Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
 * Copyright (C) 2014 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#ifndef __LINUX_MTD_SPI_NOR_H
#define __LINUX_MTD_SPI_NOR_H

#include <linux/bitops.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>

/*
 * Manufacturer IDs
 *
 * The first byte returned from the flash after sending opcode SPINOR_OP_RDID.
 * Sometimes these are the same as CFI IDs, but sometimes they aren't.
 */
#define SNOR_MFR_ATMEL		CFI_MFR_ATMEL
#define SNOR_MFR_GIGADEVICE	0xc8
#define SNOR_MFR_INTEL		CFI_MFR_INTEL
#define SNOR_MFR_MICRON		CFI_MFR_ST /* ST Micro <--> Micron */
#define SNOR_MFR_MACRONIX	CFI_MFR_MACRONIX
#define SNOR_MFR_SPANSION	CFI_MFR_AMD
#define SNOR_MFR_SST		CFI_MFR_SST
#define SNOR_MFR_WINBOND	0xef /* Also used by some Spansion */

/*
 * Note on opcode nomenclature: some opcodes have a format like
 * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number
 * of I/O lines used for the opcode, address, and data (respectively). The
 * FUNCTION has an optional suffix of '4', to represent an opcode which
 * requires a 4-byte (32-bit) address.
 */

/* Flash opcodes. */
#define SPINOR_OP_WREN		0x06	/* Write enable */
#define SPINOR_OP_RDSR		0x05	/* Read status register */
#define SPINOR_OP_WRSR		0x01	/* Write status register 1 byte */
#define SPINOR_OP_RDSR2		0x3f	/* Read status register 2 */
#define SPINOR_OP_WRSR2		0x3e	/* Write status register 2 */
#define SPINOR_OP_READ		0x03	/* Read data bytes (low frequency) */
#define SPINOR_OP_READ_FAST	0x0b	/* Read data bytes (high frequency) */
#define SPINOR_OP_READ_1_1_2	0x3b	/* Read data bytes (Dual Output SPI) */
#define SPINOR_OP_READ_1_2_2	0xbb	/* Read data bytes (Dual I/O SPI) */
#define SPINOR_OP_READ_1_1_4	0x6b	/* Read data bytes (Quad Output SPI) */
#define SPINOR_OP_READ_1_4_4	0xeb	/* Read data bytes (Quad I/O SPI) */
#define SPINOR_OP_PP		0x02	/* Page program (up to 256 bytes) */
#define SPINOR_OP_PP_1_1_4	0x32	/* Quad page program */
#define SPINOR_OP_PP_1_4_4	0x38	/* Quad page program */
#define SPINOR_OP_BE_4K		0x20	/* Erase 4KiB block */
#define SPINOR_OP_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
#define SPINOR_OP_BE_32K	0x52	/* Erase 32KiB block */
#define SPINOR_OP_CHIP_ERASE	0xc7	/* Erase whole flash chip */
#define SPINOR_OP_SE		0xd8	/* Sector erase (usually 64KiB) */
#define SPINOR_OP_RDID		0x9f	/* Read JEDEC ID */
#define SPINOR_OP_RDSFDP	0x5a	/* Read SFDP */
#define SPINOR_OP_RDCR		0x35	/* Read configuration register */
#define SPINOR_OP_RDFSR		0x70	/* Read flag status register */
#define SPINOR_OP_CLFSR		0x50	/* Clear flag status register */
#define SPINOR_OP_RDEAR		0xc8	/* Read Extended Address Register */
#define SPINOR_OP_WREAR		0xc5	/* Write Extended Address Register */

/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define SPINOR_OP_READ_4B	0x13	/* Read data bytes (low frequency) */
#define SPINOR_OP_READ_FAST_4B	0x0c	/* Read data bytes (high frequency) */
#define SPINOR_OP_READ_1_1_2_4B	0x3c	/* Read data bytes (Dual Output SPI) */
#define SPINOR_OP_READ_1_2_2_4B	0xbc	/* Read data bytes (Dual I/O SPI) */
#define SPINOR_OP_READ_1_1_4_4B	0x6c	/* Read data bytes (Quad Output SPI) */
#define SPINOR_OP_READ_1_4_4_4B	0xec	/* Read data bytes (Quad I/O SPI) */
#define SPINOR_OP_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define SPINOR_OP_PP_1_1_4_4B	0x34	/* Quad page program */
#define SPINOR_OP_PP_1_4_4_4B	0x3e	/* Quad page program */
#define SPINOR_OP_BE_4K_4B	0x21	/* Erase 4KiB block */
#define SPINOR_OP_BE_32K_4B	0x5c	/* Erase 32KiB block */
#define SPINOR_OP_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

/* Double Transfer Rate opcodes - defined in JEDEC JESD216B. */
#define SPINOR_OP_READ_1_1_1_DTR	0x0d
#define SPINOR_OP_READ_1_2_2_DTR	0xbd
#define SPINOR_OP_READ_1_4_4_DTR	0xed

#define SPINOR_OP_READ_1_1_1_DTR_4B	0x0e
#define SPINOR_OP_READ_1_2_2_DTR_4B	0xbe
#define SPINOR_OP_READ_1_4_4_DTR_4B	0xee

/* Used for SST flashes only. */
#define SPINOR_OP_BP		0x02	/* Byte program */
#define SPINOR_OP_WRDI		0x04	/* Write disable */
#define SPINOR_OP_AAI_WP	0xad	/* Auto address increment word program */

/* Used for S3AN flashes only */
#define SPINOR_OP_XSE		0x50	/* Sector erase */
#define SPINOR_OP_XPP		0x82	/* Page program */
#define SPINOR_OP_XRDSR		0xd7	/* Read status register */

#define XSR_PAGESIZE		BIT(0)	/* Page size in Po2 or Linear */
#define XSR_RDY			BIT(7)	/* Ready */


/* Used for Macronix and Winbond flashes. */
#define SPINOR_OP_EN4B		0xb7	/* Enter 4-byte mode */
#define SPINOR_OP_EX4B		0xe9	/* Exit 4-byte mode */

/* Used for Spansion flashes only. */
#define SPINOR_OP_BRWR		0x17	/* Bank register write */
#define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */

/* Used for Micron flashes only. */
#define SPINOR_OP_RD_EVCR      0x65    /* Read EVCR register */
#define SPINOR_OP_WD_EVCR      0x61    /* Write EVCR register */

/* Status Register bits. */
#define SR_WIP			BIT(0)	/* Write in progress */
#define SR_WEL			BIT(1)	/* Write enable latch */
/* meaning of other SR_* bits may differ between vendors */
#define SR_BP0			BIT(2)	/* Block protect 0 */
#define SR_BP1			BIT(3)	/* Block protect 1 */
#define SR_BP2			BIT(4)	/* Block protect 2 */
#define SR_TB			BIT(5)	/* Top/Bottom protect */
#define SR_SRWD			BIT(7)	/* SR write protect */
/* Spansion/Cypress specific status bits */
#define SR_E_ERR		BIT(5)
#define SR_P_ERR		BIT(6)

#define SR_QUAD_EN_MX		BIT(6)	/* Macronix Quad I/O */

/* Enhanced Volatile Configuration Register bits */
#define EVCR_QUAD_EN_MICRON	BIT(7)	/* Micron Quad I/O */

/* Flag Status Register bits */
#define FSR_READY		BIT(7)	/* Device status, 0 = Busy, 1 = Ready */
#define FSR_E_ERR		BIT(5)	/* Erase operation status */
#define FSR_P_ERR		BIT(4)	/* Program operation status */
#define FSR_PT_ERR		BIT(1)	/* Protection error bit */

/* Configuration Register bits. */
#define CR_QUAD_EN_SPAN		BIT(1)	/* Spansion Quad I/O */

/* Status Register 2 bits. */
#define SR2_QUAD_EN_BIT7	BIT(7)

/* Supported SPI protocols */
#define SNOR_PROTO_INST_MASK	GENMASK(23, 16)
#define SNOR_PROTO_INST_SHIFT	16
#define SNOR_PROTO_INST(_nbits)	\
	((((unsigned long)(_nbits)) << SNOR_PROTO_INST_SHIFT) & \
	 SNOR_PROTO_INST_MASK)

#define SNOR_PROTO_ADDR_MASK	GENMASK(15, 8)
#define SNOR_PROTO_ADDR_SHIFT	8
#define SNOR_PROTO_ADDR(_nbits)	\
	((((unsigned long)(_nbits)) << SNOR_PROTO_ADDR_SHIFT) & \
	 SNOR_PROTO_ADDR_MASK)

#define SNOR_PROTO_DATA_MASK	GENMASK(7, 0)
#define SNOR_PROTO_DATA_SHIFT	0
#define SNOR_PROTO_DATA(_nbits)	\
	((((unsigned long)(_nbits)) << SNOR_PROTO_DATA_SHIFT) & \
	 SNOR_PROTO_DATA_MASK)

#define SNOR_PROTO_IS_DTR	BIT(24)	/* Double Transfer Rate */

#define SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits)	\
	(SNOR_PROTO_INST(_inst_nbits) |				\
	 SNOR_PROTO_ADDR(_addr_nbits) |				\
	 SNOR_PROTO_DATA(_data_nbits))
#define SNOR_PROTO_DTR(_inst_nbits, _addr_nbits, _data_nbits)	\
	(SNOR_PROTO_IS_DTR |					\
	 SNOR_PROTO_STR(_inst_nbits, _addr_nbits, _data_nbits))

enum spi_nor_protocol {
	SNOR_PROTO_1_1_1 = SNOR_PROTO_STR(1, 1, 1),
	SNOR_PROTO_1_1_2 = SNOR_PROTO_STR(1, 1, 2),
	SNOR_PROTO_1_1_4 = SNOR_PROTO_STR(1, 1, 4),
	SNOR_PROTO_1_1_8 = SNOR_PROTO_STR(1, 1, 8),
	SNOR_PROTO_1_2_2 = SNOR_PROTO_STR(1, 2, 2),
	SNOR_PROTO_1_4_4 = SNOR_PROTO_STR(1, 4, 4),
	SNOR_PROTO_1_8_8 = SNOR_PROTO_STR(1, 8, 8),
	SNOR_PROTO_2_2_2 = SNOR_PROTO_STR(2, 2, 2),
	SNOR_PROTO_4_4_4 = SNOR_PROTO_STR(4, 4, 4),
	SNOR_PROTO_8_8_8 = SNOR_PROTO_STR(8, 8, 8),

	SNOR_PROTO_1_1_1_DTR = SNOR_PROTO_DTR(1, 1, 1),
	SNOR_PROTO_1_2_2_DTR = SNOR_PROTO_DTR(1, 2, 2),
	SNOR_PROTO_1_4_4_DTR = SNOR_PROTO_DTR(1, 4, 4),
	SNOR_PROTO_1_8_8_DTR = SNOR_PROTO_DTR(1, 8, 8),
};

static inline bool spi_nor_protocol_is_dtr(enum spi_nor_protocol proto)
{
	return !!(proto & SNOR_PROTO_IS_DTR);
}

static inline u8 spi_nor_get_protocol_inst_nbits(enum spi_nor_protocol proto)
{
	return ((unsigned long)(proto & SNOR_PROTO_INST_MASK)) >>
		SNOR_PROTO_INST_SHIFT;
}

static inline u8 spi_nor_get_protocol_addr_nbits(enum spi_nor_protocol proto)
{
	return ((unsigned long)(proto & SNOR_PROTO_ADDR_MASK)) >>
		SNOR_PROTO_ADDR_SHIFT;
}

static inline u8 spi_nor_get_protocol_data_nbits(enum spi_nor_protocol proto)
{
	return ((unsigned long)(proto & SNOR_PROTO_DATA_MASK)) >>
		SNOR_PROTO_DATA_SHIFT;
}

static inline u8 spi_nor_get_protocol_width(enum spi_nor_protocol proto)
{
	return spi_nor_get_protocol_data_nbits(proto);
}

#define SPI_NOR_MAX_CMD_SIZE	8
enum spi_nor_ops {
	SPI_NOR_OPS_READ = 0,
	SPI_NOR_OPS_WRITE,
	SPI_NOR_OPS_ERASE,
	SPI_NOR_OPS_LOCK,
	SPI_NOR_OPS_UNLOCK,
};

enum spi_nor_option_flags {
	SNOR_F_USE_FSR		= BIT(0),
	SNOR_F_HAS_SR_TB	= BIT(1),
	SNOR_F_NO_OP_CHIP_ERASE	= BIT(2),
	SNOR_F_S3AN_ADDR_DEFAULT = BIT(3),
	SNOR_F_READY_XSR_RDY	= BIT(4),
	SNOR_F_USE_CLSR		= BIT(5),
};

/**
 * struct flash_info - Forward declaration of a structure used internally by
 *		       spi_nor_scan()
 */
struct flash_info;

/**
 * struct spi_nor - Structure for defining a the SPI NOR layer
 * @mtd:		point to a mtd_info structure
 * @lock:		the lock for the read/write/erase/lock/unlock operations
 * @dev:		point to a spi device, or a spi nor controller device.
 * @info:		spi-nor part JDEC MFR id and other info
 * @page_size:		the page size of the SPI NOR
 * @addr_width:		number of address bytes
 * @erase_opcode:	the opcode for erasing a sector
 * @read_opcode:	the read opcode
 * @read_dummy:		the dummy needed by the read operation
 * @program_opcode:	the program opcode
 * @sst_write_second:	used by the SST write operation
 * @flags:		flag options for the current SPI-NOR (SNOR_F_*)
 * @read_proto:		the SPI protocol for read operations
 * @write_proto:	the SPI protocol for write operations
 * @reg_proto		the SPI protocol for read_reg/write_reg/erase operations
 * @cmd_buf:		used by the write_reg
 * @prepare:		[OPTIONAL] do some preparations for the
 *			read/write/erase/lock/unlock operations
 * @unprepare:		[OPTIONAL] do some post work after the
 *			read/write/erase/lock/unlock operations
 * @read_reg:		[DRIVER-SPECIFIC] read out the register
 * @write_reg:		[DRIVER-SPECIFIC] write data to the register
 * @read:		[DRIVER-SPECIFIC] read data from the SPI NOR
 * @write:		[DRIVER-SPECIFIC] write data to the SPI NOR
 * @erase:		[DRIVER-SPECIFIC] erase a sector of the SPI NOR
 *			at the offset @offs; if not provided by the driver,
 *			spi-nor will send the erase opcode via write_reg()
 * @flash_lock:		[FLASH-SPECIFIC] lock a region of the SPI NOR
 * @flash_unlock:	[FLASH-SPECIFIC] unlock a region of the SPI NOR
 * @flash_is_locked:	[FLASH-SPECIFIC] check if a region of the SPI NOR is
 * @quad_enable:	[FLASH-SPECIFIC] enables SPI NOR quad mode
 *			completely locked
 * @priv:		the private data
 */
struct spi_nor {
	struct mtd_info		mtd;
	struct mutex		lock;
	struct device		*dev;
	const struct flash_info	*info;
	u32			page_size;
	u8			addr_width;
	u8			erase_opcode;
	u8			read_opcode;
	u8			read_dummy;
	u8			program_opcode;
	enum spi_nor_protocol	read_proto;
	enum spi_nor_protocol	write_proto;
	enum spi_nor_protocol	reg_proto;
	bool			sst_write_second;
	u32			flags;
	u8			cmd_buf[SPI_NOR_MAX_CMD_SIZE];

	int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops);
	void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops);
	int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
	int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);

	ssize_t (*read)(struct spi_nor *nor, loff_t from,
			size_t len, u_char *read_buf);
	ssize_t (*write)(struct spi_nor *nor, loff_t to,
			size_t len, const u_char *write_buf);
	int (*erase)(struct spi_nor *nor, loff_t offs);

	int (*flash_lock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
	int (*flash_unlock)(struct spi_nor *nor, loff_t ofs, uint64_t len);
	int (*flash_is_locked)(struct spi_nor *nor, loff_t ofs, uint64_t len);
	int (*quad_enable)(struct spi_nor *nor);

	void *priv;
};

static inline void spi_nor_set_flash_node(struct spi_nor *nor,
					  struct device_node *np)
{
	mtd_set_of_node(&nor->mtd, np);
}

static inline struct device_node *spi_nor_get_flash_node(struct spi_nor *nor)
{
	return mtd_get_of_node(&nor->mtd);
}

/**
 * struct spi_nor_hwcaps - Structure for describing the hardware capabilies
 * supported by the SPI controller (bus master).
 * @mask:		the bitmask listing all the supported hw capabilies
 */
struct spi_nor_hwcaps {
	u32	mask;
};

/*
 *(Fast) Read capabilities.
 * MUST be ordered by priority: the higher bit position, the higher priority.
 * As a matter of performances, it is relevant to use Octo SPI protocols first,
 * then Quad SPI protocols before Dual SPI protocols, Fast Read and lastly
 * (Slow) Read.
 */
#define SNOR_HWCAPS_READ_MASK		GENMASK(14, 0)
#define SNOR_HWCAPS_READ		BIT(0)
#define SNOR_HWCAPS_READ_FAST		BIT(1)
#define SNOR_HWCAPS_READ_1_1_1_DTR	BIT(2)

#define SNOR_HWCAPS_READ_DUAL		GENMASK(6, 3)
#define SNOR_HWCAPS_READ_1_1_2		BIT(3)
#define SNOR_HWCAPS_READ_1_2_2		BIT(4)
#define SNOR_HWCAPS_READ_2_2_2		BIT(5)
#define SNOR_HWCAPS_READ_1_2_2_DTR	BIT(6)

#define SNOR_HWCAPS_READ_QUAD		GENMASK(10, 7)
#define SNOR_HWCAPS_READ_1_1_4		BIT(7)
#define SNOR_HWCAPS_READ_1_4_4		BIT(8)
#define SNOR_HWCAPS_READ_4_4_4		BIT(9)
#define SNOR_HWCAPS_READ_1_4_4_DTR	BIT(10)

#define SNOR_HWCPAS_READ_OCTO		GENMASK(14, 11)
#define SNOR_HWCAPS_READ_1_1_8		BIT(11)
#define SNOR_HWCAPS_READ_1_8_8		BIT(12)
#define SNOR_HWCAPS_READ_8_8_8		BIT(13)
#define SNOR_HWCAPS_READ_1_8_8_DTR	BIT(14)

/*
 * Page Program capabilities.
 * MUST be ordered by priority: the higher bit position, the higher priority.
 * Like (Fast) Read capabilities, Octo/Quad SPI protocols are preferred to the
 * legacy SPI 1-1-1 protocol.
 * Note that Dual Page Programs are not supported because there is no existing
 * JEDEC/SFDP standard to define them. Also at this moment no SPI flash memory
 * implements such commands.
 */
#define SNOR_HWCAPS_PP_MASK	GENMASK(22, 16)
#define SNOR_HWCAPS_PP		BIT(16)

#define SNOR_HWCAPS_PP_QUAD	GENMASK(19, 17)
#define SNOR_HWCAPS_PP_1_1_4	BIT(17)
#define SNOR_HWCAPS_PP_1_4_4	BIT(18)
#define SNOR_HWCAPS_PP_4_4_4	BIT(19)

#define SNOR_HWCAPS_PP_OCTO	GENMASK(22, 20)
#define SNOR_HWCAPS_PP_1_1_8	BIT(20)
#define SNOR_HWCAPS_PP_1_8_8	BIT(21)
#define SNOR_HWCAPS_PP_8_8_8	BIT(22)

/**
 * spi_nor_scan() - scan the SPI NOR
 * @nor:	the spi_nor structure
 * @name:	the chip type name
 * @hwcaps:	the hardware capabilities supported by the controller driver
 *
 * The drivers can use this fuction to scan the SPI NOR.
 * In the scanning, it will try to get all the necessary information to
 * fill the mtd_info{} and the spi_nor{}.
 *
 * The chip type name can be provided through the @name parameter.
 *
 * Return: 0 for success, others for failure.
 */
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps);

/**
 * spi_nor_restore_addr_mode() - restore the status of SPI NOR
 * @nor:	the spi_nor structure
 */
void spi_nor_restore(struct spi_nor *nor);

#endif