Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include <linux/prefetch.h>
#include <linux/dma-fence-array.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/sched/signal.h>

#include "i915_drv.h"

static const char *i915_fence_get_driver_name(struct dma_fence *fence)
{
	return "i915";
}

static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
{
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

	return to_request(fence)->timeline->name;
}

static bool i915_fence_signaled(struct dma_fence *fence)
{
	return i915_request_completed(to_request(fence));
}

static bool i915_fence_enable_signaling(struct dma_fence *fence)
{
	return intel_engine_enable_signaling(to_request(fence), true);
}

static signed long i915_fence_wait(struct dma_fence *fence,
				   bool interruptible,
				   signed long timeout)
{
	return i915_request_wait(to_request(fence), interruptible, timeout);
}

static void i915_fence_release(struct dma_fence *fence)
{
	struct i915_request *rq = to_request(fence);

	/*
	 * The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&rq->submit);

	kmem_cache_free(rq->i915->requests, rq);
}

const struct dma_fence_ops i915_fence_ops = {
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

static inline void
i915_request_remove_from_client(struct i915_request *request)
{
	struct drm_i915_file_private *file_priv;

	file_priv = request->file_priv;
	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	if (request->file_priv) {
		list_del(&request->client_link);
		request->file_priv = NULL;
	}
	spin_unlock(&file_priv->mm.lock);
}

static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_sched_node_add_dependency(struct i915_sched_node *node,
				 struct i915_sched_node *signal,
				 struct i915_dependency *dep,
				 unsigned long flags)
{
	INIT_LIST_HEAD(&dep->dfs_link);
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &node->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_sched_node_add_dependency(struct drm_i915_private *i915,
			       struct i915_sched_node *node,
			       struct i915_sched_node *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_sched_node_add_dependency(node, signal, dep,
					 I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_sched_node_fini(struct drm_i915_private *i915,
		     struct i915_sched_node *node)
{
	struct i915_dependency *dep, *tmp;

	GEM_BUG_ON(!list_empty(&node->link));

	/*
	 * Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
		GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
		GEM_BUG_ON(dep->signaler != node);
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_sched_node_init(struct i915_sched_node *node)
{
	INIT_LIST_HEAD(&node->signalers_list);
	INIT_LIST_HEAD(&node->waiters_list);
	INIT_LIST_HEAD(&node->link);
	node->attr.priority = I915_PRIORITY_INVALID;
}

static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{
	struct intel_engine_cs *engine;
	struct i915_timeline *timeline;
	enum intel_engine_id id;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	ret = i915_gem_wait_for_idle(i915,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED,
				     MAX_SCHEDULE_TIMEOUT);
	if (ret)
		return ret;

	GEM_BUG_ON(i915->gt.active_requests);

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	for_each_engine(engine, i915, id) {
		GEM_TRACE("%s seqno %d (current %d) -> %d\n",
			  engine->name,
			  engine->timeline.seqno,
			  intel_engine_get_seqno(engine),
			  seqno);

		if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
			/* Flush any waiters before we reuse the seqno */
			intel_engine_disarm_breadcrumbs(engine);
			intel_engine_init_hangcheck(engine);
			GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
		}

		/* Check we are idle before we fiddle with hw state! */
		GEM_BUG_ON(!intel_engine_is_idle(engine));
		GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));

		/* Finally reset hw state */
		intel_engine_init_global_seqno(engine, seqno);
		engine->timeline.seqno = seqno;
	}

	list_for_each_entry(timeline, &i915->gt.timelines, link)
		memset(timeline->global_sync, 0, sizeof(timeline->global_sync));

	i915->gt.request_serial = seqno;

	return 0;
}

int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *i915 = to_i915(dev);

	lockdep_assert_held(&i915->drm.struct_mutex);

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we will inject to ring */
	return reset_all_global_seqno(i915, seqno - 1);
}

static int reserve_gt(struct drm_i915_private *i915)
{
	int ret;

	/*
	 * Reservation is fine until we may need to wrap around
	 *
	 * By incrementing the serial for every request, we know that no
	 * individual engine may exceed that serial (as each is reset to 0
	 * on any wrap). This protects even the most pessimistic of migrations
	 * of every request from all engines onto just one.
	 */
	while (unlikely(++i915->gt.request_serial == 0)) {
		ret = reset_all_global_seqno(i915, 0);
		if (ret) {
			i915->gt.request_serial--;
			return ret;
		}
	}

	if (!i915->gt.active_requests++)
		i915_gem_unpark(i915);

	return 0;
}

static void unreserve_gt(struct drm_i915_private *i915)
{
	GEM_BUG_ON(!i915->gt.active_requests);
	if (!--i915->gt.active_requests)
		i915_gem_park(i915);
}

void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct i915_request *request)
{
	/* Space left intentionally blank */
}

static void advance_ring(struct i915_request *request)
{
	struct intel_ring *ring = request->ring;
	unsigned int tail;

	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
	if (list_is_last(&request->ring_link, &ring->request_list)) {
		/*
		 * We may race here with execlists resubmitting this request
		 * as we retire it. The resubmission will move the ring->tail
		 * forwards (to request->wa_tail). We either read the
		 * current value that was written to hw, or the value that
		 * is just about to be. Either works, if we miss the last two
		 * noops - they are safe to be replayed on a reset.
		 */
		GEM_TRACE("marking %s as inactive\n", ring->timeline->name);
		tail = READ_ONCE(request->tail);
		list_del(&ring->active_link);
	} else {
		tail = request->postfix;
	}
	list_del_init(&request->ring_link);

	ring->head = tail;
}

static void free_capture_list(struct i915_request *request)
{
	struct i915_capture_list *capture;

	capture = request->capture_list;
	while (capture) {
		struct i915_capture_list *next = capture->next;

		kfree(capture);
		capture = next;
	}
}

static void __retire_engine_request(struct intel_engine_cs *engine,
				    struct i915_request *rq)
{
	GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
		  __func__, engine->name,
		  rq->fence.context, rq->fence.seqno,
		  rq->global_seqno,
		  intel_engine_get_seqno(engine));

	GEM_BUG_ON(!i915_request_completed(rq));

	local_irq_disable();

	spin_lock(&engine->timeline.lock);
	GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
	list_del_init(&rq->link);
	spin_unlock(&engine->timeline.lock);

	spin_lock(&rq->lock);
	if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		intel_engine_cancel_signaling(rq);
	if (rq->waitboost) {
		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
	}
	spin_unlock(&rq->lock);

	local_irq_enable();

	/*
	 * The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		intel_context_unpin(engine->last_retired_context);
	engine->last_retired_context = rq->hw_context;
}

static void __retire_engine_upto(struct intel_engine_cs *engine,
				 struct i915_request *rq)
{
	struct i915_request *tmp;

	if (list_empty(&rq->link))
		return;

	do {
		tmp = list_first_entry(&engine->timeline.requests,
				       typeof(*tmp), link);

		GEM_BUG_ON(tmp->engine != engine);
		__retire_engine_request(engine, tmp);
	} while (tmp != rq);
}

static void i915_request_retire(struct i915_request *request)
{
	struct i915_gem_active *active, *next;

	GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno,
		  request->global_seqno,
		  intel_engine_get_seqno(request->engine));

	lockdep_assert_held(&request->i915->drm.struct_mutex);
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
	GEM_BUG_ON(!i915_request_completed(request));

	trace_i915_request_retire(request);

	advance_ring(request);
	free_capture_list(request);

	/*
	 * Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/*
		 * In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
		RCU_INIT_POINTER(active->request, NULL);

		active->retire(active, request);
	}

	i915_request_remove_from_client(request);

	/* Retirement decays the ban score as it is a sign of ctx progress */
	atomic_dec_if_positive(&request->gem_context->ban_score);
	intel_context_unpin(request->hw_context);

	__retire_engine_upto(request->engine, request);

	unreserve_gt(request->i915);

	i915_sched_node_fini(request->i915, &request->sched);
	i915_request_put(request);
}

void i915_request_retire_upto(struct i915_request *rq)
{
	struct intel_ring *ring = rq->ring;
	struct i915_request *tmp;

	GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  rq->global_seqno,
		  intel_engine_get_seqno(rq->engine));

	lockdep_assert_held(&rq->i915->drm.struct_mutex);
	GEM_BUG_ON(!i915_request_completed(rq));

	if (list_empty(&rq->ring_link))
		return;

	do {
		tmp = list_first_entry(&ring->request_list,
				       typeof(*tmp), ring_link);

		i915_request_retire(tmp);
	} while (tmp != rq);
}

static u32 timeline_get_seqno(struct i915_timeline *tl)
{
	return ++tl->seqno;
}

static void move_to_timeline(struct i915_request *request,
			     struct i915_timeline *timeline)
{
	GEM_BUG_ON(request->timeline == &request->engine->timeline);
	lockdep_assert_held(&request->engine->timeline.lock);

	spin_lock(&request->timeline->lock);
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);
}

void __i915_request_submit(struct i915_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	u32 seqno;

	GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
		  engine->name,
		  request->fence.context, request->fence.seqno,
		  engine->timeline.seqno + 1,
		  intel_engine_get_seqno(engine));

	GEM_BUG_ON(!irqs_disabled());
	lockdep_assert_held(&engine->timeline.lock);

	GEM_BUG_ON(request->global_seqno);

	seqno = timeline_get_seqno(&engine->timeline);
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(intel_engine_signaled(engine, seqno));

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request, false);
	spin_unlock(&request->lock);

	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);

	/* Transfer from per-context onto the global per-engine timeline */
	move_to_timeline(request, &engine->timeline);

	trace_i915_request_execute(request);

	wake_up_all(&request->execute);
}

void i915_request_submit(struct i915_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline.lock, flags);

	__i915_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

void __i915_request_unsubmit(struct i915_request *request)
{
	struct intel_engine_cs *engine = request->engine;

	GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
		  engine->name,
		  request->fence.context, request->fence.seqno,
		  request->global_seqno,
		  intel_engine_get_seqno(engine));

	GEM_BUG_ON(!irqs_disabled());
	lockdep_assert_held(&engine->timeline.lock);

	/*
	 * Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
	GEM_BUG_ON(!request->global_seqno);
	GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
	GEM_BUG_ON(intel_engine_has_completed(engine, request->global_seqno));
	engine->timeline.seqno--;

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = 0;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_cancel_signaling(request);
	spin_unlock(&request->lock);

	/* Transfer back from the global per-engine timeline to per-context */
	move_to_timeline(request, request->timeline);

	/*
	 * We don't need to wake_up any waiters on request->execute, they
	 * will get woken by any other event or us re-adding this request
	 * to the engine timeline (__i915_request_submit()). The waiters
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

void i915_request_unsubmit(struct i915_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline.lock, flags);

	__i915_request_unsubmit(request);

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
		trace_i915_request_submit(request);
		/*
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
		 */
		rcu_read_lock();
		request->engine->submit_request(request);
		rcu_read_unlock();
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

/**
 * i915_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct i915_request *
i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
{
	struct drm_i915_private *i915 = engine->i915;
	struct i915_request *rq;
	struct intel_context *ce;
	int ret;

	lockdep_assert_held(&i915->drm.struct_mutex);

	/*
	 * Preempt contexts are reserved for exclusive use to inject a
	 * preemption context switch. They are never to be used for any trivial
	 * request!
	 */
	GEM_BUG_ON(ctx == i915->preempt_context);

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	if (i915_terminally_wedged(&i915->gpu_error))
		return ERR_PTR(-EIO);

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ce = intel_context_pin(ctx, engine);
	if (IS_ERR(ce))
		return ERR_CAST(ce);

	ret = reserve_gt(i915);
	if (ret)
		goto err_unpin;

	ret = intel_ring_wait_for_space(ce->ring, MIN_SPACE_FOR_ADD_REQUEST);
	if (ret)
		goto err_unreserve;

	/* Move our oldest request to the slab-cache (if not in use!) */
	rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
	if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
	    i915_request_completed(rq))
		i915_request_retire(rq);

	/*
	 * Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
	 * of being read by __i915_gem_active_get_rcu(). As such,
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
	 * read the request->global_seqno and increment the reference count.
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	rq = kmem_cache_alloc(i915->requests,
			      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (unlikely(!rq)) {
		i915_retire_requests(i915);

		/* Ratelimit ourselves to prevent oom from malicious clients */
		rq = i915_gem_active_raw(&ce->ring->timeline->last_request,
					 &i915->drm.struct_mutex);
		if (rq)
			cond_synchronize_rcu(rq->rcustate);

		/*
		 * We've forced the client to stall and catch up with whatever
		 * backlog there might have been. As we are assuming that we
		 * caused the mempressure, now is an opportune time to
		 * recover as much memory from the request pool as is possible.
		 * Having already penalized the client to stall, we spend
		 * a little extra time to re-optimise page allocation.
		 */
		kmem_cache_shrink(i915->requests);
		rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */

		rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
		if (!rq) {
			ret = -ENOMEM;
			goto err_unreserve;
		}
	}

	rq->rcustate = get_state_synchronize_rcu();

	INIT_LIST_HEAD(&rq->active_list);
	rq->i915 = i915;
	rq->engine = engine;
	rq->gem_context = ctx;
	rq->hw_context = ce;
	rq->ring = ce->ring;
	rq->timeline = ce->ring->timeline;
	GEM_BUG_ON(rq->timeline == &engine->timeline);

	spin_lock_init(&rq->lock);
	dma_fence_init(&rq->fence,
		       &i915_fence_ops,
		       &rq->lock,
		       rq->timeline->fence_context,
		       timeline_get_seqno(rq->timeline));

	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
	init_waitqueue_head(&rq->execute);

	i915_sched_node_init(&rq->sched);

	/* No zalloc, must clear what we need by hand */
	rq->global_seqno = 0;
	rq->signaling.wait.seqno = 0;
	rq->file_priv = NULL;
	rq->batch = NULL;
	rq->capture_list = NULL;
	rq->waitboost = false;

	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_request_add() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
	GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);

	/*
	 * Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	rq->head = rq->ring->emit;

	/* Unconditionally invalidate GPU caches and TLBs. */
	ret = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (ret)
		goto err_unwind;

	ret = engine->request_alloc(rq);
	if (ret)
		goto err_unwind;

	/* Keep a second pin for the dual retirement along engine and ring */
	__intel_context_pin(ce);

	rq->infix = rq->ring->emit; /* end of header; start of user payload */

	/* Check that we didn't interrupt ourselves with a new request */
	GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
	return rq;

err_unwind:
	ce->ring->emit = rq->head;

	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&rq->active_list));
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));

	kmem_cache_free(i915->requests, rq);
err_unreserve:
	unreserve_gt(i915);
err_unpin:
	intel_context_unpin(ce);
	return ERR_PTR(ret);
}

static int
i915_request_await_request(struct i915_request *to, struct i915_request *from)
{
	int ret;

	GEM_BUG_ON(to == from);
	GEM_BUG_ON(to->timeline == from->timeline);

	if (i915_request_completed(from))
		return 0;

	if (to->engine->schedule) {
		ret = i915_sched_node_add_dependency(to->i915,
						     &to->sched,
						     &from->sched);
		if (ret < 0)
			return ret;
	}

	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       I915_FENCE_GFP);
		return ret < 0 ? ret : 0;
	}

	if (to->engine->semaphore.sync_to) {
		u32 seqno;

		GEM_BUG_ON(!from->engine->semaphore.signal);

		seqno = i915_request_global_seqno(from);
		if (!seqno)
			goto await_dma_fence;

		if (seqno <= to->timeline->global_sync[from->engine->id])
			return 0;

		trace_i915_gem_ring_sync_to(to, from);
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;

		to->timeline->global_sync[from->engine->id] = seqno;
		return 0;
	}

await_dma_fence:
	ret = i915_sw_fence_await_dma_fence(&to->submit,
					    &from->fence, 0,
					    I915_FENCE_GFP);
	return ret < 0 ? ret : 0;
}

int
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	/*
	 * Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;

		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_request_add() which ensures
		 * that requests are submitted in-order through each ring.
		 */
		if (fence->context == rq->fence.context)
			continue;

		/* Squash repeated waits to the same timelines */
		if (fence->context != rq->i915->mm.unordered_timeline &&
		    i915_timeline_sync_is_later(rq->timeline, fence))
			continue;

		if (dma_fence_is_i915(fence))
			ret = i915_request_await_request(rq, to_request(fence));
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    I915_FENCE_GFP);
		if (ret < 0)
			return ret;

		/* Record the latest fence used against each timeline */
		if (fence->context != rq->i915->mm.unordered_timeline)
			i915_timeline_sync_set(rq->timeline, fence);
	} while (--nchild);

	return 0;
}

/**
 * i915_request_await_object - set this request to (async) wait upon a bo
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 * @write: whether the wait is on behalf of a writer
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
{
	struct dma_fence *excl;
	int ret = 0;

	if (write) {
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		if (ret == 0)
			ret = i915_request_await_dma_fence(to, excl);

		dma_fence_put(excl);
	}

	return ret;
}

void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
void i915_request_add(struct i915_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_timeline *timeline = request->timeline;
	struct intel_ring *ring = request->ring;
	struct i915_request *prev;
	u32 *cs;

	GEM_TRACE("%s fence %llx:%d\n",
		  engine->name, request->fence.context, request->fence.seqno);

	lockdep_assert_held(&request->i915->drm.struct_mutex);
	trace_i915_request_add(request);

	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);

	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;
	engine->emit_flush(request, EMIT_FLUSH);

	/*
	 * Record the position of the start of the breadcrumb so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the ring's HEAD.
	 */
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);

	/*
	 * Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */

	prev = i915_gem_active_raw(&timeline->last_request,
				   &request->i915->drm.struct_mutex);
	if (prev && !i915_request_completed(prev)) {
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
		if (engine->schedule)
			__i915_sched_node_add_dependency(&request->sched,
							 &prev->sched,
							 &request->dep,
							 0);
	}

	spin_lock_irq(&timeline->lock);
	list_add_tail(&request->link, &timeline->requests);
	spin_unlock_irq(&timeline->lock);

	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
	i915_gem_active_set(&timeline->last_request, request);

	list_add_tail(&request->ring_link, &ring->request_list);
	if (list_is_first(&request->ring_link, &ring->request_list)) {
		GEM_TRACE("marking %s as active\n", ring->timeline->name);
		list_add(&ring->active_link, &request->i915->gt.active_rings);
	}
	request->emitted_jiffies = jiffies;

	/*
	 * Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
	if (engine->schedule)
		engine->schedule(request, &request->gem_context->sched);
	rcu_read_unlock();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */

	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
	if (prev && i915_request_completed(prev))
		i915_request_retire_upto(prev);
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

static bool __i915_spin_request(const struct i915_request *rq,
				u32 seqno, int state, unsigned long timeout_us)
{
	struct intel_engine_cs *engine = rq->engine;
	unsigned int irq, cpu;

	GEM_BUG_ON(!seqno);

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
	 * order in which requests are executed by the engine and so we can
	 * tell if the request has started. If the request hasn't started yet,
	 * it is a fair assumption that it will not complete within our
	 * relatively short timeout.
	 */
	if (!intel_engine_has_started(engine, seqno))
		return false;

	/*
	 * When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	irq = READ_ONCE(engine->breadcrumbs.irq_count);
	timeout_us += local_clock_us(&cpu);
	do {
		if (intel_engine_has_completed(engine, seqno))
			return seqno == i915_request_global_seqno(rq);

		/*
		 * Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (READ_ONCE(engine->breadcrumbs.irq_count) != irq)
			break;

		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

		cpu_relax();
	} while (!need_resched());

	return false;
}

static bool __i915_wait_request_check_and_reset(struct i915_request *request)
{
	struct i915_gpu_error *error = &request->i915->gpu_error;

	if (likely(!i915_reset_handoff(error)))
		return false;

	__set_current_state(TASK_RUNNING);
	i915_reset(request->i915, error->stalled_mask, error->reason);
	return true;
}

/**
 * i915_request_wait - wait until execution of request has finished
 * @rq: the request to wait upon
 * @flags: how to wait
 * @timeout: how long to wait in jiffies
 *
 * i915_request_wait() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
 *
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
 *
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
 */
long i915_request_wait(struct i915_request *rq,
		       unsigned int flags,
		       long timeout)
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
	DEFINE_WAIT_FUNC(reset, default_wake_function);
	DEFINE_WAIT_FUNC(exec, default_wake_function);
	struct intel_wait wait;

	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);

	if (i915_request_completed(rq))
		return timeout;

	if (!timeout)
		return -ETIME;

	trace_i915_request_wait_begin(rq, flags);

	add_wait_queue(&rq->execute, &exec);
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(errq, &reset);

	intel_wait_init(&wait);

restart:
	do {
		set_current_state(state);
		if (intel_wait_update_request(&wait, rq))
			break;

		if (flags & I915_WAIT_LOCKED &&
		    __i915_wait_request_check_and_reset(rq))
			continue;

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			goto complete;
		}

		if (!timeout) {
			timeout = -ETIME;
			goto complete;
		}

		timeout = io_schedule_timeout(timeout);
	} while (1);

	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));

	/* Optimistic short spin before touching IRQs */
	if (__i915_spin_request(rq, wait.seqno, state, 5))
		goto complete;

	set_current_state(state);
	if (intel_engine_add_wait(rq->engine, &wait))
		/*
		 * In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	if (flags & I915_WAIT_LOCKED)
		__i915_wait_request_check_and_reset(rq);

	for (;;) {
		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

		if (!timeout) {
			timeout = -ETIME;
			break;
		}

		timeout = io_schedule_timeout(timeout);

		if (intel_wait_complete(&wait) &&
		    intel_wait_check_request(&wait, rq))
			break;

		set_current_state(state);

wakeup:
		/*
		 * Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(rq))
			break;

		/*
		 * If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    __i915_wait_request_check_and_reset(rq))
			continue;

		/* Only spin if we know the GPU is processing this request */
		if (__i915_spin_request(rq, wait.seqno, state, 2))
			break;

		if (!intel_wait_check_request(&wait, rq)) {
			intel_engine_remove_wait(rq->engine, &wait);
			goto restart;
		}
	}

	intel_engine_remove_wait(rq->engine, &wait);
complete:
	__set_current_state(TASK_RUNNING);
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(errq, &reset);
	remove_wait_queue(&rq->execute, &exec);
	trace_i915_request_wait_end(rq);

	return timeout;
}

static void ring_retire_requests(struct intel_ring *ring)
{
	struct i915_request *request, *next;

	list_for_each_entry_safe(request, next,
				 &ring->request_list, ring_link) {
		if (!i915_request_completed(request))
			break;

		i915_request_retire(request);
	}
}

void i915_retire_requests(struct drm_i915_private *i915)
{
	struct intel_ring *ring, *tmp;

	lockdep_assert_held(&i915->drm.struct_mutex);

	if (!i915->gt.active_requests)
		return;

	list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
		ring_retire_requests(ring);
}

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_request.c"
#endif