Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

/* SPDX-License-Identifier: GPL-2.0-only */
 * Copyright (C) 2012 ARM Ltd.
#ifndef __ASM_SMP_H
#define __ASM_SMP_H

#include <linux/const.h>

/* Values for secondary_data.status */

#define CPU_MMU_OFF			(-1)
#define CPU_BOOT_SUCCESS		(0)
/* The cpu invoked ops->cpu_die, synchronise it with cpu_kill */
#define CPU_KILL_ME			(1)
/* The cpu couldn't die gracefully and is looping in the kernel */
#define CPU_STUCK_IN_KERNEL		(2)
/* Fatal system error detected by secondary CPU, crash the system */
#define CPU_PANIC_KERNEL		(3)


#ifndef __ASSEMBLY__

#include <asm/percpu.h>

#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/thread_info.h>


 * We don't use this_cpu_read(cpu_number) as that has implicit writes to
 * preempt_count, and associated (compiler) barriers, that we'd like to avoid
 * the expense of. If we're preemptible, the value can be stale at use anyway.
 * And we can't use this_cpu_ptr() either, as that winds up recursing back
 * here under CONFIG_DEBUG_PREEMPT=y.
#define raw_smp_processor_id() (*raw_cpu_ptr(&cpu_number))

 * Logical CPU mapping.
extern u64 __cpu_logical_map[NR_CPUS];
extern u64 cpu_logical_map(unsigned int cpu);

static inline void set_cpu_logical_map(unsigned int cpu, u64 hwid)
	__cpu_logical_map[cpu] = hwid;

struct seq_file;

 * Discover the set of possible CPUs and determine their
 * SMP operations.
extern void smp_init_cpus(void);

 * Register IPI interrupts with the arch SMP code
extern void set_smp_ipi_range(int ipi_base, int nr_ipi);

 * Called from the secondary holding pen, this is the secondary CPU entry point.
asmlinkage void secondary_start_kernel(void);

 * Initial data for bringing up a secondary CPU.
 * @status - Result passed back from the secondary CPU to
 *           indicate failure.
struct secondary_data {
	struct task_struct *task;
	long status;

extern struct secondary_data secondary_data;
extern long __early_cpu_boot_status;
extern void secondary_entry(void);

extern void arch_send_call_function_single_ipi(int cpu);
extern void arch_send_call_function_ipi_mask(const struct cpumask *mask);

extern void arch_send_wakeup_ipi_mask(const struct cpumask *mask);
static inline void arch_send_wakeup_ipi_mask(const struct cpumask *mask)

extern int __cpu_disable(void);

extern void __cpu_die(unsigned int cpu);
extern void cpu_die(void);
extern void cpu_die_early(void);

static inline void cpu_park_loop(void)
	for (;;) {

static inline void update_cpu_boot_status(int val)
	WRITE_ONCE(secondary_data.status, val);
	/* Ensure the visibility of the status update */

 * The calling secondary CPU has detected serious configuration mismatch,
 * which calls for a kernel panic. Update the boot status and park the calling
 * CPU.
static inline void cpu_panic_kernel(void)

 * If a secondary CPU enters the kernel but fails to come online,
 * (e.g. due to mismatched features), and cannot exit the kernel,
 * we increment cpus_stuck_in_kernel and leave the CPU in a
 * quiesecent loop within the kernel text. The memory containing
 * this loop must not be re-used for anything else as the 'stuck'
 * core is executing it.
 * This function is used to inhibit features like kexec and hibernate.
bool cpus_are_stuck_in_kernel(void);

extern void crash_smp_send_stop(void);
extern bool smp_crash_stop_failed(void);
extern void panic_smp_self_stop(void);

#endif /* ifndef __ASSEMBLY__ */

#endif /* ifndef __ASM_SMP_H */