Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
/*
 * Kernel support for the ptrace() and syscall tracing interfaces.
 *
 * Copyright (C) 1999-2001 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * Derived from the x86 and Alpha versions.  Most of the code in here
 * could actually be factored into a common set of routines.
 */
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/smp_lock.h>
#include <linux/user.h>
#include <linux/security.h>

#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace_offsets.h>
#include <asm/rse.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unwind.h>
#ifdef CONFIG_PERFMON
#include <asm/perfmon.h>
#endif

/*
 * Bits in the PSR that we allow ptrace() to change:
 *	be, up, ac, mfl, mfh (the user mask; five bits total)
 *	db (debug breakpoint fault; one bit)
 *	id (instruction debug fault disable; one bit)
 *	dd (data debug fault disable; one bit)
 *	ri (restart instruction; two bits)
 *	is (instruction set; one bit)
 */
#define IPSR_WRITE_MASK \
	(IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
#define IPSR_READ_MASK	IPSR_WRITE_MASK

#define PTRACE_DEBUG	1

#if PTRACE_DEBUG
# define dprintk(format...)	printk(format)
# define inline
#else
# define dprintk(format...)
#endif

/*
 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
 * bitset where bit i is set iff the NaT bit of register i is set.
 */
unsigned long
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
{
#	define GET_BITS(first, last, unat)						\
	({										\
		unsigned long bit = ia64_unat_pos(&pt->r##first);			\
		unsigned long mask = ((1UL << (last - first + 1)) - 1) << first;	\
		(ia64_rotl(unat, first) >> bit) & mask;					\
	})
	unsigned long val;

	val  = GET_BITS( 1,  3, scratch_unat);
	val |= GET_BITS(12, 15, scratch_unat);
	val |= GET_BITS( 8, 11, scratch_unat);
	val |= GET_BITS(16, 31, scratch_unat);
	return val;

#	undef GET_BITS
}

/*
 * Set the NaT bits for the scratch registers according to NAT and
 * return the resulting unat (assuming the scratch registers are
 * stored in PT).
 */
unsigned long
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
{
	unsigned long scratch_unat;

#	define PUT_BITS(first, last, nat)					\
	({									\
		unsigned long bit = ia64_unat_pos(&pt->r##first);		\
		unsigned long mask = ((1UL << (last - first + 1)) - 1) << bit;	\
		(ia64_rotr(nat, first) << bit) & mask;				\
	})
	scratch_unat  = PUT_BITS( 1,  3, nat);
	scratch_unat |= PUT_BITS(12, 15, nat);
	scratch_unat |= PUT_BITS( 8, 11, nat);
	scratch_unat |= PUT_BITS(16, 31, nat);

	return scratch_unat;

#	undef PUT_BITS
}

#define IA64_MLX_TEMPLATE	0x2
#define IA64_MOVL_OPCODE	6

void
ia64_increment_ip (struct pt_regs *regs)
{
	unsigned long w0, ri = ia64_psr(regs)->ri + 1;

	if (ri > 2) {
		ri = 0;
		regs->cr_iip += 16;
	} else if (ri == 2) {
		get_user(w0, (char *) regs->cr_iip + 0);
		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
			/*
			 * rfi'ing to slot 2 of an MLX bundle causes
			 * an illegal operation fault.  We don't want
			 * that to happen...
			 */
			ri = 0;
			regs->cr_iip += 16;
		}
	}
	ia64_psr(regs)->ri = ri;
}

void
ia64_decrement_ip (struct pt_regs *regs)
{
	unsigned long w0, ri = ia64_psr(regs)->ri - 1;

	if (ia64_psr(regs)->ri == 0) {
		regs->cr_iip -= 16;
		ri = 2;
		get_user(w0, (char *) regs->cr_iip + 0);
		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
			/*
			 * rfi'ing to slot 2 of an MLX bundle causes
			 * an illegal operation fault.  We don't want
			 * that to happen...
			 */
			ri = 1;
		}
	}
	ia64_psr(regs)->ri = ri;
}

/*
 * This routine is used to read an rnat bits that are stored on the kernel backing store.
 * Since, in general, the alignment of the user and kernel are different, this is not
 * completely trivial.  In essence, we need to construct the user RNAT based on up to two
 * kernel RNAT values and/or the RNAT value saved in the child's pt_regs.
 *
 * user rbs
 *
 * +--------+ <-- lowest address
 * | slot62 |
 * +--------+
 * |  rnat  | 0x....1f8
 * +--------+
 * | slot00 | \
 * +--------+ |
 * | slot01 | > child_regs->ar_rnat
 * +--------+ |
 * | slot02 | /				kernel rbs
 * +--------+				+--------+
 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
 * +- - - - +				+--------+
 *					| slot62 |
 * +- - - - +				+--------+
 *					|  rnat	 |
 * +- - - - +				+--------+
 *   vrnat				| slot00 |
 * +- - - - +				+--------+
 *					=	 =
 *					+--------+
 *					| slot00 | \
 *					+--------+ |
 *					| slot01 | > child_stack->ar_rnat
 *					+--------+ |
 *					| slot02 | /
 *					+--------+
 *						  <--- child_stack->ar_bspstore
 *
 * The way to think of this code is as follows: bit 0 in the user rnat corresponds to some
 * bit N (0 <= N <= 62) in one of the kernel rnat value.  The kernel rnat value holding
 * this bit is stored in variable rnat0.  rnat1 is loaded with the kernel rnat value that
 * form the upper bits of the user rnat value.
 *
 * Boundary cases:
 *
 * o when reading the rnat "below" the first rnat slot on the kernel backing store,
 *   rnat0/rnat1 are set to 0 and the low order bits are merged in from pt->ar_rnat.
 *
 * o when reading the rnat "above" the last rnat slot on the kernel backing store,
 *   rnat0/rnat1 gets its value from sw->ar_rnat.
 */
static unsigned long
get_rnat (struct pt_regs *pt, struct switch_stack *sw,
	  unsigned long *krbs, unsigned long *urnat_addr)
{
	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr, kmask = ~0UL;
	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
	long num_regs;

	kbsp = (unsigned long *) sw->ar_bspstore;
	ubspstore = (unsigned long *) pt->ar_bspstore;
	/*
	 * First, figure out which bit number slot 0 in user-land maps
	 * to in the kernel rnat.  Do this by figuring out how many
	 * register slots we're beyond the user's backingstore and
	 * then computing the equivalent address in kernel space.
	 */
	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
	shift = ia64_rse_slot_num(slot0_kaddr);
	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
	rnat0_kaddr = rnat1_kaddr - 64;

	if (ubspstore + 63 > urnat_addr) {
		/* some bits need to be merged in from pt->ar_rnat */
		kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);
		urnat = (pt->ar_rnat & ~kmask);
	}
	if (rnat0_kaddr >= kbsp) {
		rnat0 = sw->ar_rnat;
	} else if (rnat0_kaddr > krbs) {
		rnat0 = *rnat0_kaddr;
	}
	if (rnat1_kaddr >= kbsp) {
		rnat1 = sw->ar_rnat;
	} else if (rnat1_kaddr > krbs) {
		rnat1 = *rnat1_kaddr;
	}
	urnat |= ((rnat1 << (63 - shift)) | (rnat0 >> shift)) & kmask;
	return urnat;
}

/*
 * The reverse of get_rnat.
 */
static void
put_rnat (struct pt_regs *pt, struct switch_stack *sw,
	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat)
{
	unsigned long rnat0 = 0, rnat1 = 0, rnat = 0, *slot0_kaddr, kmask = ~0UL, mask;
	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
	long num_regs;

	kbsp = (unsigned long *) sw->ar_bspstore;
	ubspstore = (unsigned long *) pt->ar_bspstore;
	/*
	 * First, figure out which bit number slot 0 in user-land maps
	 * to in the kernel rnat.  Do this by figuring out how many
	 * register slots we're beyond the user's backingstore and
	 * then computing the equivalent address in kernel space.
	 */
	num_regs = (long) ia64_rse_num_regs(ubspstore, urnat_addr + 1);
	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
	shift = ia64_rse_slot_num(slot0_kaddr);
	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
	rnat0_kaddr = rnat1_kaddr - 64;

	if (ubspstore + 63 > urnat_addr) {
		/* some bits need to be place in pt->ar_rnat: */
		kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);
		pt->ar_rnat = (pt->ar_rnat & kmask) | (rnat & ~kmask);
	}
	/*
	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
	 * rnat slot is ignored. so we don't have to clear it here.
	 */
	rnat0 = (urnat << shift);
	mask = ~0UL << shift;
	if (rnat0_kaddr >= kbsp) {
		sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat0 & mask);
	} else if (rnat0_kaddr > krbs) {
		*rnat0_kaddr = ((*rnat0_kaddr & ~mask) | (rnat0 & mask));
	}

	rnat1 = (urnat >> (63 - shift));
	mask = ~0UL >> (63 - shift);
	if (rnat1_kaddr >= kbsp) {
		sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat1 & mask);
	} else if (rnat1_kaddr > krbs) {
		*rnat1_kaddr = ((*rnat1_kaddr & ~mask) | (rnat1 & mask));
	}
}

/*
 * Read a word from the user-level backing store of task CHILD.  ADDR is the user-level
 * address to read the word from, VAL a pointer to the return value, and USER_BSP gives
 * the end of the user-level backing store (i.e., it's the address that would be in ar.bsp
 * after the user executed a "cover" instruction).
 *
 * This routine takes care of accessing the kernel register backing store for those
 * registers that got spilled there.  It also takes care of calculating the appropriate
 * RNaT collection words.
 */
long
ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,
	   unsigned long addr, long *val)
{
	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
	struct pt_regs *child_regs;
	size_t copied;
	long ret;

	urbs_end = (long *) user_rbs_end;
	laddr = (unsigned long *) addr;
	child_regs = ia64_task_regs(child);
	bspstore = (unsigned long *) child_regs->ar_bspstore;
	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
	if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) {
		/*
		 * Attempt to read the RBS in an area that's actually on the kernel RBS =>
		 * read the corresponding bits in the kernel RBS.
		 */
		rnat_addr = ia64_rse_rnat_addr(laddr);
		ret = get_rnat(child_regs, child_stack, krbs, rnat_addr);

		if (laddr == rnat_addr) {
			/* return NaT collection word itself */
			*val = ret;
			return 0;
		}

		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
			/*
			 * It is implementation dependent whether the data portion of a
			 * NaT value gets saved on a st8.spill or RSE spill (e.g., see
			 * EAS 2.6, 4.4.4.6 Register Spill and Fill).  To get consistent
			 * behavior across all possible IA-64 implementations, we return
			 * zero in this case.
			 */
			*val = 0;
			return 0;
		}

		if (laddr < urbs_end) {
			/* the desired word is on the kernel RBS and is not a NaT */
			regnum = ia64_rse_num_regs(bspstore, laddr);
			*val = *ia64_rse_skip_regs(krbs, regnum);
			return 0;
		}
	}
	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
	if (copied != sizeof(ret))
		return -EIO;
	*val = ret;
	return 0;
}

long
ia64_poke (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,
	   unsigned long addr, long val)
{
	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end = (long *) user_rbs_end;
	struct pt_regs *child_regs;

	laddr = (unsigned long *) addr;
	child_regs = ia64_task_regs(child);
	bspstore = (unsigned long *) child_regs->ar_bspstore;
	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
	if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) {
		/*
		 * Attempt to write the RBS in an area that's actually on the kernel RBS
		 * => write the corresponding bits in the kernel RBS.
		 */
		if (ia64_rse_is_rnat_slot(laddr))
			put_rnat(child_regs, child_stack, krbs, laddr, val);
		else {
			if (laddr < urbs_end) {
				regnum = ia64_rse_num_regs(bspstore, laddr);
				*ia64_rse_skip_regs(krbs, regnum) = val;
			}
		}
	} else if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) {
		return -EIO;
	}
	return 0;
}

/*
 * Calculate the address of the end of the user-level register backing store.  This is the
 * address that would have been stored in ar.bsp if the user had executed a "cover"
 * instruction right before entering the kernel.  If CFMP is not NULL, it is used to
 * return the "current frame mask" that was active at the time the kernel was entered.
 */
unsigned long
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned long *cfmp)
{
	unsigned long *krbs, *bspstore, cfm;
	struct unw_frame_info info;
	long ndirty;

	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
	bspstore = (unsigned long *) pt->ar_bspstore;
	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
	cfm = pt->cr_ifs & ~(1UL << 63);

	if ((long) pt->cr_ifs >= 0) {
		/*
		 * If bit 63 of cr.ifs is cleared, the kernel was entered via a system
		 * call and we need to recover the CFM that existed on entry to the
		 * kernel by unwinding the kernel stack.
		 */
		unw_init_from_blocked_task(&info, child);
		if (unw_unwind_to_user(&info) == 0) {
			unw_get_cfm(&info, &cfm);
			ndirty += (cfm & 0x7f);
		}
	}
	if (cfmp)
		*cfmp = cfm;
	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
}

/*
 * Synchronize (i.e, write) the RSE backing store living in kernel space to the VM of the
 * CHILD task.  SW and PT are the pointers to the switch_stack and pt_regs structures,
 * respectively.  USER_RBS_END is the user-level address at which the backing store ends.
 */
long
ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
		    unsigned long user_rbs_start, unsigned long user_rbs_end)
{
	unsigned long addr, val;
	long ret;

	/* now copy word for word from kernel rbs to user rbs: */
	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
		if (ret < 0)
			return ret;
		if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
			return -EIO;
	}
	return 0;
}

/*
 * Simulate user-level "flushrs".  Note: we can't just add pt->loadrs>>16 to
 * pt->ar_bspstore because the kernel backing store and the user-level backing store may
 * have different alignments (and therefore a different number of intervening rnat slots).
 */
static void
user_flushrs (struct task_struct *task, struct pt_regs *pt)
{
	unsigned long *krbs;
	long ndirty;

	krbs = (unsigned long *) task + IA64_RBS_OFFSET/8;
	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));

	pt->ar_bspstore = (unsigned long) ia64_rse_skip_regs((unsigned long *) pt->ar_bspstore,
							     ndirty);
	pt->loadrs = 0;
}

/*
 * Synchronize the RSE backing store of CHILD and all tasks that share the address space
 * with it.  CHILD_URBS_END is the address of the end of the register backing store of
 * CHILD.  If MAKE_WRITABLE is set, a user-level "flushrs" is simulated such that the VM
 * can be written via ptrace() and the tasks will pick up the newly written values.  It
 * would be OK to unconditionally simulate a "flushrs", but this would be more intrusive
 * than strictly necessary (e.g., it would make it impossible to obtain the original value
 * of ar.bspstore).
 */
static void
threads_sync_user_rbs (struct task_struct *child, unsigned long child_urbs_end, int make_writable)
{
	struct switch_stack *sw;
	unsigned long urbs_end;
	struct task_struct *g, *p;
	struct mm_struct *mm;
	struct pt_regs *pt;
	long multi_threaded;

	task_lock(child);
	{
		mm = child->mm;
		multi_threaded = mm && (atomic_read(&mm->mm_users) > 1);
	}
	task_unlock(child);

	if (!multi_threaded) {
		sw = (struct switch_stack *) (child->thread.ksp + 16);
		pt = ia64_task_regs(child);
		ia64_sync_user_rbs(child, sw, pt->ar_bspstore, child_urbs_end);
		if (make_writable)
			user_flushrs(child, pt);
	} else {
		read_lock(&tasklist_lock);
		{
			do_each_thread(g, p) {
				if (p->mm == mm && p->state != TASK_RUNNING) {
					sw = (struct switch_stack *) (p->thread.ksp + 16);
					pt = ia64_task_regs(p);
					urbs_end = ia64_get_user_rbs_end(p, pt, NULL);
					ia64_sync_user_rbs(p, sw, pt->ar_bspstore, urbs_end);
					if (make_writable)
						user_flushrs(p, pt);
				}
			} while_each_thread(g, p);
		}
		read_unlock(&tasklist_lock);
	}
	child->thread.flags |= IA64_THREAD_KRBS_SYNCED;	/* set the flag in the child thread only */
}

/*
 * Write f32-f127 back to task->thread.fph if it has been modified.
 */
inline void
ia64_flush_fph (struct task_struct *task)
{
	struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
#ifdef CONFIG_SMP
	struct task_struct *fpu_owner = current;
#else
	struct task_struct *fpu_owner = ia64_get_fpu_owner();
#endif

	if (task == fpu_owner && psr->mfh) {
		psr->mfh = 0;
		ia64_save_fpu(&task->thread.fph[0]);
		task->thread.flags |= IA64_THREAD_FPH_VALID;
	}
}

/*
 * Sync the fph state of the task so that it can be manipulated
 * through thread.fph.  If necessary, f32-f127 are written back to
 * thread.fph or, if the fph state hasn't been used before, thread.fph
 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 * ensure that the task picks up the state from thread.fph when it
 * executes again.
 */
void
ia64_sync_fph (struct task_struct *task)
{
	struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));

	ia64_flush_fph(task);
	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
		task->thread.flags |= IA64_THREAD_FPH_VALID;
		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
	}
#ifndef CONFIG_SMP
	if (ia64_get_fpu_owner() == task)
		ia64_set_fpu_owner(0);
#endif
	psr->dfh = 1;
}

static int
access_fr (struct unw_frame_info *info, int regnum, int hi, unsigned long *data, int write_access)
{
	struct ia64_fpreg fpval;
	int ret;

	ret = unw_get_fr(info, regnum, &fpval);
	if (ret < 0)
		return ret;

	if (write_access) {
		fpval.u.bits[hi] = *data;
		ret = unw_set_fr(info, regnum, fpval);
	} else
		*data = fpval.u.bits[hi];
	return ret;
}

static int
access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data, int write_access)
{
	unsigned long *ptr, regnum, urbs_end, rnat_addr;
	struct switch_stack *sw;
	struct unw_frame_info info;
	struct pt_regs *pt;

	pt = ia64_task_regs(child);
	sw = (struct switch_stack *) (child->thread.ksp + 16);

	if ((addr & 0x7) != 0) {
		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
		return -1;
	}

	if (addr < PT_F127 + 16) {
		/* accessing fph */
		if (write_access)
			ia64_sync_fph(child);
		else
			ia64_flush_fph(child);
		ptr = (unsigned long *) ((unsigned long) &child->thread.fph + addr);
	} else if (addr >= PT_F10 && addr < PT_F15 + 16) {
		/* scratch registers untouched by kernel (saved in switch_stack) */
		ptr = (unsigned long *) ((long) sw + addr - PT_NAT_BITS);
	} else if (addr < PT_AR_LC + 8) {
		/* preserved state: */
		unsigned long nat_bits, scratch_unat, dummy = 0;
		struct unw_frame_info info;
		char nat = 0;
		int ret;

		unw_init_from_blocked_task(&info, child);
		if (unw_unwind_to_user(&info) < 0)
			return -1;

		switch (addr) {
		      case PT_NAT_BITS:
			if (write_access) {
				nat_bits = *data;
				scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
				if (unw_set_ar(&info, UNW_AR_UNAT, scratch_unat) < 0) {
					dprintk("ptrace: failed to set ar.unat\n");
					return -1;
				}
				for (regnum = 4; regnum <= 7; ++regnum) {
					unw_get_gr(&info, regnum, &dummy, &nat);
					unw_set_gr(&info, regnum, dummy, (nat_bits >> regnum) & 1);
				}
			} else {
				if (unw_get_ar(&info, UNW_AR_UNAT, &scratch_unat) < 0) {
					dprintk("ptrace: failed to read ar.unat\n");
					return -1;
				}
				nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
				for (regnum = 4; regnum <= 7; ++regnum) {
					unw_get_gr(&info, regnum, &dummy, &nat);
					nat_bits |= (nat != 0) << regnum;
				}
				*data = nat_bits;
			}
			return 0;

		      case PT_R4: case PT_R5: case PT_R6: case PT_R7:
			if (write_access) {
				/* read NaT bit first: */
				ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, data, &nat);
				if (ret < 0)
					return ret;
			}
			return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, &nat,
					     write_access);

		      case PT_B1: case PT_B2: case PT_B3: case PT_B4: case PT_B5:
			return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, write_access);

		      case PT_AR_EC:
			return unw_access_ar(&info, UNW_AR_EC, data, write_access);

		      case PT_AR_LC:
			return unw_access_ar(&info, UNW_AR_LC, data, write_access);

		      default:
			if (addr >= PT_F2 && addr < PT_F5 + 16)
				return access_fr(&info, (addr - PT_F2)/16 + 2, (addr & 8) != 0,
						 data, write_access);
			else if (addr >= PT_F16 && addr < PT_F31 + 16)
				return access_fr(&info, (addr - PT_F16)/16 + 16, (addr & 8) != 0,
						 data, write_access);
			else {
				dprintk("ptrace: rejecting access to register address 0x%lx\n",
					addr);
				return -1;
			}
		}
	} else if (addr < PT_F9+16) {
		/* scratch state */
		switch (addr) {
		      case PT_AR_BSP:
			/*
			 * By convention, we use PT_AR_BSP to refer to the end of the user-level
			 * backing store.  Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) to get
			 * the real value of ar.bsp at the time the kernel was entered.
			 */
			urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
			if (write_access) {
				if (*data != urbs_end) {
					if (ia64_sync_user_rbs(child, sw,
							       pt->ar_bspstore, urbs_end) < 0)
						return -1;
					/* simulate user-level write of ar.bsp: */
					pt->loadrs = 0;
					pt->ar_bspstore = *data;
				}
			} else
				*data = urbs_end;
			return 0;

		      case PT_CFM:
			if ((long) pt->cr_ifs < 0) {
				if (write_access)
					pt->cr_ifs = ((pt->cr_ifs & ~0x3fffffffffUL)
						      | (*data & 0x3fffffffffUL));
				else
					*data = pt->cr_ifs & 0x3fffffffffUL;
			} else {
				/* kernel was entered through a system call */
				unsigned long cfm;

				unw_init_from_blocked_task(&info, child);
				if (unw_unwind_to_user(&info) < 0)
					return -1;

				unw_get_cfm(&info, &cfm);
				if (write_access)
					unw_set_cfm(&info, ((cfm & ~0x3fffffffffU)
							    | (*data & 0x3fffffffffUL)));
				else
					*data = cfm;
			}
			return 0;

		      case PT_CR_IPSR:
			if (write_access)
				pt->cr_ipsr = ((*data & IPSR_WRITE_MASK)
					       | (pt->cr_ipsr & ~IPSR_WRITE_MASK));
			else
				*data = (pt->cr_ipsr & IPSR_READ_MASK);
			return 0;

		      case PT_AR_RNAT:
			urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
			rnat_addr = (long) ia64_rse_rnat_addr((long *) urbs_end);
			if (write_access)
				return ia64_poke(child, sw, urbs_end, rnat_addr, *data);
			else
				return ia64_peek(child, sw, urbs_end, rnat_addr, data);

				   case PT_R1:  case PT_R2:  case PT_R3:
		      case PT_R8:  case PT_R9:  case PT_R10: case PT_R11:
		      case PT_R12: case PT_R13: case PT_R14: case PT_R15:
		      case PT_R16: case PT_R17: case PT_R18: case PT_R19:
		      case PT_R20: case PT_R21: case PT_R22: case PT_R23:
		      case PT_R24: case PT_R25: case PT_R26: case PT_R27:
		      case PT_R28: case PT_R29: case PT_R30: case PT_R31:
		      case PT_B0:  case PT_B6:  case PT_B7:
		      case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8:
		      case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8:
		      case PT_AR_BSPSTORE:
		      case PT_AR_RSC: case PT_AR_UNAT: case PT_AR_PFS:
		      case PT_AR_CCV: case PT_AR_FPSR: case PT_CR_IIP: case PT_PR:
			/* scratch register */
			ptr = (unsigned long *) ((long) pt + addr - PT_CR_IPSR);
			break;

		      default:
			/* disallow accessing anything else... */
			dprintk("ptrace: rejecting access to register address 0x%lx\n",
				addr);
			return -1;
		}
	} else {
		/* access debug registers */

		if (addr >= PT_IBR) {
			regnum = (addr - PT_IBR) >> 3;
			ptr = &child->thread.ibr[0];
		} else {
			regnum = (addr - PT_DBR) >> 3;
			ptr = &child->thread.dbr[0];
		}

		if (regnum >= 8) {
			dprintk("ptrace: rejecting access to register address 0x%lx\n", addr);
			return -1;
		}
#ifdef CONFIG_PERFMON
		/* 
		 * Check if debug registers are used 
		 * by perfmon. This test must be done once we know that we can
		 * do the operation, i.e. the arguments are all valid, but before
		 * we start modifying the state.
		 *
		 * Perfmon needs to keep a count of how many processes are
		 * trying to modify the debug registers for system wide monitoring
		 * sessions.
		 *
		 * We also include read access here, because they may cause 
		 * the PMU-installed debug register state (dbr[], ibr[]) to
		 * be reset. The two arrays are also used by perfmon, but
		 * we do not use IA64_THREAD_DBG_VALID. The registers are restored
		 * by the PMU context switch code.
		 */
		if (pfm_use_debug_registers(child)) return -1;
#endif

		if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
			child->thread.flags |= IA64_THREAD_DBG_VALID;
			memset(child->thread.dbr, 0, sizeof(child->thread.dbr));
			memset(child->thread.ibr, 0, sizeof(child->thread.ibr));
		}

		ptr += regnum;

		if (write_access)
			/* don't let the user set kernel-level breakpoints... */
			*ptr = *data & ~(7UL << 56);
		else
			*data = *ptr;
		return 0;
	}
	if (write_access)
		*ptr = *data;
	else
		*data = *ptr;
	return 0;
}

static long
ptrace_getregs (struct task_struct *child, struct pt_all_user_regs *ppr)
{
	struct switch_stack *sw;
	struct pt_regs *pt;
	long ret, retval;
	struct unw_frame_info info;
	char nat = 0;
	int i;

	retval = verify_area(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs));
	if (retval != 0) {
		return -EIO;
	}

	pt = ia64_task_regs(child);
	sw = (struct switch_stack *) (child->thread.ksp + 16);
	unw_init_from_blocked_task(&info, child);
	if (unw_unwind_to_user(&info) < 0) {
		return -EIO;
	}

	if (((unsigned long) ppr & 0x7) != 0) {
		dprintk("ptrace:unaligned register address %p\n", ppr);
		return -EIO;
	}

	retval = 0;

	/* control regs */

	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
	retval |= access_uarea(child, PT_CR_IPSR, &ppr->cr_ipsr, 0);

	/* app regs */

	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);

	retval |= access_uarea(child, PT_AR_EC, &ppr->ar[PT_AUR_EC], 0);
	retval |= access_uarea(child, PT_AR_LC, &ppr->ar[PT_AUR_LC], 0);
	retval |= access_uarea(child, PT_AR_RNAT, &ppr->ar[PT_AUR_RNAT], 0);
	retval |= access_uarea(child, PT_AR_BSP, &ppr->ar[PT_AUR_BSP], 0);
	retval |= access_uarea(child, PT_CFM, &ppr->cfm, 0);

	/* gr1-gr3 */

	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long) * 3);

	/* gr4-gr7 */

	for (i = 4; i < 8; i++) {
		retval |= unw_access_gr(&info, i, &ppr->gr[i], &nat, 0);
	}

	/* gr8-gr11 */

	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);

	/* gr12-gr15 */

	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 4);

	/* gr16-gr31 */

	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);

	/* b0 */

	retval |= __put_user(pt->b0, &ppr->br[0]);

	/* b1-b5 */

	for (i = 1; i < 6; i++) {
		retval |= unw_access_br(&info, i, &ppr->br[i], 0);
	}

	/* b6-b7 */

	retval |= __put_user(pt->b6, &ppr->br[6]);
	retval |= __put_user(pt->b7, &ppr->br[7]);

	/* fr2-fr5 */

	for (i = 2; i < 6; i++) {
		retval |= access_fr(&info, i, 0, (unsigned long *) &ppr->fr[i], 0);
		retval |= access_fr(&info, i, 1, (unsigned long *) &ppr->fr[i] + 1, 0);
	}

	/* fr6-fr9 */

	retval |= __copy_to_user(&ppr->fr[6], &pt->f6, sizeof(struct ia64_fpreg) * 4);

	/* fp scratch regs(10-15) */

	retval |= __copy_to_user(&ppr->fr[10], &sw->f10, sizeof(struct ia64_fpreg) * 6);

	/* fr16-fr31 */

	for (i = 16; i < 32; i++) {
		retval |= access_fr(&info, i, 0, (unsigned long *) &ppr->fr[i], 0);
		retval |= access_fr(&info, i, 1, (unsigned long *) &ppr->fr[i] + 1, 0);
	}

	/* fph */

	ia64_flush_fph(child);
	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, sizeof(ppr->fr[32]) * 96);

	/*  preds */

	retval |= __put_user(pt->pr, &ppr->pr);

	/* nat bits */

	retval |= access_uarea(child, PT_NAT_BITS, &ppr->nat, 0);

	ret = retval ? -EIO : 0;
	return ret;
}

static long
ptrace_setregs (struct task_struct *child, struct pt_all_user_regs *ppr)
{
	struct switch_stack *sw;
	struct pt_regs *pt;
	long ret, retval;
	struct unw_frame_info info;
	char nat = 0;
	int i;

	retval = verify_area(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs));
	if (retval != 0) {
		return -EIO;
	}

	pt = ia64_task_regs(child);
	sw = (struct switch_stack *) (child->thread.ksp + 16);
	unw_init_from_blocked_task(&info, child);
	if (unw_unwind_to_user(&info) < 0) {
		return -EIO;
	}

	if (((unsigned long) ppr & 0x7) != 0) {
		dprintk("ptrace:unaligned register address %p\n", ppr);
		return -EIO;
	}

	retval = 0;

	/* control regs */

	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
	retval |= access_uarea(child, PT_CR_IPSR, &ppr->cr_ipsr, 1);

	/* app regs */

	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
	retval |= __get_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);

	retval |= access_uarea(child, PT_AR_EC, &ppr->ar[PT_AUR_EC], 1);
	retval |= access_uarea(child, PT_AR_LC, &ppr->ar[PT_AUR_LC], 1);
	retval |= access_uarea(child, PT_AR_RNAT, &ppr->ar[PT_AUR_RNAT], 1);
	retval |= access_uarea(child, PT_AR_BSP, &ppr->ar[PT_AUR_BSP], 1);
	retval |= access_uarea(child, PT_CFM, &ppr->cfm, 1);

	/* gr1-gr3 */

	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long) * 3);

	/* gr4-gr7 */

	for (i = 4; i < 8; i++) {
		long ret = unw_get_gr(&info, i, &ppr->gr[i], &nat);
		if (ret < 0) {
			return ret;
		}
		retval |= unw_access_gr(&info, i, &ppr->gr[i], &nat, 1);
	}

	/* gr8-gr11 */

	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);

	/* gr12-gr15 */

	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 4);

	/* gr16-gr31 */

	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);

	/* b0 */

	retval |= __get_user(pt->b0, &ppr->br[0]);

	/* b1-b5 */

	for (i = 1; i < 6; i++) {
		retval |= unw_access_br(&info, i, &ppr->br[i], 1);
	}

	/* b6-b7 */

	retval |= __get_user(pt->b6, &ppr->br[6]);
	retval |= __get_user(pt->b7, &ppr->br[7]);

	/* fr2-fr5 */

	for (i = 2; i < 6; i++) {
		retval |= access_fr(&info, i, 0, (unsigned long *) &ppr->fr[i], 1);
		retval |= access_fr(&info, i, 1, (unsigned long *) &ppr->fr[i] + 1, 1);
	}

	/* fr6-fr9 */

	retval |= __copy_from_user(&pt->f6, &ppr->fr[6], sizeof(ppr->fr[6]) * 4);

	/* fp scratch regs(10-15) */

	retval |= __copy_from_user(&sw->f10, &ppr->fr[10], sizeof(ppr->fr[10]) * 6);

	/* fr16-fr31 */

	for (i = 16; i < 32; i++) {
		retval |= access_fr(&info, i, 0, (unsigned long *) &ppr->fr[i], 1);
		retval |= access_fr(&info, i, 1, (unsigned long *) &ppr->fr[i] + 1, 1);
	}

	/* fph */

	ia64_sync_fph(child);
	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], sizeof(ppr->fr[32]) * 96);

	/* preds */

	retval |= __get_user(pt->pr, &ppr->pr);

	/* nat bits */

	retval |= access_uarea(child, PT_NAT_BITS, &ppr->nat, 1);

	ret = retval ? -EIO : 0;
	return ret;
}

/*
 * Called by kernel/ptrace.c when detaching..
 *
 * Make sure the single step bit is not set.
 */
void
ptrace_disable (struct task_struct *child)
{
	struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child));

	/* make sure the single step/take-branch tra bits are not set: */
	child_psr->ss = 0;
	child_psr->tb = 0;

	/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
	child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;
}

asmlinkage long
sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
	    long arg4, long arg5, long arg6, long arg7, long stack)
{
	struct pt_regs *pt, *regs = (struct pt_regs *) &stack;
	unsigned long urbs_end;
	struct task_struct *child;
	struct switch_stack *sw;
	long ret;

	lock_kernel();
	ret = -EPERM;
	if (request == PTRACE_TRACEME) {
		/* are we already being traced? */
		if (current->ptrace & PT_PTRACED)
			goto out;
		ret = security_ops->ptrace(current->parent, current);
		if (ret)
			goto out;
		current->ptrace |= PT_PTRACED;
		ret = 0;
		goto out;
	}

	ret = -ESRCH;
	read_lock(&tasklist_lock);
	{
		child = find_task_by_pid(pid);
		if (child)
			get_task_struct(child);
	}
	read_unlock(&tasklist_lock);
	if (!child)
		goto out;
	ret = -EPERM;
	if (pid == 1)		/* no messing around with init! */
		goto out_tsk;

	if (request == PTRACE_ATTACH) {
		ret = ptrace_attach(child);
		goto out_tsk;
	}

	ret = ptrace_check_attach(child, request == PTRACE_KILL);
	if (ret < 0)
		goto out_tsk;

	pt = ia64_task_regs(child);
	sw = (struct switch_stack *) (child->thread.ksp + 16);

	switch (request) {
	      case PTRACE_PEEKTEXT:
	      case PTRACE_PEEKDATA:		/* read word at location addr */
		urbs_end = ia64_get_user_rbs_end(child, pt, NULL);

		if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED))
			threads_sync_user_rbs(child, urbs_end, 0);

		ret = ia64_peek(child, sw, urbs_end, addr, &data);
		if (ret == 0) {
			ret = data;
			regs->r8 = 0;	/* ensure "ret" is not mistaken as an error code */
		}
		goto out_tsk;

	      case PTRACE_POKETEXT:
	      case PTRACE_POKEDATA:		/* write the word at location addr */
		urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
		if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED))
			threads_sync_user_rbs(child, urbs_end, 1);

		ret = ia64_poke(child, sw, urbs_end, addr, data);
		goto out_tsk;

	      case PTRACE_PEEKUSR:		/* read the word at addr in the USER area */
		if (access_uarea(child, addr, &data, 0) < 0) {
			ret = -EIO;
			goto out_tsk;
		}
		ret = data;
		regs->r8 = 0;	/* ensure "ret" is not mistaken as an error code */
		goto out_tsk;

	      case PTRACE_POKEUSR:	      /* write the word at addr in the USER area */
		if (access_uarea(child, addr, &data, 1) < 0) {
			ret = -EIO;
			goto out_tsk;
		}
		ret = 0;
		goto out_tsk;

	      case PTRACE_GETSIGINFO:
		ret = -EIO;
		if (!access_ok(VERIFY_WRITE, data, sizeof (siginfo_t)) || !child->thread.siginfo)
			goto out_tsk;
		ret = copy_siginfo_to_user((siginfo_t *) data, child->thread.siginfo);
		goto out_tsk;

	      case PTRACE_SETSIGINFO:
		ret = -EIO;
		if (!access_ok(VERIFY_READ, data, sizeof (siginfo_t))
		    || child->thread.siginfo == 0)
			goto out_tsk;
		ret = copy_siginfo_from_user(child->thread.siginfo, (siginfo_t *) data);
		goto out_tsk;

	      case PTRACE_SYSCALL:	/* continue and stop at next (return from) syscall */
	      case PTRACE_CONT:		/* restart after signal. */
		ret = -EIO;
		if (data > _NSIG)
			goto out_tsk;
		if (request == PTRACE_SYSCALL)
			set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
		else
			clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
		child->exit_code = data;

		/* make sure the single step/taken-branch trap bits are not set: */
		ia64_psr(pt)->ss = 0;
		ia64_psr(pt)->tb = 0;

		/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
		child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;

		wake_up_process(child);
		ret = 0;
		goto out_tsk;

	      case PTRACE_KILL:
		/*
		 * Make the child exit.  Best I can do is send it a
		 * sigkill.  Perhaps it should be put in the status
		 * that it wants to exit.
		 */
		if (child->state == TASK_ZOMBIE)		/* already dead */
			goto out_tsk;
		child->exit_code = SIGKILL;

		/* make sure the single step/take-branch tra bits are not set: */
		ia64_psr(pt)->ss = 0;
		ia64_psr(pt)->tb = 0;

		/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
		child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;

		wake_up_process(child);
		ret = 0;
		goto out_tsk;

	      case PTRACE_SINGLESTEP:		/* let child execute for one instruction */
	      case PTRACE_SINGLEBLOCK:
		ret = -EIO;
		if (data > _NSIG)
			goto out_tsk;

		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
		if (request == PTRACE_SINGLESTEP) {
			ia64_psr(pt)->ss = 1;
		} else {
			ia64_psr(pt)->tb = 1;
		}
		child->exit_code = data;

		/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
		child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;

		/* give it a chance to run. */
		wake_up_process(child);
		ret = 0;
		goto out_tsk;

	      case PTRACE_DETACH:		/* detach a process that was attached. */
		ret = ptrace_detach(child, data);
		goto out_tsk;

	      case PTRACE_GETREGS:
		ret = ptrace_getregs(child, (struct pt_all_user_regs*) data);
		goto out_tsk;

	      case PTRACE_SETREGS:
		ret = ptrace_setregs(child, (struct pt_all_user_regs*) data);
		goto out_tsk;

	      case PTRACE_SETOPTIONS:
		if (data & PTRACE_O_TRACESYSGOOD)
			child->ptrace |= PT_TRACESYSGOOD;
		else
			child->ptrace &= ~PT_TRACESYSGOOD;
		ret = 0;
		break;

	      default:
		ret = -EIO;
		goto out_tsk;
	}
  out_tsk:
	put_task_struct(child);
  out:
	unlock_kernel();
	return ret;
}

void
syscall_trace (void)
{
	if (!test_thread_flag(TIF_SYSCALL_TRACE))
		return;
	if (!(current->ptrace & PT_PTRACED))
		return;
	/*
	 * The 0x80 provides a way for the tracing parent to distinguish between a syscall
	 * stop and SIGTRAP delivery.
	 */
	current->exit_code = SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
					? 0x80 : 0);
	set_current_state(TASK_STOPPED);
	notify_parent(current, SIGCHLD);
	schedule();
	/*
	 * This isn't the same as continuing with a signal, but it
	 * will do for normal use.  strace only continues with a
	 * signal if the stopping signal is not SIGTRAP.  -brl
	 */
	if (current->exit_code) {
		send_sig(current->exit_code, current, 1);
		current->exit_code = 0;
	}
}