normally use this as they need to fit buffers in
 *	and play with them.
 *
 * 	Inlined as it's very short and called for pretty much every
 *	packet ever received.
 */

static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
{
	sock_hold(sk);
	skb->sk = sk;
	skb->destructor = sock_wfree;
	atomic_add(skb->truesize, &sk->wmem_alloc);
}

static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
	skb->sk = sk;
	skb->destructor = sock_rfree;
	atomic_add(skb->truesize, &sk->rmem_alloc);
}

static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
	   number of warnings when compiling with -W --ANK
	 */
	if (atomic_read(&sk->rmem_alloc) + skb->truesize >= (unsigned)sk->rcvbuf)
                return -ENOMEM;

#ifdef CONFIG_FILTER
	if (sk->filter) {
		int err = 0;
		struct sk_filter *filter;

		/* It would be deadlock, if sock_queue_rcv_skb is used
		   with socket lock! We assume that users of this
		   function are lock free.
		 */
		bh_lock_sock(sk);
		if ((filter = sk->filter) != NULL && sk_filter(skb, filter))
			err = -EPERM;
		bh_unlock_sock(sk);
		if (err)
			return err;	/* Toss packet */
	}
#endif /* CONFIG_FILTER */

	skb->dev = NULL;
	skb_set_owner_r(skb, sk);
	skb_queue_tail(&sk->receive_queue, skb);
	if (!sk->dead)
		sk->data_ready(sk,skb->len);
	return 0;
}

static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
{
	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
	   number of warnings when compiling with -W --ANK
	 */
	if (atomic_read(&sk->rmem_alloc) + skb->truesize >= (unsigned)sk->rcvbuf)
		return -ENOMEM;
	skb_set_owner_r(skb, sk);
	skb_queue_tail(&sk->error_queue,skb);
	if (!sk->dead)
		sk->data_ready(sk,skb->len);
	return 0;
}

/*
 *	Recover an error report and clear atomically
 */
 
static inline int sock_error(struct sock *sk)
{
	int err=xchg(&sk->err,0);
	return -err;
}

static inline unsigned long sock_wspace(struct sock *sk)
{
	int amt = 0;

	if (!(sk->shutdown & SEND_SHUTDOWN)) {
		amt = sk->sndbuf - atomic_read(&sk->wmem_alloc);
		if (amt < 0) 
			amt = 0;
	}
	return amt;
}

static inline void sk_wake_async(struct sock *sk, int how, int band)
{
	if (sk->socket && sk->socket->fasync_list)
		sock_wake_async(sk->socket, how, band);
}

#define SOCK_MIN_SNDBUF 2048
#define SOCK_MIN_RCVBUF 256
/* Must be less or equal SOCK_MIN_SNDBUF */
#define SOCK_MIN_WRITE_SPACE	SOCK_MIN_SNDBUF

/*
 *	Default write policy as shown to user space via poll/select/SIGIO
 *	Kernel internally doesn't use the MIN_WRITE_SPACE threshold.
 */
static inline int sock_writeable(struct sock *sk) 
{
	return sock_wspace(sk) >= SOCK_MIN_WRITE_SPACE;
}

static inline int gfp_any(void)
{
	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
}

static inline long sock_rcvtimeo(struct sock *sk, int noblock)
{
	return noblock ? 0 : sk->rcvtimeo;
}

static inline long sock_sndtimeo(struct sock *sk, int noblock)
{
	return noblock ? 0 : sk->sndtimeo;
}

static inline int sock_rcvlowat(struct sock *sk, int waitall, int len)
{
	return (waitall ? len : min_t(int, sk->rcvlowat, len)) ? : 1;
}

/* Alas, with timeout socket operations are not restartable.
 * Compare this to poll().
 */
static inline int sock_intr_errno(long timeo)
{
	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
}

static __inline__ void
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
{
	if (sk->rcvtstamp)
		put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(skb->stamp), &skb->stamp);
	else
		sk->stamp = skb->stamp;
}

/* 
 *	Enable debug/info messages 
 */

#if 0
#define NETDEBUG(x)	do { } while (0)
#else
#define NETDEBUG(x)	do { x; } while (0)
#endif

/*
 * Macros for sleeping on a socket. Use them like this:
 *
 * SOCK_SLEEP_PRE(sk)
 * if (condition)
 * 	schedule();
 * SOCK_SLEEP_POST(sk)
 *
 */

#define SOCK_SLEEP_PRE(sk) 	{ struct task_struct *tsk = current; \
				DECLARE_WAITQUEUE(wait, tsk); \
				tsk->state = TASK_INTERRUPTIBLE; \
				add_wait_queue((sk)->sleep, &wait); \
				release_sock(sk);

#define SOCK_SLEEP_POST(sk)	tsk->state = TASK_RUNNING; \
				remove_wait_queue((sk)->sleep, &wait); \
				lock_sock(sk); \
				}

extern __u32 sysctl_wmem_max;
extern __u32 sysctl_rmem_max;

#endif	/* _SOCK_H */