Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Aspeed AST2400/2500/2600 ADC
 *
 * Copyright (C) 2017 Google, Inc.
 * Copyright (C) 2021 Aspeed Technology Inc.
 *
 * ADC clock formula:
 * Ast2400/Ast2500:
 * clock period = period of PCLK * 2 * (ADC0C[31:17] + 1) * (ADC0C[9:0] + 1)
 * Ast2600:
 * clock period = period of PCLK * 2 * (ADC0C[15:0] + 1)
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/bitfield.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>

#include <linux/iio/iio.h>
#include <linux/iio/driver.h>
#include <linux/iopoll.h>

#define ASPEED_RESOLUTION_BITS		10
#define ASPEED_CLOCKS_PER_SAMPLE	12

#define ASPEED_REG_ENGINE_CONTROL	0x00
#define ASPEED_REG_INTERRUPT_CONTROL	0x04
#define ASPEED_REG_VGA_DETECT_CONTROL	0x08
#define ASPEED_REG_CLOCK_CONTROL	0x0C
#define ASPEED_REG_COMPENSATION_TRIM	0xC4
/*
 * The register offset between 0xC8~0xCC can be read and won't affect the
 * hardware logic in each version of ADC.
 */
#define ASPEED_REG_MAX			0xD0

#define ASPEED_ADC_ENGINE_ENABLE		BIT(0)
#define ASPEED_ADC_OP_MODE			GENMASK(3, 1)
#define ASPEED_ADC_OP_MODE_PWR_DOWN		0
#define ASPEED_ADC_OP_MODE_STANDBY		1
#define ASPEED_ADC_OP_MODE_NORMAL		7
#define ASPEED_ADC_CTRL_COMPENSATION		BIT(4)
#define ASPEED_ADC_AUTO_COMPENSATION		BIT(5)
/*
 * Bit 6 determines not only the reference voltage range but also the dividing
 * circuit for battery sensing.
 */
#define ASPEED_ADC_REF_VOLTAGE			GENMASK(7, 6)
#define ASPEED_ADC_REF_VOLTAGE_2500mV		0
#define ASPEED_ADC_REF_VOLTAGE_1200mV		1
#define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH		2
#define ASPEED_ADC_REF_VOLTAGE_EXT_LOW		3
#define ASPEED_ADC_BAT_SENSING_DIV		BIT(6)
#define ASPEED_ADC_BAT_SENSING_DIV_2_3		0
#define ASPEED_ADC_BAT_SENSING_DIV_1_3		1
#define ASPEED_ADC_CTRL_INIT_RDY		BIT(8)
#define ASPEED_ADC_CH7_MODE			BIT(12)
#define ASPEED_ADC_CH7_NORMAL			0
#define ASPEED_ADC_CH7_BAT			1
#define ASPEED_ADC_BAT_SENSING_ENABLE		BIT(13)
#define ASPEED_ADC_CTRL_CHANNEL			GENMASK(31, 16)
#define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch)	FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))

#define ASPEED_ADC_INIT_POLLING_TIME	500
#define ASPEED_ADC_INIT_TIMEOUT		500000
/*
 * When the sampling rate is too high, the ADC may not have enough charging
 * time, resulting in a low voltage value. Thus, the default uses a slow
 * sampling rate for most use cases.
 */
#define ASPEED_ADC_DEF_SAMPLING_RATE	65000

struct aspeed_adc_trim_locate {
	const unsigned int offset;
	const unsigned int field;
};

struct aspeed_adc_model_data {
	const char *model_name;
	unsigned int min_sampling_rate;	// Hz
	unsigned int max_sampling_rate;	// Hz
	unsigned int vref_fixed_mv;
	bool wait_init_sequence;
	bool need_prescaler;
	bool bat_sense_sup;
	u8 scaler_bit_width;
	unsigned int num_channels;
	const struct aspeed_adc_trim_locate *trim_locate;
};

struct adc_gain {
	u8 mult;
	u8 div;
};

struct aspeed_adc_data {
	struct device		*dev;
	const struct aspeed_adc_model_data *model_data;
	struct regulator	*regulator;
	void __iomem		*base;
	spinlock_t		clk_lock;
	struct clk_hw		*fixed_div_clk;
	struct clk_hw		*clk_prescaler;
	struct clk_hw		*clk_scaler;
	struct reset_control	*rst;
	int			vref_mv;
	u32			sample_period_ns;
	int			cv;
	bool			battery_sensing;
	struct adc_gain		battery_mode_gain;
};

#define ASPEED_CHAN(_idx, _data_reg_addr) {			\
	.type = IIO_VOLTAGE,					\
	.indexed = 1,						\
	.channel = (_idx),					\
	.address = (_data_reg_addr),				\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
				BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
				BIT(IIO_CHAN_INFO_OFFSET),	\
}

static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
	ASPEED_CHAN(0, 0x10),
	ASPEED_CHAN(1, 0x12),
	ASPEED_CHAN(2, 0x14),
	ASPEED_CHAN(3, 0x16),
	ASPEED_CHAN(4, 0x18),
	ASPEED_CHAN(5, 0x1A),
	ASPEED_CHAN(6, 0x1C),
	ASPEED_CHAN(7, 0x1E),
	ASPEED_CHAN(8, 0x20),
	ASPEED_CHAN(9, 0x22),
	ASPEED_CHAN(10, 0x24),
	ASPEED_CHAN(11, 0x26),
	ASPEED_CHAN(12, 0x28),
	ASPEED_CHAN(13, 0x2A),
	ASPEED_CHAN(14, 0x2C),
	ASPEED_CHAN(15, 0x2E),
};

#define ASPEED_BAT_CHAN(_idx, _data_reg_addr) {					\
		.type = IIO_VOLTAGE,						\
		.indexed = 1,							\
		.channel = (_idx),						\
		.address = (_data_reg_addr),					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
				      BIT(IIO_CHAN_INFO_OFFSET),		\
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
					    BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
}
static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
	ASPEED_CHAN(0, 0x10),
	ASPEED_CHAN(1, 0x12),
	ASPEED_CHAN(2, 0x14),
	ASPEED_CHAN(3, 0x16),
	ASPEED_CHAN(4, 0x18),
	ASPEED_CHAN(5, 0x1A),
	ASPEED_CHAN(6, 0x1C),
	ASPEED_BAT_CHAN(7, 0x1E),
};

static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
{
	struct device_node *syscon;
	struct regmap *scu;
	u32 scu_otp, trimming_val;
	struct aspeed_adc_data *data = iio_priv(indio_dev);

	syscon = of_find_node_by_name(NULL, "syscon");
	if (syscon == NULL) {
		dev_warn(data->dev, "Couldn't find syscon node\n");
		return -EOPNOTSUPP;
	}
	scu = syscon_node_to_regmap(syscon);
	of_node_put(syscon);
	if (IS_ERR(scu)) {
		dev_warn(data->dev, "Failed to get syscon regmap\n");
		return -EOPNOTSUPP;
	}
	if (data->model_data->trim_locate) {
		if (regmap_read(scu, data->model_data->trim_locate->offset,
				&scu_otp)) {
			dev_warn(data->dev,
				 "Failed to get adc trimming data\n");
			trimming_val = 0x8;
		} else {
			trimming_val =
				((scu_otp) &
				 (data->model_data->trim_locate->field)) >>
				__ffs(data->model_data->trim_locate->field);
			if (!trimming_val)
				trimming_val = 0x8;
		}
		dev_dbg(data->dev,
			"trimming val = %d, offset = %08x, fields = %08x\n",
			trimming_val, data->model_data->trim_locate->offset,
			data->model_data->trim_locate->field);
		writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
	}
	return 0;
}

static int aspeed_adc_compensation(struct iio_dev *indio_dev)
{
	struct aspeed_adc_data *data = iio_priv(indio_dev);
	u32 index, adc_raw = 0;
	u32 adc_engine_control_reg_val;

	adc_engine_control_reg_val =
		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
	adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
	adc_engine_control_reg_val |=
		(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
		 ASPEED_ADC_ENGINE_ENABLE);
	/*
	 * Enable compensating sensing:
	 * After that, the input voltage of ADC will force to half of the reference
	 * voltage. So the expected reading raw data will become half of the max
	 * value. We can get compensating value = 0x200 - ADC read raw value.
	 * It is recommended to average at least 10 samples to get a final CV.
	 */
	writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
		       ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
	       data->base + ASPEED_REG_ENGINE_CONTROL);
	/*
	 * After enable compensating sensing mode need to wait some time for ADC stable
	 * Experiment result is 1ms.
	 */
	mdelay(1);

	for (index = 0; index < 16; index++) {
		/*
		 * Waiting for the sampling period ensures that the value acquired
		 * is fresh each time.
		 */
		ndelay(data->sample_period_ns);
		adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
	}
	adc_raw >>= 4;
	data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
	writel(adc_engine_control_reg_val,
	       data->base + ASPEED_REG_ENGINE_CONTROL);
	dev_dbg(data->dev, "Compensating value = %d\n", data->cv);

	return 0;
}

static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
{
	struct aspeed_adc_data *data = iio_priv(indio_dev);

	if (rate < data->model_data->min_sampling_rate ||
	    rate > data->model_data->max_sampling_rate)
		return -EINVAL;
	/* Each sampling needs 12 clocks to convert.*/
	clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
	rate = clk_get_rate(data->clk_scaler->clk);
	data->sample_period_ns = DIV_ROUND_UP_ULL(
		(u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
	dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
		data->sample_period_ns);

	return 0;
}

static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
			       struct iio_chan_spec const *chan,
			       int *val, int *val2, long mask)
{
	struct aspeed_adc_data *data = iio_priv(indio_dev);
	u32 adc_engine_control_reg_val;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		if (data->battery_sensing && chan->channel == 7) {
			adc_engine_control_reg_val =
				readl(data->base + ASPEED_REG_ENGINE_CONTROL);
			writel(adc_engine_control_reg_val |
				       FIELD_PREP(ASPEED_ADC_CH7_MODE,
						  ASPEED_ADC_CH7_BAT) |
				       ASPEED_ADC_BAT_SENSING_ENABLE,
			       data->base + ASPEED_REG_ENGINE_CONTROL);
			/*
			 * After enable battery sensing mode need to wait some time for adc stable
			 * Experiment result is 1ms.
			 */
			mdelay(1);
			*val = readw(data->base + chan->address);
			*val = (*val * data->battery_mode_gain.mult) /
			       data->battery_mode_gain.div;
			/* Restore control register value */
			writel(adc_engine_control_reg_val,
			       data->base + ASPEED_REG_ENGINE_CONTROL);
		} else
			*val = readw(data->base + chan->address);
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_OFFSET:
		if (data->battery_sensing && chan->channel == 7)
			*val = (data->cv * data->battery_mode_gain.mult) /
			       data->battery_mode_gain.div;
		else
			*val = data->cv;
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_SCALE:
		*val = data->vref_mv;
		*val2 = ASPEED_RESOLUTION_BITS;
		return IIO_VAL_FRACTIONAL_LOG2;

	case IIO_CHAN_INFO_SAMP_FREQ:
		*val = clk_get_rate(data->clk_scaler->clk) /
				ASPEED_CLOCKS_PER_SAMPLE;
		return IIO_VAL_INT;

	default:
		return -EINVAL;
	}
}

static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
				struct iio_chan_spec const *chan,
				int val, int val2, long mask)
{
	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		return aspeed_adc_set_sampling_rate(indio_dev, val);

	case IIO_CHAN_INFO_SCALE:
	case IIO_CHAN_INFO_RAW:
		/*
		 * Technically, these could be written but the only reasons
		 * for doing so seem better handled in userspace.  EPERM is
		 * returned to signal this is a policy choice rather than a
		 * hardware limitation.
		 */
		return -EPERM;

	default:
		return -EINVAL;
	}
}

static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
				 unsigned int reg, unsigned int writeval,
				 unsigned int *readval)
{
	struct aspeed_adc_data *data = iio_priv(indio_dev);

	if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
		return -EINVAL;

	*readval = readl(data->base + reg);

	return 0;
}

static const struct iio_info aspeed_adc_iio_info = {
	.read_raw = aspeed_adc_read_raw,
	.write_raw = aspeed_adc_write_raw,
	.debugfs_reg_access = aspeed_adc_reg_access,
};

static void aspeed_adc_unregister_fixed_divider(void *data)
{
	struct clk_hw *clk = data;

	clk_hw_unregister_fixed_factor(clk);
}

static void aspeed_adc_reset_assert(void *data)
{
	struct reset_control *rst = data;

	reset_control_assert(rst);
}

static void aspeed_adc_clk_disable_unprepare(void *data)
{
	struct clk *clk = data;

	clk_disable_unprepare(clk);
}

static void aspeed_adc_power_down(void *data)
{
	struct aspeed_adc_data *priv_data = data;

	writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
	       priv_data->base + ASPEED_REG_ENGINE_CONTROL);
}

static void aspeed_adc_reg_disable(void *data)
{
	struct regulator *reg = data;

	regulator_disable(reg);
}

static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
{
	struct aspeed_adc_data *data = iio_priv(indio_dev);
	int ret;
	u32 adc_engine_control_reg_val;

	if (data->model_data->vref_fixed_mv) {
		data->vref_mv = data->model_data->vref_fixed_mv;
		return 0;
	}
	adc_engine_control_reg_val =
		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
	data->regulator = devm_regulator_get_optional(data->dev, "vref");
	if (!IS_ERR(data->regulator)) {
		ret = regulator_enable(data->regulator);
		if (ret)
			return ret;
		ret = devm_add_action_or_reset(
			data->dev, aspeed_adc_reg_disable, data->regulator);
		if (ret)
			return ret;
		data->vref_mv = regulator_get_voltage(data->regulator);
		/* Conversion from uV to mV */
		data->vref_mv /= 1000;
		if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
			writel(adc_engine_control_reg_val |
				FIELD_PREP(
					ASPEED_ADC_REF_VOLTAGE,
					ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
			data->base + ASPEED_REG_ENGINE_CONTROL);
		else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
			writel(adc_engine_control_reg_val |
				FIELD_PREP(
					ASPEED_ADC_REF_VOLTAGE,
					ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
			data->base + ASPEED_REG_ENGINE_CONTROL);
		else {
			dev_err(data->dev, "Regulator voltage %d not support",
				data->vref_mv);
			return -EOPNOTSUPP;
		}
	} else {
		if (PTR_ERR(data->regulator) != -ENODEV)
			return PTR_ERR(data->regulator);
		data->vref_mv = 2500000;
		of_property_read_u32(data->dev->of_node,
				     "aspeed,int-vref-microvolt",
				     &data->vref_mv);
		/* Conversion from uV to mV */
		data->vref_mv /= 1000;
		if (data->vref_mv == 2500)
			writel(adc_engine_control_reg_val |
				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
						ASPEED_ADC_REF_VOLTAGE_2500mV),
			data->base + ASPEED_REG_ENGINE_CONTROL);
		else if (data->vref_mv == 1200)
			writel(adc_engine_control_reg_val |
				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
						ASPEED_ADC_REF_VOLTAGE_1200mV),
			data->base + ASPEED_REG_ENGINE_CONTROL);
		else {
			dev_err(data->dev, "Voltage %d not support", data->vref_mv);
			return -EOPNOTSUPP;
		}
	}

	return 0;
}

static int aspeed_adc_probe(struct platform_device *pdev)
{
	struct iio_dev *indio_dev;
	struct aspeed_adc_data *data;
	int ret;
	u32 adc_engine_control_reg_val;
	unsigned long scaler_flags = 0;
	char clk_name[32], clk_parent_name[32];

	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
	data->dev = &pdev->dev;
	data->model_data = of_device_get_match_data(&pdev->dev);
	platform_set_drvdata(pdev, indio_dev);

	data->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(data->base))
		return PTR_ERR(data->base);

	/* Register ADC clock prescaler with source specified by device tree. */
	spin_lock_init(&data->clk_lock);
	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
		 of_clk_get_parent_name(pdev->dev.of_node, 0));
	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
		 data->model_data->model_name);
	data->fixed_div_clk = clk_hw_register_fixed_factor(
		&pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
	if (IS_ERR(data->fixed_div_clk))
		return PTR_ERR(data->fixed_div_clk);

	ret = devm_add_action_or_reset(data->dev,
				       aspeed_adc_unregister_fixed_divider,
				       data->fixed_div_clk);
	if (ret)
		return ret;
	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);

	if (data->model_data->need_prescaler) {
		snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
			 data->model_data->model_name);
		data->clk_prescaler = devm_clk_hw_register_divider(
			&pdev->dev, clk_name, clk_parent_name, 0,
			data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
			&data->clk_lock);
		if (IS_ERR(data->clk_prescaler))
			return PTR_ERR(data->clk_prescaler);
		snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
			 clk_name);
		scaler_flags = CLK_SET_RATE_PARENT;
	}
	/*
	 * Register ADC clock scaler downstream from the prescaler. Allow rate
	 * setting to adjust the prescaler as well.
	 */
	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
		 data->model_data->model_name);
	data->clk_scaler = devm_clk_hw_register_divider(
		&pdev->dev, clk_name, clk_parent_name, scaler_flags,
		data->base + ASPEED_REG_CLOCK_CONTROL, 0,
		data->model_data->scaler_bit_width,
		data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
		&data->clk_lock);
	if (IS_ERR(data->clk_scaler))
		return PTR_ERR(data->clk_scaler);

	data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
	if (IS_ERR(data->rst)) {
		dev_err(&pdev->dev,
			"invalid or missing reset controller device tree entry");
		return PTR_ERR(data->rst);
	}
	reset_control_deassert(data->rst);

	ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
				       data->rst);
	if (ret)
		return ret;

	ret = aspeed_adc_vref_config(indio_dev);
	if (ret)
		return ret;

	ret = aspeed_adc_set_trim_data(indio_dev);
	if (ret)
		return ret;

	if (of_find_property(data->dev->of_node, "aspeed,battery-sensing",
			     NULL)) {
		if (data->model_data->bat_sense_sup) {
			data->battery_sensing = 1;
			if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
			    ASPEED_ADC_BAT_SENSING_DIV) {
				data->battery_mode_gain.mult = 3;
				data->battery_mode_gain.div = 1;
			} else {
				data->battery_mode_gain.mult = 3;
				data->battery_mode_gain.div = 2;
			}
		} else
			dev_warn(&pdev->dev,
				 "Failed to enable battery-sensing mode\n");
	}

	ret = clk_prepare_enable(data->clk_scaler->clk);
	if (ret)
		return ret;
	ret = devm_add_action_or_reset(data->dev,
				       aspeed_adc_clk_disable_unprepare,
				       data->clk_scaler->clk);
	if (ret)
		return ret;
	ret = aspeed_adc_set_sampling_rate(indio_dev,
					   ASPEED_ADC_DEF_SAMPLING_RATE);
	if (ret)
		return ret;

	adc_engine_control_reg_val =
		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
	adc_engine_control_reg_val |=
		FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
		ASPEED_ADC_ENGINE_ENABLE;
	/* Enable engine in normal mode. */
	writel(adc_engine_control_reg_val,
	       data->base + ASPEED_REG_ENGINE_CONTROL);

	ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
					data);
	if (ret)
		return ret;

	if (data->model_data->wait_init_sequence) {
		/* Wait for initial sequence complete. */
		ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
					 adc_engine_control_reg_val,
					 adc_engine_control_reg_val &
					 ASPEED_ADC_CTRL_INIT_RDY,
					 ASPEED_ADC_INIT_POLLING_TIME,
					 ASPEED_ADC_INIT_TIMEOUT);
		if (ret)
			return ret;
	}

	aspeed_adc_compensation(indio_dev);
	/* Start all channels in normal mode. */
	adc_engine_control_reg_val =
		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
	adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
	writel(adc_engine_control_reg_val,
	       data->base + ASPEED_REG_ENGINE_CONTROL);

	indio_dev->name = data->model_data->model_name;
	indio_dev->info = &aspeed_adc_iio_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->channels = data->battery_sensing ?
					    aspeed_adc_iio_bat_channels :
					    aspeed_adc_iio_channels;
	indio_dev->num_channels = data->model_data->num_channels;

	ret = devm_iio_device_register(data->dev, indio_dev);
	return ret;
}

static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
	.offset = 0x154,
	.field = GENMASK(31, 28),
};

static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
	.offset = 0x5d0,
	.field = GENMASK(3, 0),
};

static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
	.offset = 0x5d0,
	.field = GENMASK(7, 4),
};

static const struct aspeed_adc_model_data ast2400_model_data = {
	.model_name = "ast2400-adc",
	.vref_fixed_mv = 2500,
	.min_sampling_rate = 10000,
	.max_sampling_rate = 500000,
	.need_prescaler = true,
	.scaler_bit_width = 10,
	.num_channels = 16,
};

static const struct aspeed_adc_model_data ast2500_model_data = {
	.model_name = "ast2500-adc",
	.vref_fixed_mv = 1800,
	.min_sampling_rate = 1,
	.max_sampling_rate = 1000000,
	.wait_init_sequence = true,
	.need_prescaler = true,
	.scaler_bit_width = 10,
	.num_channels = 16,
	.trim_locate = &ast2500_adc_trim,
};

static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
	.model_name = "ast2600-adc0",
	.min_sampling_rate = 10000,
	.max_sampling_rate = 500000,
	.wait_init_sequence = true,
	.bat_sense_sup = true,
	.scaler_bit_width = 16,
	.num_channels = 8,
	.trim_locate = &ast2600_adc0_trim,
};

static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
	.model_name = "ast2600-adc1",
	.min_sampling_rate = 10000,
	.max_sampling_rate = 500000,
	.wait_init_sequence = true,
	.bat_sense_sup = true,
	.scaler_bit_width = 16,
	.num_channels = 8,
	.trim_locate = &ast2600_adc1_trim,
};

static const struct of_device_id aspeed_adc_matches[] = {
	{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
	{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
	{ .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
	{ .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
	{},
};
MODULE_DEVICE_TABLE(of, aspeed_adc_matches);

static struct platform_driver aspeed_adc_driver = {
	.probe = aspeed_adc_probe,
	.driver = {
		.name = KBUILD_MODNAME,
		.of_match_table = aspeed_adc_matches,
	}
};

module_platform_driver(aspeed_adc_driver);

MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
MODULE_LICENSE("GPL");