Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/locks.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>
#include <linux/file.h>
#include <linux/swapctl.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/iobuf.h>

#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/mman.h>

#include <linux/highmem.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

unsigned long page_cache_size;
unsigned int page_hash_bits;
struct page **page_hash_table;

int vm_max_readahead = 31;
int vm_min_readahead = 3;
EXPORT_SYMBOL(vm_max_readahead);
EXPORT_SYMBOL(vm_min_readahead);


spinlock_cacheline_t pagecache_lock_cacheline  = {SPIN_LOCK_UNLOCKED};
/*
 * NOTE: to avoid deadlocking you must never acquire the pagemap_lru_lock 
 *	with the pagecache_lock held.
 *
 * Ordering:
 *	swap_lock ->
 *		pagemap_lru_lock ->
 *			pagecache_lock
 */
spinlock_cacheline_t pagemap_lru_lock_cacheline = {SPIN_LOCK_UNLOCKED};

#define CLUSTER_PAGES		(1 << page_cluster)
#define CLUSTER_OFFSET(x)	(((x) >> page_cluster) << page_cluster)

static void FASTCALL(add_page_to_hash_queue(struct page * page, struct page **p));
static void add_page_to_hash_queue(struct page * page, struct page **p)
{
	struct page *next = *p;

	*p = page;
	page->next_hash = next;
	page->pprev_hash = p;
	if (next)
		next->pprev_hash = &page->next_hash;
	if (page->buffers)
		PAGE_BUG(page);
	inc_nr_cache_pages(page);
}

static inline void add_page_to_inode_queue(struct address_space *mapping, struct page * page)
{
	struct list_head *head = &mapping->clean_pages;

	mapping->nrpages++;
	list_add(&page->list, head);
	page->mapping = mapping;
}

static inline void remove_page_from_inode_queue(struct page * page)
{
	struct address_space * mapping = page->mapping;

	if (mapping->a_ops->removepage)
		mapping->a_ops->removepage(page);
	
	list_del(&page->list);
	page->mapping = NULL;
	wmb();
	mapping->nrpages--;
	if (!mapping->nrpages)
		refile_inode(mapping->host);
}

static inline void remove_page_from_hash_queue(struct page * page)
{
	struct page *next = page->next_hash;
	struct page **pprev = page->pprev_hash;

	if (next)
		next->pprev_hash = pprev;
	*pprev = next;
	page->pprev_hash = NULL;
	dec_nr_cache_pages(page);
}

/*
 * Remove a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
 * is safe.
 */
void __remove_inode_page(struct page *page)
{
	remove_page_from_inode_queue(page);
	remove_page_from_hash_queue(page);
}

void remove_inode_page(struct page *page)
{
	if (!PageLocked(page))
		PAGE_BUG(page);

	spin_lock(&pagecache_lock);
	__remove_inode_page(page);
	spin_unlock(&pagecache_lock);
}

static inline int sync_page(struct page *page)
{
	struct address_space *mapping = page->mapping;

	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
		return mapping->a_ops->sync_page(page);
	return 0;
}

/*
 * Add a page to the dirty page list.
 */
void set_page_dirty(struct page *page)
{
	if (!test_and_set_bit(PG_dirty, &page->flags)) {
		struct address_space *mapping = page->mapping;

		if (mapping) {
			spin_lock(&pagecache_lock);
			mapping = page->mapping;
			if (mapping) {	/* may have been truncated */
				list_del(&page->list);
				list_add(&page->list, &mapping->dirty_pages);
			}
			spin_unlock(&pagecache_lock);

			if (mapping && mapping->host)
				mark_inode_dirty_pages(mapping->host);
			if (block_dump)
				printk(KERN_DEBUG "%s: dirtied page\n", current->comm);
		}
	}
}

/**
 * invalidate_inode_pages - Invalidate all the unlocked pages of one inode
 * @inode: the inode which pages we want to invalidate
 *
 * This function only removes the unlocked pages, if you want to
 * remove all the pages of one inode, you must call truncate_inode_pages.
 */

void invalidate_inode_pages(struct inode * inode)
{
	struct list_head *head, *curr;
	struct page * page;

	head = &inode->i_mapping->clean_pages;

	spin_lock(&pagemap_lru_lock);
	spin_lock(&pagecache_lock);
	curr = head->next;

	while (curr != head) {
		page = list_entry(curr, struct page, list);
		curr = curr->next;

		/* We cannot invalidate something in dirty.. */
		if (PageDirty(page))
			continue;

		/* ..or locked */
		if (TryLockPage(page))
			continue;

		if (page->buffers && !try_to_free_buffers(page, 0))
			goto unlock;

		if (page_count(page) != 1)
			goto unlock;

		__lru_cache_del(page);
		__remove_inode_page(page);
		UnlockPage(page);
		page_cache_release(page);
		continue;
unlock:
		UnlockPage(page);
		continue;
	}

	spin_unlock(&pagecache_lock);
	spin_unlock(&pagemap_lru_lock);
}

static int do_flushpage(struct page *page, unsigned long offset)
{
	int (*flushpage) (struct page *, unsigned long);
	flushpage = page->mapping->a_ops->flushpage;
	if (flushpage)
		return (*flushpage)(page, offset);
	return block_flushpage(page, offset);
}

static inline void truncate_partial_page(struct page *page, unsigned partial)
{
	memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);
	if (page->buffers)
		do_flushpage(page, partial);
}

static void truncate_complete_page(struct page *page)
{
	/* Leave it on the LRU if it gets converted into anonymous buffers */
	if (!page->buffers || do_flushpage(page, 0))
		lru_cache_del(page);

	/*
	 * We remove the page from the page cache _after_ we have
	 * destroyed all buffer-cache references to it. Otherwise some
	 * other process might think this inode page is not in the
	 * page cache and creates a buffer-cache alias to it causing
	 * all sorts of fun problems ...  
	 */
	ClearPageDirty(page);
	ClearPageUptodate(page);
	remove_inode_page(page);
	page_cache_release(page);
}

static int FASTCALL(truncate_list_pages(struct list_head *, unsigned long, unsigned *));
static int truncate_list_pages(struct list_head *head, unsigned long start, unsigned *partial)
{
	struct list_head *curr;
	struct page * page;
	int unlocked = 0;

 restart:
	curr = head->prev;
	while (curr != head) {
		unsigned long offset;

		page = list_entry(curr, struct page, list);
		offset = page->index;

		/* Is one of the pages to truncate? */
		if ((offset >= start) || (*partial && (offset + 1) == start)) {
			int failed;

			page_cache_get(page);
			failed = TryLockPage(page);

			list_del(head);
			if (!failed)
				/* Restart after this page */
				list_add_tail(head, curr);
			else
				/* Restart on this page */
				list_add(head, curr);

			spin_unlock(&pagecache_lock);
			unlocked = 1;

 			if (!failed) {
				if (*partial && (offset + 1) == start) {
					truncate_partial_page(page, *partial);
					*partial = 0;
				} else 
					truncate_complete_page(page);

				UnlockPage(page);
			} else
 				wait_on_page(page);

			page_cache_release(page);

			if (current->need_resched) {
				__set_current_state(TASK_RUNNING);
				schedule();
			}

			spin_lock(&pagecache_lock);
			goto restart;
		}
		curr = curr->prev;
	}
	return unlocked;
}


/**
 * truncate_inode_pages - truncate *all* the pages from an offset
 * @mapping: mapping to truncate
 * @lstart: offset from with to truncate
 *
 * Truncate the page cache at a set offset, removing the pages
 * that are beyond that offset (and zeroing out partial pages).
 * If any page is locked we wait for it to become unlocked.
 */
void truncate_inode_pages(struct address_space * mapping, loff_t lstart) 
{
	unsigned long start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
	int unlocked;

	spin_lock(&pagecache_lock);
	do {
		unlocked = truncate_list_pages(&mapping->clean_pages, start, &partial);
		unlocked |= truncate_list_pages(&mapping->dirty_pages, start, &partial);
		unlocked |= truncate_list_pages(&mapping->locked_pages, start, &partial);
	} while (unlocked);
	/* Traversed all three lists without dropping the lock */
	spin_unlock(&pagecache_lock);
}

static inline int invalidate_this_page2(struct page * page,
					struct list_head * curr,
					struct list_head * head)
{
	int unlocked = 1;

	/*
	 * The page is locked and we hold the pagecache_lock as well
	 * so both page_count(page) and page->buffers stays constant here.
	 */
	if (page_count(page) == 1 + !!page->buffers) {
		/* Restart after this page */
		list_del(head);
		list_add_tail(head, curr);

		page_cache_get(page);
		spin_unlock(&pagecache_lock);
		truncate_complete_page(page);
	} else {
		if (page->buffers) {
			/* Restart after this page */
			list_del(head);
			list_add_tail(head, curr);

			page_cache_get(page);
			spin_unlock(&pagecache_lock);
			block_invalidate_page(page);
		} else
			unlocked = 0;

		ClearPageDirty(page);
		ClearPageUptodate(page);
	}

	return unlocked;
}

static int FASTCALL(invalidate_list_pages2(struct list_head *));
static int invalidate_list_pages2(struct list_head *head)
{
	struct list_head *curr;
	struct page * page;
	int unlocked = 0;

 restart:
	curr = head->prev;
	while (curr != head) {
		page = list_entry(curr, struct page, list);

		if (!TryLockPage(page)) {
			int __unlocked;

			__unlocked = invalidate_this_page2(page, curr, head);
			UnlockPage(page);
			unlocked |= __unlocked;
			if (!__unlocked) {
				curr = curr->prev;
				continue;
			}
		} else {
			/* Restart on this page */
			list_del(head);
			list_add(head, curr);

			page_cache_get(page);
			spin_unlock(&pagecache_lock);
			unlocked = 1;
			wait_on_page(page);
		}

		page_cache_release(page);
		if (current->need_resched) {
			__set_current_state(TASK_RUNNING);
			schedule();
		}

		spin_lock(&pagecache_lock);
		goto restart;
	}
	return unlocked;
}

/**
 * invalidate_inode_pages2 - Clear all the dirty bits around if it can't
 * free the pages because they're mapped.
 * @mapping: the address_space which pages we want to invalidate
 */
void invalidate_inode_pages2(struct address_space * mapping)
{
	int unlocked;

	spin_lock(&pagecache_lock);
	do {
		unlocked = invalidate_list_pages2(&mapping->clean_pages);
		unlocked |= invalidate_list_pages2(&mapping->dirty_pages);
		unlocked |= invalidate_list_pages2(&mapping->locked_pages);
	} while (unlocked);
	spin_unlock(&pagecache_lock);
}

static inline struct page * __find_page_nolock(struct address_space *mapping, unsigned long offset, struct page *page)
{
	goto inside;

	for (;;) {
		page = page->next_hash;
inside:
		if (!page)
			goto not_found;
		if (page->mapping != mapping)
			continue;
		if (page->index == offset)
			break;
	}

not_found:
	return page;
}

static int do_buffer_fdatasync(struct list_head *head, unsigned long start, unsigned long end, int (*fn)(struct page *))
{
	struct list_head *curr;
	struct page *page;
	int retval = 0;

	spin_lock(&pagecache_lock);
	curr = head->next;
	while (curr != head) {
		page = list_entry(curr, struct page, list);
		curr = curr->next;
		if (!page->buffers)
			continue;
		if (page->index >= end)
			continue;
		if (page->index < start)
			continue;

		page_cache_get(page);
		spin_unlock(&pagecache_lock);
		lock_page(page);

		/* The buffers could have been free'd while we waited for the page lock */
		if (page->buffers)
			retval |= fn(page);

		UnlockPage(page);
		spin_lock(&pagecache_lock);
		curr = page->list.next;
		page_cache_release(page);
	}
	spin_unlock(&pagecache_lock);

	return retval;
}

/*
 * Two-stage data sync: first start the IO, then go back and
 * collect the information..
 */
int generic_buffer_fdatasync(struct inode *inode, unsigned long start_idx, unsigned long end_idx)
{
	int retval;

	/* writeout dirty buffers on pages from both clean and dirty lists */
	retval = do_buffer_fdatasync(&inode->i_mapping->dirty_pages, start_idx, end_idx, writeout_one_page);
	retval |= do_buffer_fdatasync(&inode->i_mapping->clean_pages, start_idx, end_idx, writeout_one_page);
	retval |= do_buffer_fdatasync(&inode->i_mapping->locked_pages, start_idx, end_idx, writeout_one_page);

	/* now wait for locked buffers on pages from both clean and dirty lists */
	retval |= do_buffer_fdatasync(&inode->i_mapping->dirty_pages, start_idx, end_idx, waitfor_one_page);
	retval |= do_buffer_fdatasync(&inode->i_mapping->clean_pages, start_idx, end_idx, waitfor_one_page);
	retval |= do_buffer_fdatasync(&inode->i_mapping->locked_pages, start_idx, end_idx, waitfor_one_page);

	return retval;
}

/*
 * In-memory filesystems have to fail their
 * writepage function - and this has to be
 * worked around in the VM layer..
 *
 * We
 *  - mark the page dirty again (but do NOT
 *    add it back to the inode dirty list, as
 *    that would livelock in fdatasync)
 *  - activate the page so that the page stealer
 *    doesn't try to write it out over and over
 *    again.
 */
int fail_writepage(struct page *page)
{
	/* Only activate on memory-pressure, not fsync.. */
	if (PageLaunder(page)) {
		activate_page(page);
		SetPageReferenced(page);
	}

	/* Set the page dirty again, unlock */
	SetPageDirty(page);
	UnlockPage(page);
	return 0;
}

EXPORT_SYMBOL(fail_writepage);

/**
 *      filemap_fdatawrite - walk the list of dirty pages of the given address space
 *     	and writepage() each unlocked page (does not wait on locked pages).
 * 
 *      @mapping: address space structure to write
 *
 */
int filemap_fdatawrite(struct address_space * mapping)
{
	int ret = 0;
	int (*writepage)(struct page *) = mapping->a_ops->writepage;

	spin_lock(&pagecache_lock);

	while (!list_empty(&mapping->dirty_pages)) {
		struct page *page = list_entry(mapping->dirty_pages.prev, struct page, list);

		list_del(&page->list);
		list_add(&page->list, &mapping->locked_pages);

		if (!PageDirty(page))
			continue;

		page_cache_get(page);
		spin_unlock(&pagecache_lock);

		if (!TryLockPage(page)) {
			if (PageDirty(page)) {
				int err;
				ClearPageDirty(page);
				err = writepage(page);
				if (err && !ret)
					ret = err;
			} else
				UnlockPage(page);
		}
		page_cache_release(page);
		spin_lock(&pagecache_lock);
	}
	spin_unlock(&pagecache_lock);
	return ret;
}

/**
 *      filemap_fdatasync - walk the list of dirty pages of the given address space
 *     	and writepage() all of them.
 * 
 *      @mapping: address space structure to write
 *
 */
int filemap_fdatasync(struct address_space * mapping)
{
	int ret = 0;
	int (*writepage)(struct page *) = mapping->a_ops->writepage;

	spin_lock(&pagecache_lock);

        while (!list_empty(&mapping->dirty_pages)) {
		struct page *page = list_entry(mapping->dirty_pages.prev, struct page, list);

		list_del(&page->list);
		list_add(&page->list, &mapping->locked_pages);

		if (!PageDirty(page))
			continue;

		page_cache_get(page);
		spin_unlock(&pagecache_lock);

		lock_page(page);

		if (PageDirty(page)) {
			int err;
			ClearPageDirty(page);
			err = writepage(page);
			if (err && !ret)
				ret = err;
		} else
			UnlockPage(page);

		page_cache_release(page);
		spin_lock(&pagecache_lock);
	}
	spin_unlock(&pagecache_lock);
	return ret;
}

/**
 *      filemap_fdatawait - walk the list of locked pages of the given address space
 *     	and wait for all of them.
 * 
 *      @mapping: address space structure to wait for
 *
 */
int filemap_fdatawait(struct address_space * mapping)
{
	int ret = 0;

	spin_lock(&pagecache_lock);

        while (!list_empty(&mapping->locked_pages)) {
		struct page *page = list_entry(mapping->locked_pages.next, struct page, list);

		list_del(&page->list);
		list_add(&page->list, &mapping->clean_pages);

		if (!PageLocked(page))
			continue;

		page_cache_get(page);
		spin_unlock(&pagecache_lock);

		___wait_on_page(page);
		if (PageError(page))
			ret = -EIO;

		page_cache_release(page);
		spin_lock(&pagecache_lock);
	}
	spin_unlock(&pagecache_lock);
	return ret;
}

/*
 * Add a page to the inode page cache.
 *
 * The caller must have locked the page and 
 * set all the page flags correctly..
 */
void add_to_page_cache_locked(struct page * page, struct address_space *mapping, unsigned long index)
{
	if (!PageLocked(page))
		BUG();

	page->index = index;
	page_cache_get(page);
	spin_lock(&pagecache_lock);
	add_page_to_inode_queue(mapping, page);
	add_page_to_hash_queue(page, page_hash(mapping, index));
	spin_unlock(&pagecache_lock);

	lru_cache_add(page);
}

/*
 * This adds a page to the page cache, starting out as locked,
 * owned by us, but unreferenced, not uptodate and with no errors.
 */
static inline void __add_to_page_cache(struct page * page,
	struct address_space *mapping, unsigned long offset,
	struct page **hash)
{
	/*
	 * Yes this is inefficient, however it is needed.  The problem
	 * is that we could be adding a page to the swap cache while
	 * another CPU is also modifying page->flags, so the updates
	 * really do need to be atomic.  -- Rik
	 */
	ClearPageUptodate(page);
	ClearPageError(page);
	ClearPageDirty(page);
	ClearPageReferenced(page);
	ClearPageArch1(page);
	ClearPageChecked(page);
	LockPage(page);
	page_cache_get(page);
	page->index = offset;
	add_page_to_inode_queue(mapping, page);
	add_page_to_hash_queue(page, hash);
}

void add_to_page_cache(struct page * page, struct address_space * mapping, unsigned long offset)
{
	spin_lock(&pagecache_lock);
	__add_to_page_cache(page, mapping, offset, page_hash(mapping, offset));
	spin_unlock(&pagecache_lock);
	lru_cache_add(page);
}

int add_to_page_cache_unique(struct page * page,
	struct address_space *mapping, unsigned long offset,
	struct page **hash)
{
	int err;
	struct page *alias;

	spin_lock(&pagecache_lock);
	alias = __find_page_nolock(mapping, offset, *hash);

	err = 1;
	if (!alias) {
		__add_to_page_cache(page,mapping,offset,hash);
		err = 0;
	}

	spin_unlock(&pagecache_lock);
	if (!err)
		lru_cache_add(page);
	return err;
}

/*
 * This adds the requested page to the page cache if it isn't already there,
 * and schedules an I/O to read in its contents from disk.
 */
static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
static int page_cache_read(struct file * file, unsigned long offset)
{
	struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
	struct page **hash = page_hash(mapping, offset);
	struct page *page; 

	spin_lock(&pagecache_lock);
	page = __find_page_nolock(mapping, offset, *hash);
	spin_unlock(&pagecache_lock);
	if (page)
		return 0;

	page = page_cache_alloc(mapping);
	if (!page)
		return -ENOMEM;

	if (!add_to_page_cache_unique(page, mapping, offset, hash)) {
		int error = mapping->a_ops->readpage(file, page);
		page_cache_release(page);
		return error;
	}
	/*
	 * We arrive here in the unlikely event that someone 
	 * raced with us and added our page to the cache first.
	 */
	page_cache_release(page);
	return 0;
}

/*
 * Read in an entire cluster at once.  A cluster is usually a 64k-
 * aligned block that includes the page requested in "offset."
 */
static int FASTCALL(read_cluster_nonblocking(struct file * file, unsigned long offset,
					     unsigned long filesize));
static int read_cluster_nonblocking(struct file * file, unsigned long offset,
	unsigned long filesize)
{
	unsigned long pages = CLUSTER_PAGES;

	offset = CLUSTER_OFFSET(offset);
	while ((pages-- > 0) && (offset < filesize)) {
		int error = page_cache_read(file, offset);
		if (error < 0)
			return error;
		offset ++;
	}

	return 0;
}

/*
 * Knuth recommends primes in approximately golden ratio to the maximum
 * integer representable by a machine word for multiplicative hashing.
 * Chuck Lever verified the effectiveness of this technique:
 * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
 *
 * These primes are chosen to be bit-sparse, that is operations on
 * them can use shifts and additions instead of multiplications for
 * machines where multiplications are slow.
 */
#if BITS_PER_LONG == 32
/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
#define GOLDEN_RATIO_PRIME 0x9e370001UL
#elif BITS_PER_LONG == 64
/*  2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
#define GOLDEN_RATIO_PRIME 0x9e37fffffffc0001UL
#else
#error Define GOLDEN_RATIO_PRIME for your wordsize.
#endif

/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
static inline wait_queue_head_t *page_waitqueue(struct page *page)
{
	const zone_t *zone = page_zone(page);
	wait_queue_head_t *wait = zone->wait_table;
	unsigned long hash = (unsigned long)page;

#if BITS_PER_LONG == 64
	/*  Sigh, gcc can't optimise this alone like it does for 32 bits. */
	unsigned long n = hash;
	n <<= 18;
	hash -= n;
	n <<= 33;
	hash -= n;
	n <<= 3;
	hash += n;
	n <<= 3;
	hash -= n;
	n <<= 4;
	hash += n;
	n <<= 2;
	hash += n;
#else
	/* On some cpus multiply is faster, on others gcc will do shifts */
	hash *= GOLDEN_RATIO_PRIME;
#endif
	hash >>= zone->wait_table_shift;

	return &wait[hash];
}

/*
 * This must be called after every submit_bh with end_io
 * callbacks that would result into the blkdev layer waking
 * up the page after a queue unplug.
 */
void wakeup_page_waiters(struct page * page)
{
	wait_queue_head_t * head;

	head = page_waitqueue(page);
	if (waitqueue_active(head))
		wake_up(head);
}

/* 
 * Wait for a page to get unlocked.
 *
 * This must be called with the caller "holding" the page,
 * ie with increased "page->count" so that the page won't
 * go away during the wait..
 *
 * The waiting strategy is to get on a waitqueue determined
 * by hashing. Waiters will then collide, and the newly woken
 * task must then determine whether it was woken for the page
 * it really wanted, and go back to sleep on the waitqueue if
 * that wasn't it. With the waitqueue semantics, it never leaves
 * the waitqueue unless it calls, so the loop moves forward one
 * iteration every time there is
 * (1) a collision 
 * and
 * (2) one of the colliding pages is woken
 *
 * This is the thundering herd problem, but it is expected to
 * be very rare due to the few pages that are actually being
 * waited on at any given time and the quality of the hash function.
 */
void ___wait_on_page(struct page *page)
{
	wait_queue_head_t *waitqueue = page_waitqueue(page);
	struct task_struct *tsk = current;
	DECLARE_WAITQUEUE(wait, tsk);

	add_wait_queue(waitqueue, &wait);
	do {
		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
		if (!PageLocked(page))
			break;
		sync_page(page);
		schedule();
	} while (PageLocked(page));
	__set_task_state(tsk, TASK_RUNNING);
	remove_wait_queue(waitqueue, &wait);
}

/*
 * unlock_page() is the other half of the story just above
 * __wait_on_page(). Here a couple of quick checks are done
 * and a couple of flags are set on the page, and then all
 * of the waiters for all of the pages in the appropriate
 * wait queue are woken.
 */
void unlock_page(struct page *page)
{
	wait_queue_head_t *waitqueue = page_waitqueue(page);
	ClearPageLaunder(page);
	smp_mb__before_clear_bit();
	if (!test_and_clear_bit(PG_locked, &(page)->flags))
		BUG();
	smp_mb__after_clear_bit(); 

	/*
	 * Although the default semantics of wake_up() are
	 * to wake all, here the specific function is used
	 * to make it even more explicit that a number of
	 * pages are being waited on here.
	 */
	if (waitqueue_active(waitqueue))
		wake_up_all(waitqueue);
}

/*
 * Get a lock on the page, assuming we need to sleep
 * to get it..
 */
static void __lock_page(struct page *page)
{
	wait_queue_head_t *waitqueue = page_waitqueue(page);
	struct task_struct *tsk = current;
	DECLARE_WAITQUEUE(wait, tsk);

	add_wait_queue_exclusive(waitqueue, &wait);
	for (;;) {
		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
		if (PageLocked(page)) {
			sync_page(page);
			schedule();
		}
		if (!TryLockPage(page))
			break;
	}
	__set_task_state(tsk, TASK_RUNNING);
	remove_wait_queue(waitqueue, &wait);
}

/*
 * Get an exclusive lock on the page, optimistically
 * assuming it's not locked..
 */
void lock_page(struct page *page)
{
	if (TryLockPage(page))
		__lock_page(page);
}

/*
 * a rather lightweight function, finding and getting a reference to a
 * hashed page atomically.
 */
struct page * __find_get_page(struct address_space *mapping,
			      unsigned long offset, struct page **hash)
{
	struct page *page;

	/*
	 * We scan the hash list read-only. Addition to and removal from
	 * the hash-list needs a held write-lock.
	 */
	spin_lock(&pagecache_lock);
	page = __find_page_nolock(mapping, offset, *hash);
	if (page)
		page_cache_get(page);
	spin_unlock(&pagecache_lock);
	return page;
}

/*
 * Same as above, but trylock it instead of incrementing the count.
 */
struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
{
	struct page *page;
	struct page **hash = page_hash(mapping, offset);

	spin_lock(&pagecache_lock);
	page = __find_page_nolock(mapping, offset, *hash);
	if (page) {
		if (TryLockPage(page))
			page = NULL;
	}
	spin_unlock(&pagecache_lock);
	return page;
}

/*
 * Must be called with the pagecache lock held,
 * will return with it held (but it may be dropped
 * during blocking operations..
 */
static struct page * FASTCALL(__find_lock_page_helper(struct address_space *, unsigned long, struct page *));
static struct page * __find_lock_page_helper(struct address_space *mapping,
					unsigned long offset, struct page *hash)
{
	struct page *page;

	/*
	 * We scan the hash list read-only. Addition to and removal from
	 * the hash-list needs a held write-lock.
	 */
repeat:
	page = __find_page_nolock(mapping, offset, hash);
	if (page) {
		page_cache_get(page);
		if (TryLockPage(page)) {
			spin_unlock(&pagecache_lock);
			lock_page(page);
			spin_lock(&pagecache_lock);

			/* Has the page been re-allocated while we slept? */
			if (page->mapping != mapping || page->index != offset) {
				UnlockPage(page);
				page_cache_release(page);
				goto repeat;
			}
		}
	}
	return page;
}

/*
 * Same as the above, but lock the page too, verifying that
 * it's still valid once we own it.
 */
struct page * __find_lock_page (struct address_space *mapping,
				unsigned long offset, struct page **hash)
{
	struct page *page;

	spin_lock(&pagecache_lock);
	page = __find_lock_page_helper(mapping, offset, *hash);
	spin_unlock(&pagecache_lock);
	return page;
}

/*
 * Same as above, but create the page if required..
 */
struct page * find_or_create_page(struct address_space *mapping, unsigned long index, unsigned int gfp_mask)
{
	struct page *page;
	struct page **hash = page_hash(mapping, index);

	spin_lock(&pagecache_lock);
	page = __find_lock_page_helper(mapping, index, *hash);
	spin_unlock(&pagecache_lock);
	if (!page) {
		struct page *newpage = alloc_page(gfp_mask);
		if (newpage) {
			spin_lock(&pagecache_lock);
			page = __find_lock_page_helper(mapping, index, *hash);
			if (likely(!page)) {
				page = newpage;
				__add_to_page_cache(page, mapping, index, hash);
				newpage = NULL;
			}
			spin_unlock(&pagecache_lock);
			if (newpage == NULL)
				lru_cache_add(page);
			else 
				page_cache_release(newpage);
		}
	}
	return page;	
}

/*
 * Same as grab_cache_page, but do not wait if the page is unavailable.
 * This is intended for speculative data generators, where the data can
 * be regenerated if the page couldn't be grabbed.  This routine should
 * be safe to call while holding the lock for another page.
 */
struct page *grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
{
	struct page *page, **hash;

	hash = page_hash(mapping, index);
	page = __find_get_page(mapping, index, hash);

	if ( page ) {
		if ( !TryLockPage(page) ) {
			/* Page found and locked */
			/* This test is overly paranoid, but what the heck... */
			if ( unlikely(page->mapping != mapping || page->index != index) ) {
				/* Someone reallocated this page under us. */
				UnlockPage(page);
				page_cache_release(page);
				return NULL;
			} else {
				return page;
			}
		} else {
			/* Page locked by someone else */
			page_cache_release(page);
			return NULL;
		}
	}

	page = page_cache_alloc(mapping);
	if ( unlikely(!page) )
		return NULL;	/* Failed to allocate a page */

	if ( unlikely(add_to_page_cache_unique(page, mapping, index, hash)) ) {
		/* Someone else grabbed the page already. */
		page_cache_release(page);
		return NULL;
	}

	return page;
}

#if 0
#define PROFILE_READAHEAD
#define DEBUG_READAHEAD
#endif

/*
 * Read-ahead profiling information
 * --------------------------------
 * Every PROFILE_MAXREADCOUNT, the following information is written 
 * to the syslog:
 *   Percentage of asynchronous read-ahead.
 *   Average of read-ahead fields context value.
 * If DEBUG_READAHEAD is defined, a snapshot of these fields is written 
 * to the syslog.
 */

#ifdef PROFILE_READAHEAD

#define PROFILE_MAXREADCOUNT 1000

static unsigned long total_reada;
static unsigned long total_async;
static unsigned long total_ramax;
static unsigned long total_ralen;
static unsigned long total_rawin;

static void profile_readahead(int async, struct file *filp)
{
	unsigned long flags;

	++total_reada;
	if (async)
		++total_async;

	total_ramax	+= filp->f_ramax;
	total_ralen	+= filp->f_ralen;
	total_rawin	+= filp->f_rawin;

	if (total_reada > PROFILE_MAXREADCOUNT) {
		save_flags(flags);
		cli();
		if (!(total_reada > PROFILE_MAXREADCOUNT)) {
			restore_flags(flags);
			return;
		}

		printk("Readahead average:  max=%ld, len=%ld, win=%ld, async=%ld%%\n",
			total_ramax/total_reada,
			total_ralen/total_reada,
			total_rawin/total_reada,
			(total_async*100)/total_reada);
#ifdef DEBUG_READAHEAD
		printk("Readahead snapshot: max=%ld, len=%ld, win=%ld, raend=%Ld\n",
			filp->f_ramax, filp->f_ralen, filp->f_rawin, filp->f_raend);
#endif

		total_reada	= 0;
		total_async	= 0;
		total_ramax	= 0;
		total_ralen	= 0;
		total_rawin	= 0;

		restore_flags(flags);
	}
}
#endif  /* defined PROFILE_READAHEAD */

/*
 * Read-ahead context:
 * -------------------
 * The read ahead context fields of the "struct file" are the following:
 * - f_raend : position of the first byte after the last page we tried to
 *	       read ahead.
 * - f_ramax : current read-ahead maximum size.
 * - f_ralen : length of the current IO read block we tried to read-ahead.
 * - f_rawin : length of the current read-ahead window.
 *		if last read-ahead was synchronous then
 *			f_rawin = f_ralen
 *		otherwise (was asynchronous)
 *			f_rawin = previous value of f_ralen + f_ralen
 *
 * Read-ahead limits:
 * ------------------
 * MIN_READAHEAD   : minimum read-ahead size when read-ahead.
 * MAX_READAHEAD   : maximum read-ahead size when read-ahead.
 *
 * Synchronous read-ahead benefits:
 * --------------------------------
 * Using reasonable IO xfer length from peripheral devices increase system 
 * performances.
 * Reasonable means, in this context, not too large but not too small.
 * The actual maximum value is:
 *	MAX_READAHEAD + PAGE_CACHE_SIZE = 76k is CONFIG_READA_SMALL is undefined
 *      and 32K if defined (4K page size assumed).
 *
 * Asynchronous read-ahead benefits:
 * ---------------------------------
 * Overlapping next read request and user process execution increase system 
 * performance.
 *
 * Read-ahead risks:
 * -----------------
 * We have to guess which further data are needed by the user process.
 * If these data are often not really needed, it's bad for system 
 * performances.
 * However, we know that files are often accessed sequentially by 
 * application programs and it seems that it is possible to have some good 
 * strategy in that guessing.
 * We only try to read-ahead files that seems to be read sequentially.
 *
 * Asynchronous read-ahead risks:
 * ------------------------------
 * In order to maximize overlapping, we must start some asynchronous read 
 * request from the device, as soon as possible.
 * We must be very careful about:
 * - The number of effective pending IO read requests.
 *   ONE seems to be the only reasonable value.
 * - The total memory pool usage for the file access stream.
 *   This maximum memory usage is implicitly 2 IO read chunks:
 *   2*(MAX_READAHEAD + PAGE_CACHE_SIZE) = 156K if CONFIG_READA_SMALL is undefined,
 *   64k if defined (4K page size assumed).
 */

static inline int get_max_readahead(struct inode * inode)
{
	if (!inode->i_dev || !max_readahead[MAJOR(inode->i_dev)])
		return vm_max_readahead;
	return max_readahead[MAJOR(inode->i_dev)][MINOR(inode->i_dev)];
}

static void generic_file_readahead(int reada_ok,
	struct file * filp, struct inode * inode,
	struct page * page)
{
	unsigned long end_index;
	unsigned long index = page->index;
	unsigned long max_ahead, ahead;
	unsigned long raend;
	int max_readahead = get_max_readahead(inode);

	end_index = inode->i_size >> PAGE_CACHE_SHIFT;

	raend = filp->f_raend;
	max_ahead = 0;

/*
 * The current page is locked.
 * If the current position is inside the previous read IO request, do not
 * try to reread previously read ahead pages.
 * Otherwise decide or not to read ahead some pages synchronously.
 * If we are not going to read ahead, set the read ahead context for this 
 * page only.
 */
	if (PageLocked(page)) {
		if (!filp->f_ralen || index >= raend || index + filp->f_rawin < raend) {
			raend = index;
			if (raend < end_index)
				max_ahead = filp->f_ramax;
			filp->f_rawin = 0;
			filp->f_ralen = 1;
			if (!max_ahead) {
				filp->f_raend  = index + filp->f_ralen;
				filp->f_rawin += filp->f_ralen;
			}
		}
	}
/*
 * The current page is not locked.
 * If we were reading ahead and,
 * if the current max read ahead size is not zero and,
 * if the current position is inside the last read-ahead IO request,
 *   it is the moment to try to read ahead asynchronously.
 * We will later force unplug device in order to force asynchronous read IO.
 */
	else if (reada_ok && filp->f_ramax && raend >= 1 &&
		 index <= raend && index + filp->f_ralen >= raend) {
/*
 * Add ONE page to max_ahead in order to try to have about the same IO max size
 * as synchronous read-ahead (MAX_READAHEAD + 1)*PAGE_CACHE_SIZE.
 * Compute the position of the last page we have tried to read in order to 
 * begin to read ahead just at the next page.
 */
		raend -= 1;
		if (raend < end_index)
			max_ahead = filp->f_ramax + 1;

		if (max_ahead) {
			filp->f_rawin = filp->f_ralen;
			filp->f_ralen = 0;
			reada_ok      = 2;
		}
	}
/*
 * Try to read ahead pages.
 * We hope that ll_rw_blk() plug/unplug, coalescence, requests sort and the
 * scheduler, will work enough for us to avoid too bad actuals IO requests.
 */
	ahead = 0;
	while (ahead < max_ahead) {
		unsigned long ra_index = raend + ahead + 1;

		if (ra_index > end_index)
			break;
		if (page_cache_read(filp, ra_index) < 0)
			break;

		ahead++;
	}
/*
 * If we tried to read ahead some pages,
 * If we tried to read ahead asynchronously,
 *   Try to force unplug of the device in order to start an asynchronous
 *   read IO request.
 * Update the read-ahead context.
 * Store the length of the current read-ahead window.
 * Double the current max read ahead size.
 *   That heuristic avoid to do some large IO for files that are not really
 *   accessed sequentially.
 */
	if (ahead) {
		filp->f_ralen += ahead;
		filp->f_rawin += filp->f_ralen;
		filp->f_raend = raend + ahead + 1;

		filp->f_ramax += filp->f_ramax;

		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;

#ifdef PROFILE_READAHEAD
		profile_readahead((reada_ok == 2), filp);
#endif
	}

	return;
}

/*
 * Mark a page as having seen activity.
 *
 * If it was already so marked, move it to the active queue and drop
 * the referenced bit.  Otherwise, just mark it for future action..
 */
void mark_page_accessed(struct page *page)
{
	if (!PageActive(page) && PageReferenced(page)) {
		activate_page(page);
		ClearPageReferenced(page);
	} else
		SetPageReferenced(page);
}

/*
 * This is a generic file read routine, and uses the
 * inode->i_op->readpage() function for the actual low-level
 * stuff.
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */
void do_generic_file_read(struct file * filp, loff_t *ppos, read_descriptor_t * desc, read_actor_t actor)
{
	struct address_space *mapping = filp->f_dentry->d_inode->i_mapping;
	struct inode *inode = mapping->host;
	unsigned long index, offset;
	struct page *cached_page;
	int reada_ok;
	int error;
	int max_readahead = get_max_readahead(inode);

	cached_page = NULL;
	index = *ppos >> PAGE_CACHE_SHIFT;
	offset = *ppos & ~PAGE_CACHE_MASK;

/*
 * If the current position is outside the previous read-ahead window, 
 * we reset the current read-ahead context and set read ahead max to zero
 * (will be set to just needed value later),
 * otherwise, we assume that the file accesses are sequential enough to
 * continue read-ahead.
 */
	if (index > filp->f_raend || index + filp->f_rawin < filp->f_raend) {
		reada_ok = 0;
		filp->f_raend = 0;
		filp->f_ralen = 0;
		filp->f_ramax = 0;
		filp->f_rawin = 0;
	} else {
		reada_ok = 1;
	}
/*
 * Adjust the current value of read-ahead max.
 * If the read operation stay in the first half page, force no readahead.
 * Otherwise try to increase read ahead max just enough to do the read request.
 * Then, at least MIN_READAHEAD if read ahead is ok,
 * and at most MAX_READAHEAD in all cases.
 */
	if (!index && offset + desc->count <= (PAGE_CACHE_SIZE >> 1)) {
		filp->f_ramax = 0;
	} else {
		unsigned long needed;

		needed = ((offset + desc->count) >> PAGE_CACHE_SHIFT) + 1;

		if (filp->f_ramax < needed)
			filp->f_ramax = needed;

		if (reada_ok && filp->f_ramax < vm_min_readahead)
				filp->f_ramax = vm_min_readahead;
		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;
	}

	for (;;) {
		struct page *page, **hash;
		unsigned long end_index, nr, ret;

		end_index = inode->i_size >> PAGE_CACHE_SHIFT;
			
		if (index > end_index)
			break;
		nr = PAGE_CACHE_SIZE;
		if (index == end_index) {
			nr = inode->i_size & ~PAGE_CACHE_MASK;
			if (nr <= offset)
				break;
		}

		nr = nr - offset;

		/*
		 * Try to find the data in the page cache..
		 */
		hash = page_hash(mapping, index);

		spin_lock(&pagecache_lock);
		page = __find_page_nolock(mapping, index, *hash);
		if (!page)
			goto no_cached_page;
found_page:
		page_cache_get(page);
		spin_unlock(&pagecache_lock);

		if (!Page_Uptodate(page))
			goto page_not_up_to_date;
		generic_file_readahead(reada_ok, filp, inode, page);
page_ok:
		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping->i_mmap_shared != NULL)
			flush_dcache_page(page);

		/*
		 * Mark the page accessed if we read the
		 * beginning or we just did an lseek.
		 */
		if (!offset || !filp->f_reada)
			mark_page_accessed(page);

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 *
		 * The actor routine returns how many bytes were actually used..
		 * NOTE! This may not be the same as how much of a user buffer
		 * we filled up (we may be padding etc), so we can only update
		 * "pos" here (the actor routine has to update the user buffer
		 * pointers and the remaining count).
		 */
		ret = actor(desc, page, offset, nr);
		offset += ret;
		index += offset >> PAGE_CACHE_SHIFT;
		offset &= ~PAGE_CACHE_MASK;

		page_cache_release(page);
		if (ret == nr && desc->count)
			continue;
		break;

/*
 * Ok, the page was not immediately readable, so let's try to read ahead while we're at it..
 */
page_not_up_to_date:
		generic_file_readahead(reada_ok, filp, inode, page);

		if (Page_Uptodate(page))
			goto page_ok;

		/* Get exclusive access to the page ... */
		lock_page(page);

		/* Did it get unhashed before we got the lock? */
		if (!page->mapping) {
			UnlockPage(page);
			page_cache_release(page);
			continue;
		}

		/* Did somebody else fill it already? */
		if (Page_Uptodate(page)) {
			UnlockPage(page);
			goto page_ok;
		}

readpage:
		/* ... and start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

		if (!error) {
			if (Page_Uptodate(page))
				goto page_ok;

			/* Again, try some read-ahead while waiting for the page to finish.. */
			generic_file_readahead(reada_ok, filp, inode, page);
			wait_on_page(page);
			if (Page_Uptodate(page))
				goto page_ok;
			error = -EIO;
		}

		/* UHHUH! A synchronous read error occurred. Report it */
		desc->error = error;
		page_cache_release(page);
		break;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 *
		 * We get here with the page cache lock held.
		 */
		if (!cached_page) {
			spin_unlock(&pagecache_lock);
			cached_page = page_cache_alloc(mapping);
			if (!cached_page) {
				desc->error = -ENOMEM;
				break;
			}

			/*
			 * Somebody may have added the page while we
			 * dropped the page cache lock. Check for that.
			 */
			spin_lock(&pagecache_lock);
			page = __find_page_nolock(mapping, index, *hash);
			if (page)
				goto found_page;
		}

		/*
		 * Ok, add the new page to the hash-queues...
		 */
		page = cached_page;
		__add_to_page_cache(page, mapping, index, hash);
		spin_unlock(&pagecache_lock);
		lru_cache_add(page);		
		cached_page = NULL;

		goto readpage;
	}

	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
	filp->f_reada = 1;
	if (cached_page)
		page_cache_release(cached_page);
	UPDATE_ATIME(inode);
}

static inline int have_mapping_directIO(struct address_space * mapping)
{
	return mapping->a_ops->direct_IO || mapping->a_ops->direct_fileIO;
}

/* Switch between old and new directIO formats */
static inline int do_call_directIO(int rw, struct file *filp, struct kiobuf *iobuf, unsigned long offset, int blocksize)
{
	struct address_space * mapping = filp->f_dentry->d_inode->i_mapping;

	if (mapping->a_ops->direct_fileIO)
		return mapping->a_ops->direct_fileIO(rw, filp, iobuf, offset, blocksize);
	return mapping->a_ops->direct_IO(rw, mapping->host, iobuf, offset, blocksize);
}

/*
 * i_sem and i_alloc_sem should be held already.  i_sem may be dropped
 * later once we've mapped the new IO.  i_alloc_sem is kept until the IO
 * completes.
 */

static ssize_t generic_file_direct_IO(int rw, struct file * filp, char * buf, size_t count, loff_t offset)
{
	ssize_t retval;
	int new_iobuf, chunk_size, blocksize_mask, blocksize, blocksize_bits, iosize, progress;
	struct kiobuf * iobuf;
	struct address_space * mapping = filp->f_dentry->d_inode->i_mapping;
	struct inode * inode = mapping->host;
	loff_t size = inode->i_size;

	new_iobuf = 0;
	iobuf = filp->f_iobuf;
	if (test_and_set_bit(0, &filp->f_iobuf_lock)) {
		/*
		 * A parallel read/write is using the preallocated iobuf
		 * so just run slow and allocate a new one.
		 */
		retval = alloc_kiovec(1, &iobuf);
		if (retval)
			goto out;
		new_iobuf = 1;
	}

	blocksize = 1 << inode->i_blkbits;
	blocksize_bits = inode->i_blkbits;
	blocksize_mask = blocksize - 1;
	chunk_size = KIO_MAX_ATOMIC_IO << 10;

	retval = -EINVAL;
	if ((offset & blocksize_mask) || (count & blocksize_mask) || ((unsigned long) buf & blocksize_mask))
		goto out_free;
	if (!have_mapping_directIO(mapping))
		goto out_free;

	if ((rw == READ) && (offset + count > size))
		count = size - offset;

	/*
	 * Flush to disk exclusively the _data_, metadata must remain
	 * completly asynchronous or performance will go to /dev/null.
	 */
	retval = filemap_fdatasync(mapping);
	if (retval == 0)
		retval = fsync_inode_data_buffers(inode);
	if (retval == 0)
		retval = filemap_fdatawait(mapping);
	if (retval < 0)
		goto out_free;

	progress = retval = 0;
	while (count > 0) {
		iosize = count;
		if (iosize > chunk_size)
			iosize = chunk_size;

		retval = map_user_kiobuf(rw, iobuf, (unsigned long) buf, iosize);
		if (retval)
			break;

		retval = do_call_directIO(rw, filp, iobuf, (offset+progress) >> blocksize_bits, blocksize);

		if (rw == READ && retval > 0)
			mark_dirty_kiobuf(iobuf, retval);
		
		if (retval >= 0) {
			count -= retval;
			buf += retval;
			/* warning: weird semantics here, we're reporting a read behind the end of the file */
			progress += retval;
		}

		unmap_kiobuf(iobuf);

		if (retval != iosize)
			break;
	}

	if (progress)
		retval = progress;

 out_free:
	if (!new_iobuf)
		clear_bit(0, &filp->f_iobuf_lock);
	else
		free_kiovec(1, &iobuf);
 out:	
	return retval;
}

int file_read_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
{
	char *kaddr;
	unsigned long left, count = desc->count;

	if (size > count)
		size = count;

	kaddr = kmap(page);
	left = __copy_to_user(desc->buf, kaddr + offset, size);
	kunmap(page);
	
	if (left) {
		size -= left;
		desc->error = -EFAULT;
	}
	desc->count = count - size;
	desc->written += size;
	desc->buf += size;
	return size;
}

inline ssize_t do_generic_direct_read(struct file * filp, char * buf, size_t count, loff_t *ppos)
{
	ssize_t retval;
	loff_t pos = *ppos;

	retval = generic_file_direct_IO(READ, filp, buf, count, pos);
	if (retval > 0)
		*ppos = pos + retval;
	return retval;
}

/*
 * This is the "read()" routine for all filesystems
 * that can use the page cache directly.
 */
ssize_t generic_file_read(struct file * filp, char * buf, size_t count, loff_t *ppos)
{
	ssize_t retval;

	if ((ssize_t) count < 0)
		return -EINVAL;

	if (filp->f_flags & O_DIRECT)
		goto o_direct;

	retval = -EFAULT;
	if (access_ok(VERIFY_WRITE, buf, count)) {
		retval = 0;

		if (count) {
			read_descriptor_t desc;

			desc.written = 0;
			desc.count = count;
			desc.buf = buf;
			desc.error = 0;
			do_generic_file_read(filp, ppos, &desc, file_read_actor);

			retval = desc.written;
			if (!retval)
				retval = desc.error;
		}
	}
 out:
	return retval;

 o_direct:
	{
		loff_t size;
		struct address_space *mapping = filp->f_dentry->d_inode->i_mapping;
		struct inode *inode = mapping->host;

		retval = 0;
		if (!count)
			goto out; /* skip atime */
		down_read(&inode->i_alloc_sem);
		down(&inode->i_sem);
		size = inode->i_size;
		if (*ppos < size)
			retval = do_generic_direct_read(filp, buf, count, ppos);
		up(&inode->i_sem);
		up_read(&inode->i_alloc_sem);
		UPDATE_ATIME(filp->f_dentry->d_inode);
		goto out;
	}
}

static int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset , unsigned long size)
{
	ssize_t written;
	unsigned long count = desc->count;
	struct file *file = (struct file *) desc->buf;

	if (size > count)
		size = count;

 	if (file->f_op->sendpage) {
 		written = file->f_op->sendpage(file, page, offset,
					       size, &file->f_pos, size<count);
	} else {
		char *kaddr;
		mm_segment_t old_fs;

		old_fs = get_fs();
		set_fs(KERNEL_DS);

		kaddr = kmap(page);
		written = file->f_op->write(file, kaddr + offset, size, &file->f_pos);
		kunmap(page);

		set_fs(old_fs);
	}
	if (written < 0) {
		desc->error = written;
		written = 0;
	}
	desc->count = count - written;
	desc->written += written;
	return written;
}

static ssize_t common_sendfile(int out_fd, int in_fd, loff_t *offset, size_t count)
{
	ssize_t retval;
	struct file * in_file, * out_file;
	struct inode * in_inode, * out_inode;

	/*
	 * Get input file, and verify that it is ok..
	 */
	retval = -EBADF;
	in_file = fget(in_fd);
	if (!in_file)
		goto out;
	if (!(in_file->f_mode & FMODE_READ))
		goto fput_in;
	retval = -EINVAL;
	in_inode = in_file->f_dentry->d_inode;
	if (!in_inode)
		goto fput_in;
	if (!in_inode->i_mapping->a_ops->readpage)
		goto fput_in;
	retval = locks_verify_area(FLOCK_VERIFY_READ, in_inode, in_file, in_file->f_pos, count);
	if (retval)
		goto fput_in;

	/*
	 * Get output file, and verify that it is ok..
	 */
	retval = -EBADF;
	out_file = fget(out_fd);
	if (!out_file)
		goto fput_in;
	if (!(out_file->f_mode & FMODE_WRITE))
		goto fput_out;
	retval = -EINVAL;
	if (!out_file->f_op || !out_file->f_op->write)
		goto fput_out;
	out_inode = out_file->f_dentry->d_inode;
	retval = locks_verify_area(FLOCK_VERIFY_WRITE, out_inode, out_file, out_file->f_pos, count);
	if (retval)
		goto fput_out;

	retval = 0;
	if (count) {
		read_descriptor_t desc;
		
		if (!offset)
			offset = &in_file->f_pos;

		desc.written = 0;
		desc.count = count;
		desc.buf = (char *) out_file;
		desc.error = 0;
		do_generic_file_read(in_file, offset, &desc, file_send_actor);

		retval = desc.written;
		if (!retval)
			retval = desc.error;
	}

fput_out:
	fput(out_file);
fput_in:
	fput(in_file);
out:
	return retval;
}

asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count)
{
	loff_t pos, *ppos = NULL;
	ssize_t ret;
	if (offset) {
		off_t off;
		if (unlikely(get_user(off, offset)))
			return -EFAULT;
		pos = off;
		ppos = &pos;
	}
	ret = common_sendfile(out_fd, in_fd, ppos, count);
	if (offset)
		put_user((off_t)pos, offset);
	return ret;
}

asmlinkage ssize_t sys_sendfile64(int out_fd, int in_fd, loff_t *offset, size_t count)
{
	loff_t pos, *ppos = NULL;
	ssize_t ret;
	if (offset) {
		if (unlikely(copy_from_user(&pos, offset, sizeof(loff_t))))
			return -EFAULT;
		ppos = &pos;
	}
	ret = common_sendfile(out_fd, in_fd, ppos, count);
	if (offset)
		put_user(pos, offset);
	return ret;
}

static ssize_t do_readahead(struct file *file, unsigned long index, unsigned long nr)
{
	struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
	unsigned long max;

	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
		return -EINVAL;

	/* Limit it to the size of the file.. */
	max = (mapping->host->i_size + ~PAGE_CACHE_MASK) >> PAGE_CACHE_SHIFT;
	if (index > max)
		return 0;
	max -= index;
	if (nr > max)
		nr = max;

	/* And limit it to a sane percentage of the inactive list.. */
	max = (nr_free_pages() + nr_inactive_pages) / 2;
	if (nr > max)
		nr = max;

	while (nr) {
		page_cache_read(file, index);
		index++;
		nr--;
	}
	return 0;
}

asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
{
	ssize_t ret;
	struct file *file;

	ret = -EBADF;
	file = fget(fd);
	if (file) {
		if (file->f_mode & FMODE_READ) {
			unsigned long start = offset >> PAGE_CACHE_SHIFT;
			unsigned long len = (count + ((long)offset & ~PAGE_CACHE_MASK)) >> PAGE_CACHE_SHIFT;
			ret = do_readahead(file, start, len);
		}
		fput(file);
	}
	return ret;
}

/*
 * Read-ahead and flush behind for MADV_SEQUENTIAL areas.  Since we are
 * sure this is sequential access, we don't need a flexible read-ahead
 * window size -- we can always use a large fixed size window.
 */
static void nopage_sequential_readahead(struct vm_area_struct * vma,
	unsigned long pgoff, unsigned long filesize)
{
	unsigned long ra_window;

	ra_window = get_max_readahead(vma->vm_file->f_dentry->d_inode);
	ra_window = CLUSTER_OFFSET(ra_window + CLUSTER_PAGES - 1);

	/* vm_raend is zero if we haven't read ahead in this area yet.  */
	if (vma->vm_raend == 0)
		vma->vm_raend = vma->vm_pgoff + ra_window;

	/*
	 * If we've just faulted the page half-way through our window,
	 * then schedule reads for the next window, and release the
	 * pages in the previous window.
	 */
	if ((pgoff + (ra_window >> 1)) == vma->vm_raend) {
		unsigned long start = vma->vm_pgoff + vma->vm_raend;
		unsigned long end = start + ra_window;

		if (end > ((vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff))
			end = (vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff;
		if (start > end)
			return;

		while ((start < end) && (start < filesize)) {
			if (read_cluster_nonblocking(vma->vm_file,
							start, filesize) < 0)
				break;
			start += CLUSTER_PAGES;
		}
		run_task_queue(&tq_disk);

		/* if we're far enough past the beginning of this area,
		   recycle pages that are in the previous window. */
		if (vma->vm_raend > (vma->vm_pgoff + ra_window + ra_window)) {
			unsigned long window = ra_window << PAGE_SHIFT;

			end = vma->vm_start + (vma->vm_raend << PAGE_SHIFT);
			end -= window + window;
			filemap_sync(vma, end - window, window, MS_INVALIDATE);
		}

		vma->vm_raend += ra_window;
	}

	return;
}

/*
 * filemap_nopage() is invoked via the vma operations vector for a
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
 */
struct page * filemap_nopage(struct vm_area_struct * area, unsigned long address, int unused)
{
	int error;
	struct file *file = area->vm_file;
	struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
	struct inode *inode = mapping->host;
	struct page *page, **hash;
	unsigned long size, pgoff, endoff;

	pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
	endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;

retry_all:
	/*
	 * An external ptracer can access pages that normally aren't
	 * accessible..
	 */
	size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
	if ((pgoff >= size) && (area->vm_mm == current->mm))
		return NULL;

	/* The "size" of the file, as far as mmap is concerned, isn't bigger than the mapping */
	if (size > endoff)
		size = endoff;

	/*
	 * Do we have something in the page cache already?
	 */
	hash = page_hash(mapping, pgoff);
retry_find:
	page = __find_get_page(mapping, pgoff, hash);
	if (!page)
		goto no_cached_page;

	/*
	 * Ok, found a page in the page cache, now we need to check
	 * that it's up-to-date.
	 */
	if (!Page_Uptodate(page))
		goto page_not_uptodate;

success:
 	/*
	 * Try read-ahead for sequential areas.
	 */
	if (VM_SequentialReadHint(area))
		nopage_sequential_readahead(area, pgoff, size);

	/*
	 * Found the page and have a reference on it, need to check sharing
	 * and possibly copy it over to another page..
	 */
	mark_page_accessed(page);
	flush_page_to_ram(page);
	return page;

no_cached_page:
	/*
	 * If the requested offset is within our file, try to read a whole 
	 * cluster of pages at once.
	 *
	 * Otherwise, we're off the end of a privately mapped file,
	 * so we need to map a zero page.
	 */
	if ((pgoff < size) && !VM_RandomReadHint(area))
		error = read_cluster_nonblocking(file, pgoff, size);
	else
		error = page_cache_read(file, pgoff);

	/*
	 * The page we want has now been added to the page cache.
	 * In the unlikely event that someone removed it in the
	 * meantime, we'll just come back here and read it again.
	 */
	if (error >= 0)
		goto retry_find;

	/*
	 * An error return from page_cache_read can result if the
	 * system is low on memory, or a problem occurs while trying
	 * to schedule I/O.
	 */
	if (error == -ENOMEM)
		return NOPAGE_OOM;
	return NULL;

page_not_uptodate:
	lock_page(page);

	/* Did it get unhashed while we waited for it? */
	if (!page->mapping) {
		UnlockPage(page);
		page_cache_release(page);
		goto retry_all;
	}

	/* Did somebody else get it up-to-date? */
	if (Page_Uptodate(page)) {
		UnlockPage(page);
		goto success;
	}

	if (!mapping->a_ops->readpage(file, page)) {
		wait_on_page(page);
		if (Page_Uptodate(page))
			goto success;
	}

	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	lock_page(page);

	/* Somebody truncated the page on us? */
	if (!page->mapping) {
		UnlockPage(page);
		page_cache_release(page);
		goto retry_all;
	}

	/* Somebody else successfully read it in? */
	if (Page_Uptodate(page)) {
		UnlockPage(page);
		goto success;
	}
	ClearPageError(page);
	if (!mapping->a_ops->readpage(file, page)) {
		wait_on_page(page);
		if (Page_Uptodate(page))
			goto success;
	}

	/*
	 * Things didn't work out. Return zero to tell the
	 * mm layer so, possibly freeing the page cache page first.
	 */
	page_cache_release(page);
	return NULL;
}

/* Called with mm->page_table_lock held to protect against other
 * threads/the swapper from ripping pte's out from under us.
 */
static inline int filemap_sync_pte(pte_t * ptep, struct vm_area_struct *vma,
	unsigned long address, unsigned int flags)
{
	pte_t pte = *ptep;

	if (pte_present(pte)) {
		struct page *page = pte_page(pte);
		if (VALID_PAGE(page) && !PageReserved(page) && ptep_test_and_clear_dirty(ptep)) {
			flush_tlb_page(vma, address);
			set_page_dirty(page);
		}
	}
	return 0;
}

static inline int filemap_sync_pte_range(pmd_t * pmd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned long offset, unsigned int flags)
{
	pte_t * pte;
	unsigned long end;
	int error;

	if (pmd_none(*pmd))
		return 0;
	if (pmd_bad(*pmd)) {
		pmd_ERROR(*pmd);
		pmd_clear(pmd);
		return 0;
	}
	pte = pte_offset(pmd, address);
	offset += address & PMD_MASK;
	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte(pte, vma, address + offset, flags);
		address += PAGE_SIZE;
		pte++;
	} while (address && (address < end));
	return error;
}

static inline int filemap_sync_pmd_range(pgd_t * pgd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned int flags)
{
	pmd_t * pmd;
	unsigned long offset, end;
	int error;

	if (pgd_none(*pgd))
		return 0;
	if (pgd_bad(*pgd)) {
		pgd_ERROR(*pgd);
		pgd_clear(pgd);
		return 0;
	}
	pmd = pmd_offset(pgd, address);
	offset = address & PGDIR_MASK;
	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte_range(pmd, address, end - address, vma, offset, flags);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address && (address < end));
	return error;
}

int filemap_sync(struct vm_area_struct * vma, unsigned long address,
	size_t size, unsigned int flags)
{
	pgd_t * dir;
	unsigned long end = address + size;
	int error = 0;

	/* Aquire the lock early; it may be possible to avoid dropping
	 * and reaquiring it repeatedly.
	 */
	spin_lock(&vma->vm_mm->page_table_lock);

	dir = pgd_offset(vma->vm_mm, address);
	flush_cache_range(vma->vm_mm, end - size, end);
	if (address >= end)
		BUG();
	do {
		error |= filemap_sync_pmd_range(dir, address, end - address, vma, flags);
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	} while (address && (address < end));
	flush_tlb_range(vma->vm_mm, end - size, end);

	spin_unlock(&vma->vm_mm->page_table_lock);

	return error;
}

static struct vm_operations_struct generic_file_vm_ops = {
	nopage:		filemap_nopage,
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
	struct inode *inode = mapping->host;

	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
		if (!mapping->a_ops->writepage)
			return -EINVAL;
	}
	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	UPDATE_ATIME(inode);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * The msync() system call.
 */

/*
 * MS_SYNC syncs the entire file - including mappings.
 *
 * MS_ASYNC initiates writeout of just the dirty mapped data.
 * This provides no guarantee of file integrity - things like indirect
 * blocks may not have started writeout.  MS_ASYNC is primarily useful
 * where the application knows that it has finished with the data and
 * wishes to intelligently schedule its own I/O traffic.
 */
static int msync_interval(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, int flags)
{
	int ret = 0;
	struct file * file = vma->vm_file;

	if ( (flags & MS_INVALIDATE) && (vma->vm_flags & VM_LOCKED) )
		return -EBUSY;

	if (file && (vma->vm_flags & VM_SHARED)) {
		ret = filemap_sync(vma, start, end-start, flags);

		if (!ret && (flags & (MS_SYNC|MS_ASYNC))) {
			struct inode * inode = file->f_dentry->d_inode;

			down(&inode->i_sem);
			ret = filemap_fdatasync(inode->i_mapping);
			if (flags & MS_SYNC) {
				int err;

				if (file->f_op && file->f_op->fsync) {
					err = file->f_op->fsync(file, file->f_dentry, 1);
					if (err && !ret)
						ret = err;
				}
				err = filemap_fdatawait(inode->i_mapping);
				if (err && !ret)
					ret = err;
			}
			up(&inode->i_sem);
		}
	}
	return ret;
}

asmlinkage long sys_msync(unsigned long start, size_t len, int flags)
{
	unsigned long end;
	struct vm_area_struct * vma;
	int unmapped_error, error = -EINVAL;

	down_read(&current->mm->mmap_sem);
	if (start & ~PAGE_MASK)
		goto out;
	len = (len + ~PAGE_MASK) & PAGE_MASK;
	end = start + len;
	if (end < start)
		goto out;
	if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC))
		goto out;
	if ((flags & MS_ASYNC) && (flags & MS_SYNC))
		goto out;

	error = 0;
	if (end == start)
		goto out;
	/*
	 * If the interval [start,end) covers some unmapped address ranges,
	 * just ignore them, but return -ENOMEM at the end.
	 */
	vma = find_vma(current->mm, start);
	unmapped_error = 0;
	for (;;) {
		/* Still start < end. */
		error = -ENOMEM;
		if (!vma)
			goto out;
		/* Here start < vma->vm_end. */
		if (start < vma->vm_start) {
			unmapped_error = -ENOMEM;
			start = vma->vm_start;
		}
		/* Here vma->vm_start <= start < vma->vm_end. */
		if (end <= vma->vm_end) {
			if (start < end) {
				error = msync_interval(vma, start, end, flags);
				if (error)
					goto out;
			}
			error = unmapped_error;
			goto out;
		}
		/* Here vma->vm_start <= start < vma->vm_end < end. */
		error = msync_interval(vma, start, vma->vm_end, flags);
		if (error)
			goto out;
		start = vma->vm_end;
		vma = vma->vm_next;
	}
out:
	up_read(&current->mm->mmap_sem);
	return error;
}

static inline void setup_read_behavior(struct vm_area_struct * vma,
	int behavior)
{
	VM_ClearReadHint(vma);
	switch(behavior) {
		case MADV_SEQUENTIAL:
			vma->vm_flags |= VM_SEQ_READ;
			break;
		case MADV_RANDOM:
			vma->vm_flags |= VM_RAND_READ;
			break;
		default:
			break;
	}
	return;
}

static long madvise_fixup_start(struct vm_area_struct * vma,
	unsigned long end, int behavior)
{
	struct vm_area_struct * n;
	struct mm_struct * mm = vma->vm_mm;

	n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
	if (!n)
		return -EAGAIN;
	*n = *vma;
	n->vm_end = end;
	setup_read_behavior(n, behavior);
	n->vm_raend = 0;
	if (n->vm_file)
		get_file(n->vm_file);
	if (n->vm_ops && n->vm_ops->open)
		n->vm_ops->open(n);
	vma->vm_pgoff += (end - vma->vm_start) >> PAGE_SHIFT;
	lock_vma_mappings(vma);
	spin_lock(&mm->page_table_lock);
	vma->vm_start = end;
	__insert_vm_struct(mm, n);
	spin_unlock(&mm->page_table_lock);
	unlock_vma_mappings(vma);
	return 0;
}

static long madvise_fixup_end(struct vm_area_struct * vma,
	unsigned long start, int behavior)
{
	struct vm_area_struct * n;
	struct mm_struct * mm = vma->vm_mm;

	n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
	if (!n)
		return -EAGAIN;
	*n = *vma;
	n->vm_start = start;
	n->vm_pgoff += (n->vm_start - vma->vm_start) >> PAGE_SHIFT;
	setup_read_behavior(n, behavior);
	n->vm_raend = 0;
	if (n->vm_file)
		get_file(n->vm_file);
	if (n->vm_ops && n->vm_ops->open)
		n->vm_ops->open(n);
	lock_vma_mappings(vma);
	spin_lock(&mm->page_table_lock);
	vma->vm_end = start;
	__insert_vm_struct(mm, n);
	spin_unlock(&mm->page_table_lock);
	unlock_vma_mappings(vma);
	return 0;
}

static long madvise_fixup_middle(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, int behavior)
{
	struct vm_area_struct * left, * right;
	struct mm_struct * mm = vma->vm_mm;

	left = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
	if (!left)
		return -EAGAIN;
	right = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
	if (!right) {
		kmem_cache_free(vm_area_cachep, left);
		return -EAGAIN;
	}
	*left = *vma;
	*right = *vma;
	left->vm_end = start;
	right->vm_start = end;
	right->vm_pgoff += (right->vm_start - left->vm_start) >> PAGE_SHIFT;
	left->vm_raend = 0;
	right->vm_raend = 0;
	if (vma->vm_file)
		atomic_add(2, &vma->vm_file->f_count);

	if (vma->vm_ops && vma->vm_ops->open) {
		vma->vm_ops->open(left);
		vma->vm_ops->open(right);
	}
	vma->vm_pgoff += (start - vma->vm_start) >> PAGE_SHIFT;
	vma->vm_raend = 0;
	lock_vma_mappings(vma);
	spin_lock(&mm->page_table_lock);
	vma->vm_start = start;
	vma->vm_end = end;
	setup_read_behavior(vma, behavior);
	__insert_vm_struct(mm, left);
	__insert_vm_struct(mm, right);
	spin_unlock(&mm->page_table_lock);
	unlock_vma_mappings(vma);
	return 0;
}

/*
 * We can potentially split a vm area into separate
 * areas, each area with its own behavior.
 */
static long madvise_behavior(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, int behavior)
{
	int error = 0;

	/* This caps the number of vma's this process can own */
	if (vma->vm_mm->map_count > max_map_count)
		return -ENOMEM;

	if (start == vma->vm_start) {
		if (end == vma->vm_end) {
			setup_read_behavior(vma, behavior);
			vma->vm_raend = 0;
		} else
			error = madvise_fixup_start(vma, end, behavior);
	} else {
		if (end == vma->vm_end)
			error = madvise_fixup_end(vma, start, behavior);
		else
			error = madvise_fixup_middle(vma, start, end, behavior);
	}

	return error;
}

/*
 * Schedule all required I/O operations, then run the disk queue
 * to make sure they are started.  Do not wait for completion.
 */
static long madvise_willneed(struct vm_area_struct * vma,
	unsigned long start, unsigned long end)
{
	long error = -EBADF;
	struct file * file;
	struct inode * inode;
	unsigned long size, rlim_rss;

	/* Doesn't work if there's no mapped file. */
	if (!vma->vm_file)
		return error;
	file = vma->vm_file;
	inode = file->f_dentry->d_inode;
	if (!inode->i_mapping->a_ops->readpage)
		return error;
	size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

	start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
	if (end > vma->vm_end)
		end = vma->vm_end;
	end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;

	/* Make sure this doesn't exceed the process's max rss. */
	error = -EIO;
	rlim_rss = current->rlim ?  current->rlim[RLIMIT_RSS].rlim_cur :
				LONG_MAX; /* default: see resource.h */
	if ((vma->vm_mm->rss + (end - start)) > rlim_rss)
		return error;

	/* round to cluster boundaries if this isn't a "random" area. */
	if (!VM_RandomReadHint(vma)) {
		start = CLUSTER_OFFSET(start);
		end = CLUSTER_OFFSET(end + CLUSTER_PAGES - 1);

		while ((start < end) && (start < size)) {
			error = read_cluster_nonblocking(file, start, size);
			start += CLUSTER_PAGES;
			if (error < 0)
				break;
		}
	} else {
		while ((start < end) && (start < size)) {
			error = page_cache_read(file, start);
			start++;
			if (error < 0)
				break;
		}
	}

	/* Don't wait for someone else to push these requests. */
	run_task_queue(&tq_disk);

	return error;
}

/*
 * Application no longer needs these pages.  If the pages are dirty,
 * it's OK to just throw them away.  The app will be more careful about
 * data it wants to keep.  Be sure to free swap resources too.  The
 * zap_page_range call sets things up for refill_inactive to actually free
 * these pages later if no one else has touched them in the meantime,
 * although we could add these pages to a global reuse list for
 * refill_inactive to pick up before reclaiming other pages.
 *
 * NB: This interface discards data rather than pushes it out to swap,
 * as some implementations do.  This has performance implications for
 * applications like large transactional databases which want to discard
 * pages in anonymous maps after committing to backing store the data
 * that was kept in them.  There is no reason to write this data out to
 * the swap area if the application is discarding it.
 *
 * An interface that causes the system to free clean pages and flush
 * dirty pages is already available as msync(MS_INVALIDATE).
 */
static long madvise_dontneed(struct vm_area_struct * vma,
	unsigned long start, unsigned long end)
{
	if (vma->vm_flags & VM_LOCKED)
		return -EINVAL;

	zap_page_range(vma->vm_mm, start, end - start);
	return 0;
}

static long madvise_vma(struct vm_area_struct * vma, unsigned long start,
	unsigned long end, int behavior)
{
	long error = -EBADF;

	switch (behavior) {
	case MADV_NORMAL:
	case MADV_SEQUENTIAL:
	case MADV_RANDOM:
		error = madvise_behavior(vma, start, end, behavior);
		break;

	case MADV_WILLNEED:
		error = madvise_willneed(vma, start, end);
		break;

	case MADV_DONTNEED:
		error = madvise_dontneed(vma, start, end);
		break;

	default:
		error = -EINVAL;
		break;
	}
		
	return error;
}

/*
 * The madvise(2) system call.
 *
 * Applications can use madvise() to advise the kernel how it should
 * handle paging I/O in this VM area.  The idea is to help the kernel
 * use appropriate read-ahead and caching techniques.  The information
 * provided is advisory only, and can be safely disregarded by the
 * kernel without affecting the correct operation of the application.
 *
 * behavior values:
 *  MADV_NORMAL - the default behavior is to read clusters.  This
 *		results in some read-ahead and read-behind.
 *  MADV_RANDOM - the system should read the minimum amount of data
 *		on any access, since it is unlikely that the appli-
 *		cation will need more than what it asks for.
 *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
 *		once, so they can be aggressively read ahead, and
 *		can be freed soon after they are accessed.
 *  MADV_WILLNEED - the application is notifying the system to read
 *		some pages ahead.
 *  MADV_DONTNEED - the application is finished with the given range,
 *		so the kernel can free resources associated with it.
 *
 * return values:
 *  zero    - success
 *  -EINVAL - start + len < 0, start is not page-aligned,
 *		"behavior" is not a valid value, or application
 *		is attempting to release locked or shared pages.
 *  -ENOMEM - addresses in the specified range are not currently
 *		mapped, or are outside the AS of the process.
 *  -EIO    - an I/O error occurred while paging in data.
 *  -EBADF  - map exists, but area maps something that isn't a file.
 *  -EAGAIN - a kernel resource was temporarily unavailable.
 */
asmlinkage long sys_madvise(unsigned long start, size_t len, int behavior)
{
	unsigned long end;
	struct vm_area_struct * vma;
	int unmapped_error = 0;
	int error = -EINVAL;

	down_write(&current->mm->mmap_sem);

	if (start & ~PAGE_MASK)
		goto out;
	len = (len + ~PAGE_MASK) & PAGE_MASK;
	end = start + len;
	if (end < start)
		goto out;

	error = 0;
	if (end == start)
		goto out;

	/*
	 * If the interval [start,end) covers some unmapped address
	 * ranges, just ignore them, but return -ENOMEM at the end.
	 */
	vma = find_vma(current->mm, start);
	for (;;) {
		/* Still start < end. */
		error = -ENOMEM;
		if (!vma)
			goto out;

		/* Here start < vma->vm_end. */
		if (start < vma->vm_start) {
			unmapped_error = -ENOMEM;
			start = vma->vm_start;
		}

		/* Here vma->vm_start <= start < vma->vm_end. */
		if (end <= vma->vm_end) {
			if (start < end) {
				error = madvise_vma(vma, start, end,
							behavior);
				if (error)
					goto out;
			}
			error = unmapped_error;
			goto out;
		}

		/* Here vma->vm_start <= start < vma->vm_end < end. */
		error = madvise_vma(vma, start, vma->vm_end, behavior);
		if (error)
			goto out;
		start = vma->vm_end;
		vma = vma->vm_next;
	}

out:
	up_write(&current->mm->mmap_sem);
	return error;
}

/*
 * Later we can get more picky about what "in core" means precisely.
 * For now, simply check to see if the page is in the page cache,
 * and is up to date; i.e. that no page-in operation would be required
 * at this time if an application were to map and access this page.
 */
static unsigned char mincore_page(struct vm_area_struct * vma,
	unsigned long pgoff)
{
	unsigned char present = 0;
	struct address_space * as = vma->vm_file->f_dentry->d_inode->i_mapping;
	struct page * page, ** hash = page_hash(as, pgoff);

	spin_lock(&pagecache_lock);
	page = __find_page_nolock(as, pgoff, *hash);
	if ((page) && (Page_Uptodate(page)))
		present = 1;
	spin_unlock(&pagecache_lock);

	return present;
}

static long mincore_vma(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, unsigned char * vec)
{
	long error, i, remaining;
	unsigned char * tmp;

	error = -ENOMEM;
	if (!vma->vm_file)
		return error;

	start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
	if (end > vma->vm_end)
		end = vma->vm_end;
	end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;

	error = -EAGAIN;
	tmp = (unsigned char *) __get_free_page(GFP_KERNEL);
	if (!tmp)
		return error;

	/* (end - start) is # of pages, and also # of bytes in "vec */
	remaining = (end - start),

	error = 0;
	for (i = 0; remaining > 0; remaining -= PAGE_SIZE, i++) {
		int j = 0;
		long thispiece = (remaining < PAGE_SIZE) ?
						remaining : PAGE_SIZE;

		while (j < thispiece)
			tmp[j++] = mincore_page(vma, start++);

		if (copy_to_user(vec + PAGE_SIZE * i, tmp, thispiece)) {
			error = -EFAULT;
			break;
		}
	}

	free_page((unsigned long) tmp);
	return error;
}

/*
 * The mincore(2) system call.
 *
 * mincore() returns the memory residency status of the pages in the
 * current process's address space specified by [addr, addr + len).
 * The status is returned in a vector of bytes.  The least significant
 * bit of each byte is 1 if the referenced page is in memory, otherwise
 * it is zero.
 *
 * Because the status of a page can change after mincore() checks it
 * but before it returns to the application, the returned vector may
 * contain stale information.  Only locked pages are guaranteed to
 * remain in memory.
 *
 * return values:
 *  zero    - success
 *  -EFAULT - vec points to an illegal address
 *  -EINVAL - addr is not a multiple of PAGE_CACHE_SIZE,
 *		or len has a nonpositive value
 *  -ENOMEM - Addresses in the range [addr, addr + len] are
 *		invalid for the address space of this process, or
 *		specify one or more pages which are not currently
 *		mapped
 *  -EAGAIN - A kernel resource was temporarily unavailable.
 */
asmlinkage long sys_mincore(unsigned long start, size_t len,
	unsigned char * vec)
{
	int index = 0;
	unsigned long end;
	struct vm_area_struct * vma;
	int unmapped_error = 0;
	long error = -EINVAL;

	down_read(&current->mm->mmap_sem);

	if (start & ~PAGE_CACHE_MASK)
		goto out;
	len = (len + ~PAGE_CACHE_MASK) & PAGE_CACHE_MASK;
	end = start + len;
	if (end < start)
		goto out;

	error = 0;
	if (end == start)
		goto out;

	/*
	 * If the interval [start,end) covers some unmapped address
	 * ranges, just ignore them, but return -ENOMEM at the end.
	 */
	vma = find_vma(current->mm, start);
	for (;;) {
		/* Still start < end. */
		error = -ENOMEM;
		if (!vma)
			goto out;

		/* Here start < vma->vm_end. */
		if (start < vma->vm_start) {
			unmapped_error = -ENOMEM;
			start = vma->vm_start;
		}

		/* Here vma->vm_start <= start < vma->vm_end. */
		if (end <= vma->vm_end) {
			if (start < end) {
				error = mincore_vma(vma, start, end,
							&vec[index]);
				if (error)
					goto out;
			}
			error = unmapped_error;
			goto out;
		}

		/* Here vma->vm_start <= start < vma->vm_end < end. */
		error = mincore_vma(vma, start, vma->vm_end, &vec[index]);
		if (error)
			goto out;
		index += (vma->vm_end - start) >> PAGE_CACHE_SHIFT;
		start = vma->vm_end;
		vma = vma->vm_next;
	}

out:
	up_read(&current->mm->mmap_sem);
	return error;
}

static inline
struct page *__read_cache_page(struct address_space *mapping,
				unsigned long index,
				int (*filler)(void *,struct page*),
				void *data)
{
	struct page **hash = page_hash(mapping, index);
	struct page *page, *cached_page = NULL;
	int err;
repeat:
	page = __find_get_page(mapping, index, hash);
	if (!page) {
		if (!cached_page) {
			cached_page = page_cache_alloc(mapping);
			if (!cached_page)
				return ERR_PTR(-ENOMEM);
		}
		page = cached_page;
		if (add_to_page_cache_unique(page, mapping, index, hash))
			goto repeat;
		cached_page = NULL;
		err = filler(data, page);
		if (err < 0) {
			page_cache_release(page);
			page = ERR_PTR(err);
		}
	}
	if (cached_page)
		page_cache_release(cached_page);
	return page;
}

/*
 * Read into the page cache. If a page already exists,
 * and Page_Uptodate() is not set, try to fill the page.
 */
struct page *read_cache_page(struct address_space *mapping,
				unsigned long index,
				int (*filler)(void *,struct page*),
				void *data)
{
	struct page *page;
	int err;

retry:
	page = __read_cache_page(mapping, index, filler, data);
	if (IS_ERR(page))
		goto out;
	mark_page_accessed(page);
	if (Page_Uptodate(page))
		goto out;

	lock_page(page);
	if (!page->mapping) {
		UnlockPage(page);
		page_cache_release(page);
		goto retry;
	}
	if (Page_Uptodate(page)) {
		UnlockPage(page);
		goto out;
	}
	err = filler(data, page);
	if (err < 0) {
		page_cache_release(page);
		page = ERR_PTR(err);
	}
 out:
	return page;
}

static inline struct page * __grab_cache_page(struct address_space *mapping,
				unsigned long index, struct page **cached_page)
{
	struct page *page, **hash = page_hash(mapping, index);
repeat:
	page = __find_lock_page(mapping, index, hash);
	if (!page) {
		if (!*cached_page) {
			*cached_page = page_cache_alloc(mapping);
			if (!*cached_page)
				return NULL;
		}
		page = *cached_page;
		if (add_to_page_cache_unique(page, mapping, index, hash))
			goto repeat;
		*cached_page = NULL;
	}
	return page;
}

inline void remove_suid(struct inode *inode)
{
	unsigned int mode;

	/* set S_IGID if S_IXGRP is set, and always set S_ISUID */
	mode = (inode->i_mode & S_IXGRP)*(S_ISGID/S_IXGRP) | S_ISUID;

	/* was any of the uid bits set? */
	mode &= inode->i_mode;
	if (mode && !capable(CAP_FSETID)) {
		inode->i_mode &= ~mode;
		mark_inode_dirty(inode);
	}
}

/*
 * precheck_file_write():
 * Check the conditions on a file descriptor prior to beginning a write
 * on it.  Contains the common precheck code for both buffered and direct
 * IO.
 */
int precheck_file_write(struct file *file, struct inode *inode,
			size_t *count, loff_t *ppos)
{
	ssize_t		err;
	unsigned long	limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
	loff_t		pos = *ppos;
	
	err = -EINVAL;
	if (pos < 0)
		goto out;

	err = file->f_error;
	if (err) {
		file->f_error = 0;
		goto out;
	}

	/* FIXME: this is for backwards compatibility with 2.4 */
	if (!S_ISBLK(inode->i_mode) && (file->f_flags & O_APPEND))
		*ppos = pos = inode->i_size;

	/*
	 * Check whether we've reached the file size limit.
	 */
	err = -EFBIG;
	
	if (!S_ISBLK(inode->i_mode) && limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			goto out;
		}
		if (pos > 0xFFFFFFFFULL || *count > limit - (u32)pos) {
			/* send_sig(SIGXFSZ, current, 0); */
			*count = limit - (u32)pos;
		}
	}

	/*
	 *	LFS rule 
	 */
	if ( pos + *count > MAX_NON_LFS && !(file->f_flags&O_LARGEFILE)) {
		if (pos >= MAX_NON_LFS) {
			send_sig(SIGXFSZ, current, 0);
			goto out;
		}
		if (*count > MAX_NON_LFS - (u32)pos) {
			/* send_sig(SIGXFSZ, current, 0); */
			*count = MAX_NON_LFS - (u32)pos;
		}
	}

	/*
	 *	Are we about to exceed the fs block limit ?
	 *
	 *	If we have written data it becomes a short write
	 *	If we have exceeded without writing data we send
	 *	a signal and give them an EFBIG.
	 *
	 *	Linus frestrict idea will clean these up nicely..
	 */
	 
	if (!S_ISBLK(inode->i_mode)) {
		if (pos >= inode->i_sb->s_maxbytes)
		{
			if (*count || pos > inode->i_sb->s_maxbytes) {
				send_sig(SIGXFSZ, current, 0);
				err = -EFBIG;
				goto out;
			}
			/* zero-length writes at ->s_maxbytes are OK */
		}

		if (pos + *count > inode->i_sb->s_maxbytes)
			*count = inode->i_sb->s_maxbytes - pos;
	} else {
		if (is_read_only(inode->i_rdev)) {
			err = -EPERM;
			goto out;
		}
		if (pos >= inode->i_size) {
			if (*count || pos > inode->i_size) {
				err = -ENOSPC;
				goto out;
			}
		}

		if (pos + *count > inode->i_size)
			*count = inode->i_size - pos;
	}

	err = 0;
out:
	return err;
}

/*
 * Write to a file through the page cache. 
 *
 * We currently put everything into the page cache prior to writing it.
 * This is not a problem when writing full pages. With partial pages,
 * however, we first have to read the data into the cache, then
 * dirty the page, and finally schedule it for writing. Alternatively, we
 * could write-through just the portion of data that would go into that
 * page, but that would kill performance for applications that write data
 * line by line, and it's prone to race conditions.
 *
 * Note that this routine doesn't try to keep track of dirty pages. Each
 * file system has to do this all by itself, unfortunately.
 *							okir@monad.swb.de
 */
ssize_t
do_generic_file_write(struct file *file,const char *buf,size_t count, loff_t *ppos)
{
	struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
	struct inode	*inode = mapping->host;
	loff_t		pos;
	struct page	*page, *cached_page;
	ssize_t		written;
	long		status = 0;
	ssize_t		err;
	unsigned	bytes;

	cached_page = NULL;
	pos = *ppos;
	written = 0;

	err = precheck_file_write(file, inode, &count, &pos);
	if (err != 0 || count == 0)
		goto out;

	remove_suid(inode);
	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
	mark_inode_dirty_sync(inode);

	do {
		unsigned long index, offset;
		long page_fault;
		char *kaddr;

		/*
		 * Try to find the page in the cache. If it isn't there,
		 * allocate a free page.
		 */
		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		index = pos >> PAGE_CACHE_SHIFT;
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 */
		{ volatile unsigned char dummy;
			__get_user(dummy, buf);
			__get_user(dummy, buf+bytes-1);
		}

		status = -ENOMEM;	/* we'll assign it later anyway */
		page = __grab_cache_page(mapping, index, &cached_page);
		if (!page)
			break;

		/* We have exclusive IO access to the page.. */
		if (!PageLocked(page)) {
			PAGE_BUG(page);
		}

		kaddr = kmap(page);
		status = mapping->a_ops->prepare_write(file, page, offset, offset+bytes);
		if (status)
			goto sync_failure;
		page_fault = __copy_from_user(kaddr+offset, buf, bytes);
		flush_dcache_page(page);
		status = mapping->a_ops->commit_write(file, page, offset, offset+bytes);
		if (page_fault)
			goto fail_write;
		if (!status)
			status = bytes;

		if (status >= 0) {
			written += status;
			count -= status;
			pos += status;
			buf += status;
		}
unlock:
		kunmap(page);
		/* Mark it unlocked again and drop the page.. */
		SetPageReferenced(page);
		UnlockPage(page);
		page_cache_release(page);

		if (status < 0)
			break;
	} while (count);
done:
	*ppos = pos;

	if (cached_page)
		page_cache_release(cached_page);

	/* For now, when the user asks for O_SYNC, we'll actually
	 * provide O_DSYNC. */
	if (status >= 0) {
		if ((file->f_flags & O_SYNC) || IS_SYNC(inode))
			status = generic_osync_inode(inode, OSYNC_METADATA|OSYNC_DATA);
	}
	
	err = written ? written : status;
out:

	return err;
fail_write:
	status = -EFAULT;
	goto unlock;

sync_failure:
	/*
	 * If blocksize < pagesize, prepare_write() may have instantiated a
	 * few blocks outside i_size.  Trim these off again.
	 */
	kunmap(page);
	UnlockPage(page);
	page_cache_release(page);
	if (pos + bytes > inode->i_size)
		vmtruncate(inode, inode->i_size);
	goto done;
}

ssize_t
do_generic_direct_write(struct file *file,const char *buf,size_t count, loff_t *ppos)
{
	struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
	struct inode	*inode = mapping->host;
	loff_t		pos;
	ssize_t		written;
	long		status = 0;
	ssize_t		err;

	pos = *ppos;
	written = 0;

	err = precheck_file_write(file, inode, &count, &pos);
	if (err != 0 || count == 0)
		goto out;

	if (!(file->f_flags & O_DIRECT))
		BUG();

	remove_suid(inode);
	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
	mark_inode_dirty_sync(inode);

	written = generic_file_direct_IO(WRITE, file, (char *) buf, count, pos);
	if (written > 0) {
		loff_t end = pos + written;
		if (end > inode->i_size && !S_ISBLK(inode->i_mode)) {
			inode->i_size = end;
			mark_inode_dirty(inode);
		}
		*ppos = end;
		invalidate_inode_pages2(mapping);
	}
	/*
	 * Sync the fs metadata but not the minor inode changes and
	 * of course not the data as we did direct DMA for the IO.
	 */
	if (written >= 0 && (file->f_flags & O_SYNC))
		status = generic_osync_inode(inode, OSYNC_METADATA);

	err = written ? written : status;
out:
	return err;
}

static int do_odirect_fallback(struct file *file, struct inode *inode,
			       const char *buf, size_t count, loff_t *ppos)
{
	ssize_t ret;
	int err;

	down(&inode->i_sem);
	ret = do_generic_file_write(file, buf, count, ppos);
	if (ret > 0) {
		err = do_fdatasync(file);
		if (err)
			ret = err;
	}
	up(&inode->i_sem);
	return ret;
}

ssize_t
generic_file_write(struct file *file,const char *buf,size_t count, loff_t *ppos)
{
	struct inode	*inode = file->f_dentry->d_inode->i_mapping->host;
	ssize_t		err;

	if ((ssize_t) count < 0)
		return -EINVAL;

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	if (file->f_flags & O_DIRECT) {
		/* do_generic_direct_write may drop i_sem during the
		   actual IO */
		down_read(&inode->i_alloc_sem);
		down(&inode->i_sem);
		err = do_generic_direct_write(file, buf, count, ppos);
		up(&inode->i_sem);
		up_read(&inode->i_alloc_sem);
		if (unlikely(err == -ENOTBLK))
			err = do_odirect_fallback(file, inode, buf, count, ppos);
	} else {
		down(&inode->i_sem);
		err = do_generic_file_write(file, buf, count, ppos);
		up(&inode->i_sem);
	}

	return err;
}

void __init page_cache_init(unsigned long mempages)
{
	unsigned long htable_size, order;

	htable_size = mempages;
	htable_size *= sizeof(struct page *);
	for(order = 0; (PAGE_SIZE << order) < htable_size; order++)
		;

	do {
		unsigned long tmp = (PAGE_SIZE << order) / sizeof(struct page *);

		page_hash_bits = 0;
		while((tmp >>= 1UL) != 0UL)
			page_hash_bits++;

		page_hash_table = (struct page **)
			__get_free_pages(GFP_ATOMIC, order);
	} while(page_hash_table == NULL && --order > 0);

	printk("Page-cache hash table entries: %d (order: %ld, %ld bytes)\n",
	       (1 << page_hash_bits), order, (PAGE_SIZE << order));
	if (!page_hash_table)
		panic("Failed to allocate page hash table\n");
	memset((void *)page_hash_table, 0, PAGE_HASH_SIZE * sizeof(struct page *));
}