Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
===================================
SocketCAN - Controller Area Network
===================================

Overview / What is SocketCAN
============================

The socketcan package is an implementation of CAN protocols
(Controller Area Network) for Linux.  CAN is a networking technology
which has widespread use in automation, embedded devices, and
automotive fields.  While there have been other CAN implementations
for Linux based on character devices, SocketCAN uses the Berkeley
socket API, the Linux network stack and implements the CAN device
drivers as network interfaces.  The CAN socket API has been designed
as similar as possible to the TCP/IP protocols to allow programmers,
familiar with network programming, to easily learn how to use CAN
sockets.


.. _socketcan-motivation:

Motivation / Why Using the Socket API
=====================================

There have been CAN implementations for Linux before SocketCAN so the
question arises, why we have started another project.  Most existing
implementations come as a device driver for some CAN hardware, they
are based on character devices and provide comparatively little
functionality.  Usually, there is only a hardware-specific device
driver which provides a character device interface to send and
receive raw CAN frames, directly to/from the controller hardware.
Queueing of frames and higher-level transport protocols like ISO-TP
have to be implemented in user space applications.  Also, most
character-device implementations support only one single process to
open the device at a time, similar to a serial interface.  Exchanging
the CAN controller requires employment of another device driver and
often the need for adaption of large parts of the application to the
new driver's API.

SocketCAN was designed to overcome all of these limitations.  A new
protocol family has been implemented which provides a socket interface
to user space applications and which builds upon the Linux network
layer, enabling use all of the provided queueing functionality.  A device
driver for CAN controller hardware registers itself with the Linux
network layer as a network device, so that CAN frames from the
controller can be passed up to the network layer and on to the CAN
protocol family module and also vice-versa.  Also, the protocol family
module provides an API for transport protocol modules to register, so
that any number of transport protocols can be loaded or unloaded
dynamically.  In fact, the can core module alone does not provide any
protocol and cannot be used without loading at least one additional
protocol module.  Multiple sockets can be opened at the same time,
on different or the same protocol module and they can listen/send
frames on different or the same CAN IDs.  Several sockets listening on
the same interface for frames with the same CAN ID are all passed the
same received matching CAN frames.  An application wishing to
communicate using a specific transport protocol, e.g. ISO-TP, just
selects that protocol when opening the socket, and then can read and
write application data byte streams, without having to deal with
CAN-IDs, frames, etc.

Similar functionality visible from user-space could be provided by a
character device, too, but this would lead to a technically inelegant
solution for a couple of reasons:

* **Intricate usage:**  Instead of passing a protocol argument to
  socket(2) and using bind(2) to select a CAN interface and CAN ID, an
  application would have to do all these operations using ioctl(2)s.

* **Code duplication:**  A character device cannot make use of the Linux
  network queueing code, so all that code would have to be duplicated
  for CAN networking.

* **Abstraction:**  In most existing character-device implementations, the
  hardware-specific device driver for a CAN controller directly
  provides the character device for the application to work with.
  This is at least very unusual in Unix systems for both, char and
  block devices.  For example you don't have a character device for a
  certain UART of a serial interface, a certain sound chip in your
  computer, a SCSI or IDE controller providing access to your hard
  disk or tape streamer device.  Instead, you have abstraction layers
  which provide a unified character or block device interface to the
  application on the one hand, and a interface for hardware-specific
  device drivers on the other hand.  These abstractions are provided
  by subsystems like the tty layer, the audio subsystem or the SCSI
  and IDE subsystems for the devices mentioned above.

  The easiest way to implement a CAN device driver is as a character
  device without such a (complete) abstraction layer, as is done by most
  existing drivers.  The right way, however, would be to add such a
  layer with all the functionality like registering for certain CAN
  IDs, supporting several open file descriptors and (de)multiplexing
  CAN frames between them, (sophisticated) queueing of CAN frames, and
  providing an API for device drivers to register with.  However, then
  it would be no more difficult, or may be even easier, to use the
  networking framework provided by the Linux kernel, and this is what
  SocketCAN does.

The use of the networking framework of the Linux kernel is just the
natural and most appropriate way to implement CAN for Linux.


.. _socketcan-concept:

SocketCAN Concept
=================

As described in :ref:`socketcan-motivation` the main goal of SocketCAN is to
provide a socket interface to user space applications which builds
upon the Linux network layer. In contrast to the commonly known
TCP/IP and ethernet networking, the CAN bus is a broadcast-only(!)
medium that has no MAC-layer addressing like ethernet. The CAN-identifier
(can_id) is used for arbitration on the CAN-bus. Therefore the CAN-IDs
have to be chosen uniquely on the bus. When designing a CAN-ECU
network the CAN-IDs are mapped to be sent by a specific ECU.
For this reason a CAN-ID can be treated best as a kind of source address.


.. _socketcan-receive-lists:

Receive Lists
-------------

The network transparent access of multiple applications leads to the
problem that different applications may be interested in the same
CAN-IDs from the same CAN network interface. The SocketCAN core
module - which implements the protocol family CAN - provides several
high efficient receive lists for this reason. If e.g. a user space
application opens a CAN RAW socket, the raw protocol module itself
requests the (range of) CAN-IDs from the SocketCAN core that are
requested by the user. The subscription and unsubscription of
CAN-IDs can be done for specific CAN interfaces or for all(!) known
CAN interfaces with the can_rx_(un)register() functions provided to
CAN protocol modules by the SocketCAN core (see :ref:`socketcan-core-module`).
To optimize the CPU usage at runtime the receive lists are split up
into several specific lists per device that match the requested
filter complexity for a given use-case.


.. _socketcan-local-loopback1:

Local Loopback of Sent Frames
-----------------------------

As known from other networking concepts the data exchanging
applications may run on the same or different nodes without any
change (except for the according addressing information):

.. code::

	 ___   ___   ___                   _______   ___
	| _ | | _ | | _ |                 | _   _ | | _ |
	||A|| ||B|| ||C||                 ||A| |B|| ||C||
	|___| |___| |___|                 |_______| |___|
	  |     |     |                       |       |
	-----------------(1)- CAN bus -(2)---------------

To ensure that application A receives the same information in the
example (2) as it would receive in example (1) there is need for
some kind of local loopback of the sent CAN frames on the appropriate
node.

The Linux network devices (by default) just can handle the
transmission and reception of media dependent frames. Due to the
arbitration on the CAN bus the transmission of a low prio CAN-ID
may be delayed by the reception of a high prio CAN frame. To
reflect the correct [#f1]_ traffic on the node the loopback of the sent
data has to be performed right after a successful transmission. If
the CAN network interface is not capable of performing the loopback for
some reason the SocketCAN core can do this task as a fallback solution.
See :ref:`socketcan-local-loopback1` for details (recommended).

The loopback functionality is enabled by default to reflect standard
networking behaviour for CAN applications. Due to some requests from
the RT-SocketCAN group the loopback optionally may be disabled for each
separate socket. See sockopts from the CAN RAW sockets in :ref:`socketcan-raw-sockets`.

.. [#f1] you really like to have this when you're running analyser
       tools like 'candump' or 'cansniffer' on the (same) node.


.. _socketcan-network-problem-notifications:

Network Problem Notifications
-----------------------------

The use of the CAN bus may lead to several problems on the physical
and media access control layer. Detecting and logging of these lower
layer problems is a vital requirement for CAN users to identify
hardware issues on the physical transceiver layer as well as
arbitration problems and error frames caused by the different
ECUs. The occurrence of detected errors are important for diagnosis
and have to be logged together with the exact timestamp. For this
reason the CAN interface driver can generate so called Error Message
Frames that can optionally be passed to the user application in the
same way as other CAN frames. Whenever an error on the physical layer
or the MAC layer is detected (e.g. by the CAN controller) the driver
creates an appropriate error message frame. Error messages frames can
be requested by the user application using the common CAN filter
mechanisms. Inside this filter definition the (interested) type of
errors may be selected. The reception of error messages is disabled
by default. The format of the CAN error message frame is briefly
described in the Linux header file "include/uapi/linux/can/error.h".


How to use SocketCAN
====================

Like TCP/IP, you first need to open a socket for communicating over a
CAN network. Since SocketCAN implements a new protocol family, you
need to pass PF_CAN as the first argument to the socket(2) system
call. Currently, there are two CAN protocols to choose from, the raw
socket protocol and the broadcast manager (BCM). So to open a socket,
you would write::

    s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

and::

    s = socket(PF_CAN, SOCK_DGRAM, CAN_BCM);

respectively.  After the successful creation of the socket, you would
normally use the bind(2) system call to bind the socket to a CAN
interface (which is different from TCP/IP due to different addressing
- see :ref:`socketcan-concept`). After binding (CAN_RAW) or connecting (CAN_BCM)
the socket, you can read(2) and write(2) from/to the socket or use
send(2), sendto(2), sendmsg(2) and the recv* counterpart operations
on the socket as usual. There are also CAN specific socket options
described below.

The Classical CAN frame structure (aka CAN 2.0B), the CAN FD frame structure
and the sockaddr structure are defined in include/linux/can.h:

.. code-block:: C

    struct can_frame {
            canid_t can_id;  /* 32 bit CAN_ID + EFF/RTR/ERR flags */
            union {
                    /* CAN frame payload length in byte (0 .. CAN_MAX_DLEN)
                     * was previously named can_dlc so we need to carry that
                     * name for legacy support
                     */
                    __u8 len;
                    __u8 can_dlc; /* deprecated */
            };
            __u8    __pad;   /* padding */
            __u8    __res0;  /* reserved / padding */
            __u8    len8_dlc; /* optional DLC for 8 byte payload length (9 .. 15) */
            __u8    data[8] __attribute__((aligned(8)));
    };

Remark: The len element contains the payload length in bytes and should be
used instead of can_dlc. The deprecated can_dlc was misleadingly named as
it always contained the plain payload length in bytes and not the so called
'data length code' (DLC).

To pass the raw DLC from/to a Classical CAN network device the len8_dlc
element can contain values 9 .. 15 when the len element is 8 (the real
payload length for all DLC values greater or equal to 8).

The alignment of the (linear) payload data[] to a 64bit boundary
allows the user to define their own structs and unions to easily access
the CAN payload. There is no given byteorder on the CAN bus by
default. A read(2) system call on a CAN_RAW socket transfers a
struct can_frame to the user space.

The sockaddr_can structure has an interface index like the
PF_PACKET socket, that also binds to a specific interface:

.. code-block:: C

    struct sockaddr_can {
            sa_family_t can_family;
            int         can_ifindex;
            union {
                    /* transport protocol class address info (e.g. ISOTP) */
                    struct { canid_t rx_id, tx_id; } tp;

                    /* J1939 address information */
                    struct {
                            /* 8 byte name when using dynamic addressing */
                            __u64 name;

                            /* pgn:
                             * 8 bit: PS in PDU2 case, else 0
                             * 8 bit: PF
                             * 1 bit: DP
                             * 1 bit: reserved
                             */
                            __u32 pgn;

                            /* 1 byte address */
                            __u8 addr;
                    } j1939;

                    /* reserved for future CAN protocols address information */
            } can_addr;
    };

To determine the interface index an appropriate ioctl() has to
be used (example for CAN_RAW sockets without error checking):

.. code-block:: C

    int s;
    struct sockaddr_can addr;
    struct ifreq ifr;

    s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

    strcpy(ifr.ifr_name, "can0" );
    ioctl(s, SIOCGIFINDEX, &ifr);

    addr.can_family = AF_CAN;
    addr.can_ifindex = ifr.ifr_ifindex;

    bind(s, (struct sockaddr *)&addr, sizeof(addr));

    (..)

To bind a socket to all(!) CAN interfaces the interface index must
be 0 (zero). In this case the socket receives CAN frames from every
enabled CAN interface. To determine the originating CAN interface
the system call recvfrom(2) may be used instead of read(2). To send
on a socket that is bound to 'any' interface sendto(2) is needed to
specify the outgoing interface.

Reading CAN frames from a bound CAN_RAW socket (see above) consists
of reading a struct can_frame:

.. code-block:: C

    struct can_frame frame;

    nbytes = read(s, &frame, sizeof(struct can_frame));

    if (nbytes < 0) {
            perror("can raw socket read");
            return 1;
    }

    /* paranoid check ... */
    if (nbytes < sizeof(struct can_frame)) {
            fprintf(stderr, "read: incomplete CAN frame\n");
            return 1;
    }

    /* do something with the received CAN frame */

Writing CAN frames can be done similarly, with the write(2) system call::

    nbytes = write(s, &frame, sizeof(struct can_frame));

When the CAN interface is bound to 'any' existing CAN interface
(addr.can_ifindex = 0) it is recommended to use recvfrom(2) if the
information about the originating CAN interface is needed:

.. code-block:: C

    struct sockaddr_can addr;
    struct ifreq ifr;
    socklen_t len = sizeof(addr);
    struct can_frame frame;

    nbytes = recvfrom(s, &frame, sizeof(struct can_frame),
                      0, (struct sockaddr*)&addr, &len);

    /* get interface name of the received CAN frame */
    ifr.ifr_ifindex = addr.can_ifindex;
    ioctl(s, SIOCGIFNAME, &ifr);
    printf("Received a CAN frame from interface %s", ifr.ifr_name);

To write CAN frames on sockets bound to 'any' CAN interface the
outgoing interface has to be defined certainly:

.. code-block:: C

    strcpy(ifr.ifr_name, "can0");
    ioctl(s, SIOCGIFINDEX, &ifr);
    addr.can_ifindex = ifr.ifr_ifindex;
    addr.can_family  = AF_CAN;

    nbytes = sendto(s, &frame, sizeof(struct can_frame),
                    0, (struct sockaddr*)&addr, sizeof(addr));

An accurate timestamp can be obtained with an ioctl(2) call after reading
a message from the socket:

.. code-block:: C

    struct timeval tv;
    ioctl(s, SIOCGSTAMP, &tv);

The timestamp has a resolution of one microsecond and is set automatically
at the reception of a CAN frame.

Remark about CAN FD (flexible data rate) support:

Generally the handling of CAN FD is very similar to the formerly described
examples. The new CAN FD capable CAN controllers support two different
bitrates for the arbitration phase and the payload phase of the CAN FD frame
and up to 64 bytes of payload. This extended payload length breaks all the
kernel interfaces (ABI) which heavily rely on the CAN frame with fixed eight
bytes of payload (struct can_frame) like the CAN_RAW socket. Therefore e.g.
the CAN_RAW socket supports a new socket option CAN_RAW_FD_FRAMES that
switches the socket into a mode that allows the handling of CAN FD frames
and Classical CAN frames simultaneously (see :ref:`socketcan-rawfd`).

The struct canfd_frame is defined in include/linux/can.h:

.. code-block:: C

    struct canfd_frame {
            canid_t can_id;  /* 32 bit CAN_ID + EFF/RTR/ERR flags */
            __u8    len;     /* frame payload length in byte (0 .. 64) */
            __u8    flags;   /* additional flags for CAN FD */
            __u8    __res0;  /* reserved / padding */
            __u8    __res1;  /* reserved / padding */
            __u8    data[64] __attribute__((aligned(8)));
    };

The struct canfd_frame and the existing struct can_frame have the can_id,
the payload length and the payload data at the same offset inside their
structures. This allows to handle the different structures very similar.
When the content of a struct can_frame is copied into a struct canfd_frame
all structure elements can be used as-is - only the data[] becomes extended.

When introducing the struct canfd_frame it turned out that the data length
code (DLC) of the struct can_frame was used as a length information as the
length and the DLC has a 1:1 mapping in the range of 0 .. 8. To preserve
the easy handling of the length information the canfd_frame.len element
contains a plain length value from 0 .. 64. So both canfd_frame.len and
can_frame.len are equal and contain a length information and no DLC.
For details about the distinction of CAN and CAN FD capable devices and
the mapping to the bus-relevant data length code (DLC), see :ref:`socketcan-can-fd-driver`.

The length of the two CAN(FD) frame structures define the maximum transfer
unit (MTU) of the CAN(FD) network interface and skbuff data length. Two
definitions are specified for CAN specific MTUs in include/linux/can.h:

.. code-block:: C

  #define CAN_MTU   (sizeof(struct can_frame))   == 16  => Classical CAN frame
  #define CANFD_MTU (sizeof(struct canfd_frame)) == 72  => CAN FD frame


.. _socketcan-raw-sockets:

RAW Protocol Sockets with can_filters (SOCK_RAW)
------------------------------------------------

Using CAN_RAW sockets is extensively comparable to the commonly
known access to CAN character devices. To meet the new possibilities
provided by the multi user SocketCAN approach, some reasonable
defaults are set at RAW socket binding time:

- The filters are set to exactly one filter receiving everything
- The socket only receives valid data frames (=> no error message frames)
- The loopback of sent CAN frames is enabled (see :ref:`socketcan-local-loopback2`)
- The socket does not receive its own sent frames (in loopback mode)

These default settings may be changed before or after binding the socket.
To use the referenced definitions of the socket options for CAN_RAW
sockets, include <linux/can/raw.h>.


.. _socketcan-rawfilter:

RAW socket option CAN_RAW_FILTER
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The reception of CAN frames using CAN_RAW sockets can be controlled
by defining 0 .. n filters with the CAN_RAW_FILTER socket option.

The CAN filter structure is defined in include/linux/can.h:

.. code-block:: C

    struct can_filter {
            canid_t can_id;
            canid_t can_mask;
    };

A filter matches, when:

.. code-block:: C

    <received_can_id> & mask == can_id & mask

which is analogous to known CAN controllers hardware filter semantics.
The filter can be inverted in this semantic, when the CAN_INV_FILTER
bit is set in can_id element of the can_filter structure. In
contrast to CAN controller hardware filters the user may set 0 .. n
receive filters for each open socket separately:

.. code-block:: C

    struct can_filter rfilter[2];

    rfilter[0].can_id   = 0x123;
    rfilter[0].can_mask = CAN_SFF_MASK;
    rfilter[1].can_id   = 0x200;
    rfilter[1].can_mask = 0x700;

    setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, &rfilter, sizeof(rfilter));

To disable the reception of CAN frames on the selected CAN_RAW socket:

.. code-block:: C

    setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, NULL, 0);

To set the filters to zero filters is quite obsolete as to not read
data causes the raw socket to discard the received CAN frames. But
having this 'send only' use-case we may remove the receive list in the
Kernel to save a little (really a very little!) CPU usage.

CAN Filter Usage Optimisation
.............................

The CAN filters are processed in per-device filter lists at CAN frame
reception time. To reduce the number of checks that need to be performed
while walking through the filter lists the CAN core provides an optimized
filter handling when the filter subscription focusses on a single CAN ID.

For the possible 2048 SFF CAN identifiers the identifier is used as an index
to access the corresponding subscription list without any further checks.
For the 2^29 possible EFF CAN identifiers a 10 bit XOR folding is used as
hash function to retrieve the EFF table index.

To benefit from the optimized filters for single CAN identifiers the
CAN_SFF_MASK or CAN_EFF_MASK have to be set into can_filter.mask together
with set CAN_EFF_FLAG and CAN_RTR_FLAG bits. A set CAN_EFF_FLAG bit in the
can_filter.mask makes clear that it matters whether a SFF or EFF CAN ID is
subscribed. E.g. in the example from above:

.. code-block:: C

    rfilter[0].can_id   = 0x123;
    rfilter[0].can_mask = CAN_SFF_MASK;

both SFF frames with CAN ID 0x123 and EFF frames with 0xXXXXX123 can pass.

To filter for only 0x123 (SFF) and 0x12345678 (EFF) CAN identifiers the
filter has to be defined in this way to benefit from the optimized filters:

.. code-block:: C

    struct can_filter rfilter[2];

    rfilter[0].can_id   = 0x123;
    rfilter[0].can_mask = (CAN_EFF_FLAG | CAN_RTR_FLAG | CAN_SFF_MASK);
    rfilter[1].can_id   = 0x12345678 | CAN_EFF_FLAG;
    rfilter[1].can_mask = (CAN_EFF_FLAG | CAN_RTR_FLAG | CAN_EFF_MASK);

    setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, &rfilter, sizeof(rfilter));


RAW Socket Option CAN_RAW_ERR_FILTER
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

As described in :ref:`socketcan-network-problem-notifications` the CAN interface driver can generate so
called Error Message Frames that can optionally be passed to the user
application in the same way as other CAN frames. The possible
errors are divided into different error classes that may be filtered
using the appropriate error mask. To register for every possible
error condition CAN_ERR_MASK can be used as value for the error mask.
The values for the error mask are defined in linux/can/error.h:

.. code-block:: C

    can_err_mask_t err_mask = ( CAN_ERR_TX_TIMEOUT | CAN_ERR_BUSOFF );

    setsockopt(s, SOL_CAN_RAW, CAN_RAW_ERR_FILTER,
               &err_mask, sizeof(err_mask));


RAW Socket Option CAN_RAW_LOOPBACK
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To meet multi user needs the local loopback is enabled by default
(see :ref:`socketcan-local-loopback1` for details). But in some embedded use-cases
(e.g. when only one application uses the CAN bus) this loopback
functionality can be disabled (separately for each socket):

.. code-block:: C

    int loopback = 0; /* 0 = disabled, 1 = enabled (default) */

    setsockopt(s, SOL_CAN_RAW, CAN_RAW_LOOPBACK, &loopback, sizeof(loopback));


RAW socket option CAN_RAW_RECV_OWN_MSGS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When the local loopback is enabled, all the sent CAN frames are
looped back to the open CAN sockets that registered for the CAN
frames' CAN-ID on this given interface to meet the multi user
needs. The reception of the CAN frames on the same socket that was
sending the CAN frame is assumed to be unwanted and therefore
disabled by default. This default behaviour may be changed on
demand:

.. code-block:: C

    int recv_own_msgs = 1; /* 0 = disabled (default), 1 = enabled */

    setsockopt(s, SOL_CAN_RAW, CAN_RAW_RECV_OWN_MSGS,
               &recv_own_msgs, sizeof(recv_own_msgs));


.. _socketcan-rawfd:

RAW Socket Option CAN_RAW_FD_FRAMES
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CAN FD support in CAN_RAW sockets can be enabled with a new socket option
CAN_RAW_FD_FRAMES which is off by default. When the new socket option is
not supported by the CAN_RAW socket (e.g. on older kernels), switching the
CAN_RAW_FD_FRAMES option returns the error -ENOPROTOOPT.

Once CAN_RAW_FD_FRAMES is enabled the application can send both CAN frames
and CAN FD frames. OTOH the application has to handle CAN and CAN FD frames
when reading from the socket:

.. code-block:: C

    CAN_RAW_FD_FRAMES enabled:  CAN_MTU and CANFD_MTU are allowed
    CAN_RAW_FD_FRAMES disabled: only CAN_MTU is allowed (default)

Example:

.. code-block:: C

    [ remember: CANFD_MTU == sizeof(struct canfd_frame) ]

    struct canfd_frame cfd;

    nbytes = read(s, &cfd, CANFD_MTU);

    if (nbytes == CANFD_MTU) {
            printf("got CAN FD frame with length %d\n", cfd.len);
            /* cfd.flags contains valid data */
    } else if (nbytes == CAN_MTU) {
            printf("got Classical CAN frame with length %d\n", cfd.len);
            /* cfd.flags is undefined */
    } else {
            fprintf(stderr, "read: invalid CAN(FD) frame\n");
            return 1;
    }

    /* the content can be handled independently from the received MTU size */

    printf("can_id: %X data length: %d data: ", cfd.can_id, cfd.len);
    for (i = 0; i < cfd.len; i++)
            printf("%02X ", cfd.data[i]);

When reading with size CANFD_MTU only returns CAN_MTU bytes that have
been received from the socket a Classical CAN frame has been read into the
provided CAN FD structure. Note that the canfd_frame.flags data field is
not specified in the struct can_frame and therefore it is only valid in
CANFD_MTU sized CAN FD frames.

Implementation hint for new CAN applications:

To build a CAN FD aware application use struct canfd_frame as basic CAN
data structure for CAN_RAW based applications. When the application is
executed on an older Linux kernel and switching the CAN_RAW_FD_FRAMES
socket option returns an error: No problem. You'll get Classical CAN frames
or CAN FD frames and can process them the same way.

When sending to CAN devices make sure that the device is capable to handle
CAN FD frames by checking if the device maximum transfer unit is CANFD_MTU.
The CAN device MTU can be retrieved e.g. with a SIOCGIFMTU ioctl() syscall.


RAW socket option CAN_RAW_JOIN_FILTERS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The CAN_RAW socket can set multiple CAN identifier specific filters that
lead to multiple filters in the af_can.c filter processing. These filters
are indenpendent from each other which leads to logical OR'ed filters when
applied (see :ref:`socketcan-rawfilter`).

This socket option joines the given CAN filters in the way that only CAN
frames are passed to user space that matched *all* given CAN filters. The
semantic for the applied filters is therefore changed to a logical AND.

This is useful especially when the filterset is a combination of filters
where the CAN_INV_FILTER flag is set in order to notch single CAN IDs or
CAN ID ranges from the incoming traffic.


RAW Socket Returned Message Flags
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When using recvmsg() call, the msg->msg_flags may contain following flags:

MSG_DONTROUTE:
	set when the received frame was created on the local host.

MSG_CONFIRM:
	set when the frame was sent via the socket it is received on.
	This flag can be interpreted as a 'transmission confirmation' when the
	CAN driver supports the echo of frames on driver level, see
	:ref:`socketcan-local-loopback1` and :ref:`socketcan-local-loopback2`.
	In order to receive such messages, CAN_RAW_RECV_OWN_MSGS must be set.


Broadcast Manager Protocol Sockets (SOCK_DGRAM)
-----------------------------------------------

The Broadcast Manager protocol provides a command based configuration
interface to filter and send (e.g. cyclic) CAN messages in kernel space.

Receive filters can be used to down sample frequent messages; detect events
such as message contents changes, packet length changes, and do time-out
monitoring of received messages.

Periodic transmission tasks of CAN frames or a sequence of CAN frames can be
created and modified at runtime; both the message content and the two
possible transmit intervals can be altered.

A BCM socket is not intended for sending individual CAN frames using the
struct can_frame as known from the CAN_RAW socket. Instead a special BCM
configuration message is defined. The basic BCM configuration message used
to communicate with the broadcast manager and the available operations are
defined in the linux/can/bcm.h include. The BCM message consists of a
message header with a command ('opcode') followed by zero or more CAN frames.
The broadcast manager sends responses to user space in the same form:

.. code-block:: C

    struct bcm_msg_head {
            __u32 opcode;                   /* command */
            __u32 flags;                    /* special flags */
            __u32 count;                    /* run 'count' times with ival1 */
            struct timeval ival1, ival2;    /* count and subsequent interval */
            canid_t can_id;                 /* unique can_id for task */
            __u32 nframes;                  /* number of can_frames following */
            struct can_frame frames[0];
    };

The aligned payload 'frames' uses the same basic CAN frame structure defined
at the beginning of :ref:`socketcan-rawfd` and in the include/linux/can.h include. All
messages to the broadcast manager from user space have this structure.

Note a CAN_BCM socket must be connected instead of bound after socket
creation (example without error checking):

.. code-block:: C

    int s;
    struct sockaddr_can addr;
    struct ifreq ifr;

    s = socket(PF_CAN, SOCK_DGRAM, CAN_BCM);

    strcpy(ifr.ifr_name, "can0");
    ioctl(s, SIOCGIFINDEX, &ifr);

    addr.can_family = AF_CAN;
    addr.can_ifindex = ifr.ifr_ifindex;

    connect(s, (struct sockaddr *)&addr, sizeof(addr));

    (..)

The broadcast manager socket is able to handle any number of in flight
transmissions or receive filters concurrently. The different RX/TX jobs are
distinguished by the unique can_id in each BCM message. However additional
CAN_BCM sockets are recommended to communicate on multiple CAN interfaces.
When the broadcast manager socket is bound to 'any' CAN interface (=> the
interface index is set to zero) the configured receive filters apply to any
CAN interface unless the sendto() syscall is used to overrule the 'any' CAN
interface index. When using recvfrom() instead of read() to retrieve BCM
socket messages the originating CAN interface is provided in can_ifindex.


Broadcast Manager Operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The opcode defines the operation for the broadcast manager to carry out,
or details the broadcast managers response to several events, including
user requests.

Transmit Operations (user space to broadcast manager):

TX_SETUP:
	Create (cyclic) transmission task.

TX_DELETE:
	Remove (cyclic) transmission task, requires only can_id.

TX_READ:
	Read properties of (cyclic) transmission task for can_id.

TX_SEND:
	Send one CAN frame.

Transmit Responses (broadcast manager to user space):

TX_STATUS:
	Reply to TX_READ request (transmission task configuration).

TX_EXPIRED:
	Notification when counter finishes sending at initial interval
	'ival1'. Requires the TX_COUNTEVT flag to be set at TX_SETUP.

Receive Operations (user space to broadcast manager):

RX_SETUP:
	Create RX content filter subscription.

RX_DELETE:
	Remove RX content filter subscription, requires only can_id.

RX_READ:
	Read properties of RX content filter subscription for can_id.

Receive Responses (broadcast manager to user space):

RX_STATUS:
	Reply to RX_READ request (filter task configuration).

RX_TIMEOUT:
	Cyclic message is detected to be absent (timer ival1 expired).

RX_CHANGED:
	BCM message with updated CAN frame (detected content change).
	Sent on first message received or on receipt of revised CAN messages.


Broadcast Manager Message Flags
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When sending a message to the broadcast manager the 'flags' element may
contain the following flag definitions which influence the behaviour:

SETTIMER:
	Set the values of ival1, ival2 and count

STARTTIMER:
	Start the timer with the actual values of ival1, ival2
	and count. Starting the timer leads simultaneously to emit a CAN frame.

TX_COUNTEVT:
	Create the message TX_EXPIRED when count expires

TX_ANNOUNCE:
	A change of data by the process is emitted immediately.

TX_CP_CAN_ID:
	Copies the can_id from the message header to each
	subsequent frame in frames. This is intended as usage simplification. For
	TX tasks the unique can_id from the message header may differ from the
	can_id(s) stored for transmission in the subsequent struct can_frame(s).

RX_FILTER_ID:
	Filter by can_id alone, no frames required (nframes=0).

RX_CHECK_DLC:
	A change of the DLC leads to an RX_CHANGED.

RX_NO_AUTOTIMER:
	Prevent automatically starting the timeout monitor.

RX_ANNOUNCE_RESUME:
	If passed at RX_SETUP and a receive timeout occurred, a
	RX_CHANGED message will be generated when the (cyclic) receive restarts.

TX_RESET_MULTI_IDX:
	Reset the index for the multiple frame transmission.

RX_RTR_FRAME:
	Send reply for RTR-request (placed in op->frames[0]).

CAN_FD_FRAME:
	The CAN frames following the bcm_msg_head are struct canfd_frame's

Broadcast Manager Transmission Timers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Periodic transmission configurations may use up to two interval timers.
In this case the BCM sends a number of messages ('count') at an interval
'ival1', then continuing to send at another given interval 'ival2'. When
only one timer is needed 'count' is set to zero and only 'ival2' is used.
When SET_TIMER and START_TIMER flag were set the timers are activated.
The timer values can be altered at runtime when only SET_TIMER is set.


Broadcast Manager message sequence transmission
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Up to 256 CAN frames can be transmitted in a sequence in the case of a cyclic
TX task configuration. The number of CAN frames is provided in the 'nframes'
element of the BCM message head. The defined number of CAN frames are added
as array to the TX_SETUP BCM configuration message:

.. code-block:: C

    /* create a struct to set up a sequence of four CAN frames */
    struct {
            struct bcm_msg_head msg_head;
            struct can_frame frame[4];
    } mytxmsg;

    (..)
    mytxmsg.msg_head.nframes = 4;
    (..)

    write(s, &mytxmsg, sizeof(mytxmsg));

With every transmission the index in the array of CAN frames is increased
and set to zero at index overflow.


Broadcast Manager Receive Filter Timers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The timer values ival1 or ival2 may be set to non-zero values at RX_SETUP.
When the SET_TIMER flag is set the timers are enabled:

ival1:
	Send RX_TIMEOUT when a received message is not received again within
	the given time. When START_TIMER is set at RX_SETUP the timeout detection
	is activated directly - even without a former CAN frame reception.

ival2:
	Throttle the received message rate down to the value of ival2. This
	is useful to reduce messages for the application when the signal inside the
	CAN frame is stateless as state changes within the ival2 periode may get
	lost.

Broadcast Manager Multiplex Message Receive Filter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To filter for content changes in multiplex message sequences an array of more
than one CAN frames can be passed in a RX_SETUP configuration message. The
data bytes of the first CAN frame contain the mask of relevant bits that
have to match in the subsequent CAN frames with the received CAN frame.
If one of the subsequent CAN frames is matching the bits in that frame data
mark the relevant content to be compared with the previous received content.
Up to 257 CAN frames (multiplex filter bit mask CAN frame plus 256 CAN
filters) can be added as array to the TX_SETUP BCM configuration message:

.. code-block:: C

    /* usually used to clear CAN frame data[] - beware of endian problems! */
    #define U64_DATA(p) (*(unsigned long long*)(p)->data)

    struct {
            struct bcm_msg_head msg_head;
            struct can_frame frame[5];
    } msg;

    msg.msg_head.opcode  = RX_SETUP;
    msg.msg_head.can_id  = 0x42;
    msg.msg_head.flags   = 0;
    msg.msg_head.nframes = 5;
    U64_DATA(&msg.frame[0]) = 0xFF00000000000000ULL; /* MUX mask */
    U64_DATA(&msg.frame[1]) = 0x01000000000000FFULL; /* data mask (MUX 0x01) */
    U64_DATA(&msg.frame[2]) = 0x0200FFFF000000FFULL; /* data mask (MUX 0x02) */
    U64_DATA(&msg.frame[3]) = 0x330000FFFFFF0003ULL; /* data mask (MUX 0x33) */
    U64_DATA(&msg.frame[4]) = 0x4F07FC0FF0000000ULL; /* data mask (MUX 0x4F) */

    write(s, &msg, sizeof(msg));


Broadcast Manager CAN FD Support
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The programming API of the CAN_BCM depends on struct can_frame which is
given as array directly behind the bcm_msg_head structure. To follow this
schema for the CAN FD frames a new flag 'CAN_FD_FRAME' in the bcm_msg_head
flags indicates that the concatenated CAN frame structures behind the
bcm_msg_head are defined as struct canfd_frame:

.. code-block:: C

    struct {
            struct bcm_msg_head msg_head;
            struct canfd_frame frame[5];
    } msg;

    msg.msg_head.opcode  = RX_SETUP;
    msg.msg_head.can_id  = 0x42;
    msg.msg_head.flags   = CAN_FD_FRAME;
    msg.msg_head.nframes = 5;
    (..)

When using CAN FD frames for multiplex filtering the MUX mask is still
expected in the first 64 bit of the struct canfd_frame data section.


Connected Transport Protocols (SOCK_SEQPACKET)
----------------------------------------------

(to be written)


Unconnected Transport Protocols (SOCK_DGRAM)
--------------------------------------------

(to be written)


.. _socketcan-core-module:

SocketCAN Core Module
=====================

The SocketCAN core module implements the protocol family
PF_CAN. CAN protocol modules are loaded by the core module at
runtime. The core module provides an interface for CAN protocol
modules to subscribe needed CAN IDs (see :ref:`socketcan-receive-lists`).


can.ko Module Params
--------------------

- **stats_timer**:
  To calculate the SocketCAN core statistics
  (e.g. current/maximum frames per second) this 1 second timer is
  invoked at can.ko module start time by default. This timer can be
  disabled by using stattimer=0 on the module commandline.

- **debug**:
  (removed since SocketCAN SVN r546)


procfs content
--------------

As described in :ref:`socketcan-receive-lists` the SocketCAN core uses several filter
lists to deliver received CAN frames to CAN protocol modules. These
receive lists, their filters and the count of filter matches can be
checked in the appropriate receive list. All entries contain the
device and a protocol module identifier::

    foo@bar:~$ cat /proc/net/can/rcvlist_all

    receive list 'rx_all':
      (vcan3: no entry)
      (vcan2: no entry)
      (vcan1: no entry)
      device   can_id   can_mask  function  userdata   matches  ident
       vcan0     000    00000000  f88e6370  f6c6f400         0  raw
      (any: no entry)

In this example an application requests any CAN traffic from vcan0::

    rcvlist_all - list for unfiltered entries (no filter operations)
    rcvlist_eff - list for single extended frame (EFF) entries
    rcvlist_err - list for error message frames masks
    rcvlist_fil - list for mask/value filters
    rcvlist_inv - list for mask/value filters (inverse semantic)
    rcvlist_sff - list for single standard frame (SFF) entries

Additional procfs files in /proc/net/can::

    stats       - SocketCAN core statistics (rx/tx frames, match ratios, ...)
    reset_stats - manual statistic reset
    version     - prints SocketCAN core and ABI version (removed in Linux 5.10)


Writing Own CAN Protocol Modules
--------------------------------

To implement a new protocol in the protocol family PF_CAN a new
protocol has to be defined in include/linux/can.h .
The prototypes and definitions to use the SocketCAN core can be
accessed by including include/linux/can/core.h .
In addition to functions that register the CAN protocol and the
CAN device notifier chain there are functions to subscribe CAN
frames received by CAN interfaces and to send CAN frames::

    can_rx_register   - subscribe CAN frames from a specific interface
    can_rx_unregister - unsubscribe CAN frames from a specific interface
    can_send          - transmit a CAN frame (optional with local loopback)

For details see the kerneldoc documentation in net/can/af_can.c or
the source code of net/can/raw.c or net/can/bcm.c .


CAN Network Drivers
===================

Writing a CAN network device driver is much easier than writing a
CAN character device driver. Similar to other known network device
drivers you mainly have to deal with:

- TX: Put the CAN frame from the socket buffer to the CAN controller.
- RX: Put the CAN frame from the CAN controller to the socket buffer.

See e.g. at Documentation/networking/netdevices.rst . The differences
for writing CAN network device driver are described below:


General Settings
----------------

.. code-block:: C

    dev->type  = ARPHRD_CAN; /* the netdevice hardware type */
    dev->flags = IFF_NOARP;  /* CAN has no arp */

    dev->mtu = CAN_MTU; /* sizeof(struct can_frame) -> Classical CAN interface */

    or alternative, when the controller supports CAN with flexible data rate:
    dev->mtu = CANFD_MTU; /* sizeof(struct canfd_frame) -> CAN FD interface */

The struct can_frame or struct canfd_frame is the payload of each socket
buffer (skbuff) in the protocol family PF_CAN.


.. _socketcan-local-loopback2:

Local Loopback of Sent Frames
-----------------------------

As described in :ref:`socketcan-local-loopback1` the CAN network device driver should
support a local loopback functionality similar to the local echo
e.g. of tty devices. In this case the driver flag IFF_ECHO has to be
set to prevent the PF_CAN core from locally echoing sent frames
(aka loopback) as fallback solution::

    dev->flags = (IFF_NOARP | IFF_ECHO);


CAN Controller Hardware Filters
-------------------------------

To reduce the interrupt load on deep embedded systems some CAN
controllers support the filtering of CAN IDs or ranges of CAN IDs.
These hardware filter capabilities vary from controller to
controller and have to be identified as not feasible in a multi-user
networking approach. The use of the very controller specific
hardware filters could make sense in a very dedicated use-case, as a
filter on driver level would affect all users in the multi-user
system. The high efficient filter sets inside the PF_CAN core allow
to set different multiple filters for each socket separately.
Therefore the use of hardware filters goes to the category 'handmade
tuning on deep embedded systems'. The author is running a MPC603e
@133MHz with four SJA1000 CAN controllers from 2002 under heavy bus
load without any problems ...


The Virtual CAN Driver (vcan)
-----------------------------

Similar to the network loopback devices, vcan offers a virtual local
CAN interface. A full qualified address on CAN consists of

- a unique CAN Identifier (CAN ID)
- the CAN bus this CAN ID is transmitted on (e.g. can0)

so in common use cases more than one virtual CAN interface is needed.

The virtual CAN interfaces allow the transmission and reception of CAN
frames without real CAN controller hardware. Virtual CAN network
devices are usually named 'vcanX', like vcan0 vcan1 vcan2 ...
When compiled as a module the virtual CAN driver module is called vcan.ko

Since Linux Kernel version 2.6.24 the vcan driver supports the Kernel
netlink interface to create vcan network devices. The creation and
removal of vcan network devices can be managed with the ip(8) tool::

  - Create a virtual CAN network interface:
       $ ip link add type vcan

  - Create a virtual CAN network interface with a specific name 'vcan42':
       $ ip link add dev vcan42 type vcan

  - Remove a (virtual CAN) network interface 'vcan42':
       $ ip link del vcan42


The CAN Network Device Driver Interface
---------------------------------------

The CAN network device driver interface provides a generic interface
to setup, configure and monitor CAN network devices. The user can then
configure the CAN device, like setting the bit-timing parameters, via
the netlink interface using the program "ip" from the "IPROUTE2"
utility suite. The following chapter describes briefly how to use it.
Furthermore, the interface uses a common data structure and exports a
set of common functions, which all real CAN network device drivers
should use. Please have a look to the SJA1000 or MSCAN driver to
understand how to use them. The name of the module is can-dev.ko.


Netlink interface to set/get devices properties
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The CAN device must be configured via netlink interface. The supported
netlink message types are defined and briefly described in
"include/linux/can/netlink.h". CAN link support for the program "ip"
of the IPROUTE2 utility suite is available and it can be used as shown
below:

Setting CAN device properties::

    $ ip link set can0 type can help
    Usage: ip link set DEVICE type can
        [ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |
        [ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1
          phase-seg2 PHASE-SEG2 [ sjw SJW ] ]

        [ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |
        [ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1
          dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]

        [ loopback { on | off } ]
        [ listen-only { on | off } ]
        [ triple-sampling { on | off } ]
        [ one-shot { on | off } ]
        [ berr-reporting { on | off } ]
        [ fd { on | off } ]
        [ fd-non-iso { on | off } ]
        [ presume-ack { on | off } ]
        [ cc-len8-dlc { on | off } ]

        [ restart-ms TIME-MS ]
        [ restart ]

        Where: BITRATE       := { 1..1000000 }
               SAMPLE-POINT  := { 0.000..0.999 }
               TQ            := { NUMBER }
               PROP-SEG      := { 1..8 }
               PHASE-SEG1    := { 1..8 }
               PHASE-SEG2    := { 1..8 }
               SJW           := { 1..4 }
               RESTART-MS    := { 0 | NUMBER }

Display CAN device details and statistics::

    $ ip -details -statistics link show can0
    2: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP qlen 10
      link/can
      can <TRIPLE-SAMPLING> state ERROR-ACTIVE restart-ms 100
      bitrate 125000 sample_point 0.875
      tq 125 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1
      sja1000: tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1
      clock 8000000
      re-started bus-errors arbit-lost error-warn error-pass bus-off
      41         17457      0          41         42         41
      RX: bytes  packets  errors  dropped overrun mcast
      140859     17608    17457   0       0       0
      TX: bytes  packets  errors  dropped carrier collsns
      861        112      0       41      0       0

More info to the above output:

"<TRIPLE-SAMPLING>"
	Shows the list of selected CAN controller modes: LOOPBACK,
	LISTEN-ONLY, or TRIPLE-SAMPLING.

"state ERROR-ACTIVE"
	The current state of the CAN controller: "ERROR-ACTIVE",
	"ERROR-WARNING", "ERROR-PASSIVE", "BUS-OFF" or "STOPPED"

"restart-ms 100"
	Automatic restart delay time. If set to a non-zero value, a
	restart of the CAN controller will be triggered automatically
	in case of a bus-off condition after the specified delay time
	in milliseconds. By default it's off.

"bitrate 125000 sample-point 0.875"
	Shows the real bit-rate in bits/sec and the sample-point in the
	range 0.000..0.999. If the calculation of bit-timing parameters
	is enabled in the kernel (CONFIG_CAN_CALC_BITTIMING=y), the
	bit-timing can be defined by setting the "bitrate" argument.
	Optionally the "sample-point" can be specified. By default it's
	0.000 assuming CIA-recommended sample-points.

"tq 125 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1"
	Shows the time quanta in ns, propagation segment, phase buffer
	segment 1 and 2 and the synchronisation jump width in units of
	tq. They allow to define the CAN bit-timing in a hardware
	independent format as proposed by the Bosch CAN 2.0 spec (see
	chapter 8 of http://www.semiconductors.bosch.de/pdf/can2spec.pdf).

"sja1000: tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1 clock 8000000"
	Shows the bit-timing constants of the CAN controller, here the
	"sja1000". The minimum and maximum values of the time segment 1
	and 2, the synchronisation jump width in units of tq, the
	bitrate pre-scaler and the CAN system clock frequency in Hz.
	These constants could be used for user-defined (non-standard)
	bit-timing calculation algorithms in user-space.

"re-started bus-errors arbit-lost error-warn error-pass bus-off"
	Shows the number of restarts, bus and arbitration lost errors,
	and the state changes to the error-warning, error-passive and
	bus-off state. RX overrun errors are listed in the "overrun"
	field of the standard network statistics.

Setting the CAN Bit-Timing
~~~~~~~~~~~~~~~~~~~~~~~~~~

The CAN bit-timing parameters can always be defined in a hardware
independent format as proposed in the Bosch CAN 2.0 specification
specifying the arguments "tq", "prop_seg", "phase_seg1", "phase_seg2"
and "sjw"::

    $ ip link set canX type can tq 125 prop-seg 6 \
				phase-seg1 7 phase-seg2 2 sjw 1

If the kernel option CONFIG_CAN_CALC_BITTIMING is enabled, CIA
recommended CAN bit-timing parameters will be calculated if the bit-
rate is specified with the argument "bitrate"::

    $ ip link set canX type can bitrate 125000

Note that this works fine for the most common CAN controllers with
standard bit-rates but may *fail* for exotic bit-rates or CAN system
clock frequencies. Disabling CONFIG_CAN_CALC_BITTIMING saves some
space and allows user-space tools to solely determine and set the
bit-timing parameters. The CAN controller specific bit-timing
constants can be used for that purpose. They are listed by the
following command::

    $ ip -details link show can0
    ...
      sja1000: clock 8000000 tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1


Starting and Stopping the CAN Network Device
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A CAN network device is started or stopped as usual with the command
"ifconfig canX up/down" or "ip link set canX up/down". Be aware that
you *must* define proper bit-timing parameters for real CAN devices
before you can start it to avoid error-prone default settings::

    $ ip link set canX up type can bitrate 125000

A device may enter the "bus-off" state if too many errors occurred on
the CAN bus. Then no more messages are received or sent. An automatic
bus-off recovery can be enabled by setting the "restart-ms" to a
non-zero value, e.g.::

    $ ip link set canX type can restart-ms 100

Alternatively, the application may realize the "bus-off" condition
by monitoring CAN error message frames and do a restart when
appropriate with the command::

    $ ip link set canX type can restart

Note that a restart will also create a CAN error message frame (see
also :ref:`socketcan-network-problem-notifications`).


.. _socketcan-can-fd-driver:

CAN FD (Flexible Data Rate) Driver Support
------------------------------------------

CAN FD capable CAN controllers support two different bitrates for the
arbitration phase and the payload phase of the CAN FD frame. Therefore a
second bit timing has to be specified in order to enable the CAN FD bitrate.

Additionally CAN FD capable CAN controllers support up to 64 bytes of
payload. The representation of this length in can_frame.len and
canfd_frame.len for userspace applications and inside the Linux network
layer is a plain value from 0 .. 64 instead of the CAN 'data length code'.
The data length code was a 1:1 mapping to the payload length in the Classical
CAN frames anyway. The payload length to the bus-relevant DLC mapping is
only performed inside the CAN drivers, preferably with the helper
functions can_fd_dlc2len() and can_fd_len2dlc().

The CAN netdevice driver capabilities can be distinguished by the network
devices maximum transfer unit (MTU)::

  MTU = 16 (CAN_MTU)   => sizeof(struct can_frame)   => Classical CAN device
  MTU = 72 (CANFD_MTU) => sizeof(struct canfd_frame) => CAN FD capable device

The CAN device MTU can be retrieved e.g. with a SIOCGIFMTU ioctl() syscall.
N.B. CAN FD capable devices can also handle and send Classical CAN frames.

When configuring CAN FD capable CAN controllers an additional 'data' bitrate
has to be set. This bitrate for the data phase of the CAN FD frame has to be
at least the bitrate which was configured for the arbitration phase. This
second bitrate is specified analogue to the first bitrate but the bitrate
setting keywords for the 'data' bitrate start with 'd' e.g. dbitrate,
dsample-point, dsjw or dtq and similar settings. When a data bitrate is set
within the configuration process the controller option "fd on" can be
specified to enable the CAN FD mode in the CAN controller. This controller
option also switches the device MTU to 72 (CANFD_MTU).

The first CAN FD specification presented as whitepaper at the International
CAN Conference 2012 needed to be improved for data integrity reasons.
Therefore two CAN FD implementations have to be distinguished today:

- ISO compliant:     The ISO 11898-1:2015 CAN FD implementation (default)
- non-ISO compliant: The CAN FD implementation following the 2012 whitepaper

Finally there are three types of CAN FD controllers:

1. ISO compliant (fixed)
2. non-ISO compliant (fixed, like the M_CAN IP core v3.0.1 in m_can.c)
3. ISO/non-ISO CAN FD controllers (switchable, like the PEAK PCAN-USB FD)

The current ISO/non-ISO mode is announced by the CAN controller driver via
netlink and displayed by the 'ip' tool (controller option FD-NON-ISO).
The ISO/non-ISO-mode can be altered by setting 'fd-non-iso {on|off}' for
switchable CAN FD controllers only.

Example configuring 500 kbit/s arbitration bitrate and 4 Mbit/s data bitrate::

    $ ip link set can0 up type can bitrate 500000 sample-point 0.75 \
                                   dbitrate 4000000 dsample-point 0.8 fd on
    $ ip -details link show can0
    5: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 72 qdisc pfifo_fast state UNKNOWN \
             mode DEFAULT group default qlen 10
    link/can  promiscuity 0
    can <FD> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0
          bitrate 500000 sample-point 0.750
          tq 50 prop-seg 14 phase-seg1 15 phase-seg2 10 sjw 1
          pcan_usb_pro_fd: tseg1 1..64 tseg2 1..16 sjw 1..16 brp 1..1024 \
          brp-inc 1
          dbitrate 4000000 dsample-point 0.800
          dtq 12 dprop-seg 7 dphase-seg1 8 dphase-seg2 4 dsjw 1
          pcan_usb_pro_fd: dtseg1 1..16 dtseg2 1..8 dsjw 1..4 dbrp 1..1024 \
          dbrp-inc 1
          clock 80000000

Example when 'fd-non-iso on' is added on this switchable CAN FD adapter::

   can <FD,FD-NON-ISO> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0


Supported CAN Hardware
----------------------

Please check the "Kconfig" file in "drivers/net/can" to get an actual
list of the support CAN hardware. On the SocketCAN project website
(see :ref:`socketcan-resources`) there might be further drivers available, also for
older kernel versions.


.. _socketcan-resources:

SocketCAN Resources
===================

The Linux CAN / SocketCAN project resources (project site / mailing list)
are referenced in the MAINTAINERS file in the Linux source tree.
Search for CAN NETWORK [LAYERS|DRIVERS].

Credits
=======

- Oliver Hartkopp (PF_CAN core, filters, drivers, bcm, SJA1000 driver)
- Urs Thuermann (PF_CAN core, kernel integration, socket interfaces, raw, vcan)
- Jan Kizka (RT-SocketCAN core, Socket-API reconciliation)
- Wolfgang Grandegger (RT-SocketCAN core & drivers, Raw Socket-API reviews, CAN device driver interface, MSCAN driver)
- Robert Schwebel (design reviews, PTXdist integration)
- Marc Kleine-Budde (design reviews, Kernel 2.6 cleanups, drivers)
- Benedikt Spranger (reviews)
- Thomas Gleixner (LKML reviews, coding style, posting hints)
- Andrey Volkov (kernel subtree structure, ioctls, MSCAN driver)
- Matthias Brukner (first SJA1000 CAN netdevice implementation Q2/2003)
- Klaus Hitschler (PEAK driver integration)
- Uwe Koppe (CAN netdevices with PF_PACKET approach)
- Michael Schulze (driver layer loopback requirement, RT CAN drivers review)
- Pavel Pisa (Bit-timing calculation)
- Sascha Hauer (SJA1000 platform driver)
- Sebastian Haas (SJA1000 EMS PCI driver)
- Markus Plessing (SJA1000 EMS PCI driver)
- Per Dalen (SJA1000 Kvaser PCI driver)
- Sam Ravnborg (reviews, coding style, kbuild help)