Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

#include <asm/param.h>	/* for HZ */

extern unsigned long event;

#include <linux/config.h>
#include <linux/binfmts.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/times.h>
#include <linux/timex.h>
#include <linux/rbtree.h>

#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/mmu.h>

#include <linux/smp.h>
#include <linux/tty.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>

struct exec_domain;

/*
 * cloning flags:
 */
#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
#define CLONE_VM	0x00000100	/* set if VM shared between processes */
#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
#define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
#define CLONE_PID	0x00001000	/* set if pid shared */
#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
#define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
#define CLONE_THREAD	0x00010000	/* Same thread group? */
#define CLONE_NEWNS	0x00020000	/* New namespace group? */

#define CLONE_SIGNAL	(CLONE_SIGHAND | CLONE_THREAD)

/*
 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
 */
extern unsigned long avenrun[];		/* Load averages */

#define FSHIFT		11		/* nr of bits of precision */
#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
#define LOAD_FREQ	(5*HZ)		/* 5 sec intervals */
#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
#define EXP_5		2014		/* 1/exp(5sec/5min) */
#define EXP_15		2037		/* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \
	load *= exp; \
	load += n*(FIXED_1-exp); \
	load >>= FSHIFT;

#define CT_TO_SECS(x)	((x) / HZ)
#define CT_TO_USECS(x)	(((x) % HZ) * 1000000/HZ)

extern int nr_running, nr_threads;
extern int last_pid;

#include <linux/fs.h>
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#ifdef __KERNEL__
#include <linux/timer.h>
#endif

#include <asm/processor.h>

#define TASK_RUNNING		0
#define TASK_INTERRUPTIBLE	1
#define TASK_UNINTERRUPTIBLE	2
#define TASK_ZOMBIE		4
#define TASK_STOPPED		8

#define __set_task_state(tsk, state_value)		\
	do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value)		\
	set_mb((tsk)->state, (state_value))

#define __set_current_state(state_value)			\
	do { current->state = (state_value); } while (0)
#define set_current_state(state_value)		\
	set_mb(current->state, (state_value))

/*
 * Scheduling policies
 */
#define SCHED_OTHER		0
#define SCHED_FIFO		1
#define SCHED_RR		2

/*
 * This is an additional bit set when we want to
 * yield the CPU for one re-schedule..
 */
#define SCHED_YIELD		0x10

struct sched_param {
	int sched_priority;
};

struct completion;

#ifdef __KERNEL__

#include <linux/spinlock.h>

/*
 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
 */
extern rwlock_t tasklist_lock;
extern spinlock_t runqueue_lock;
extern spinlock_t mmlist_lock;

extern void sched_init(void);
extern void init_idle(void);
extern void show_state(void);
extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void update_one_process(struct task_struct *p, unsigned long user,
			       unsigned long system, int cpu);

#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
extern signed long FASTCALL(schedule_timeout(signed long timeout));
asmlinkage void schedule(void);

extern int schedule_task(struct tq_struct *task);
extern void flush_scheduled_tasks(void);
extern int start_context_thread(void);
extern int current_is_keventd(void);

#if CONFIG_SMP
extern void set_cpus_allowed(struct task_struct *p, unsigned long new_mask);
#else
# define set_cpus_allowed(p, new_mask) do { } while (0)
#endif

/*
 * The default fd array needs to be at least BITS_PER_LONG,
 * as this is the granularity returned by copy_fdset().
 */
#define NR_OPEN_DEFAULT BITS_PER_LONG

struct namespace;
/*
 * Open file table structure
 */
struct files_struct {
	atomic_t count;
	rwlock_t file_lock;	/* Protects all the below members.  Nests inside tsk->alloc_lock */
	int max_fds;
	int max_fdset;
	int next_fd;
	struct file ** fd;	/* current fd array */
	fd_set *close_on_exec;
	fd_set *open_fds;
	fd_set close_on_exec_init;
	fd_set open_fds_init;
	struct file * fd_array[NR_OPEN_DEFAULT];
};

#define INIT_FILES \
{ 							\
	count:		ATOMIC_INIT(1), 		\
	file_lock:	RW_LOCK_UNLOCKED, 		\
	max_fds:	NR_OPEN_DEFAULT, 		\
	max_fdset:	__FD_SETSIZE, 			\
	next_fd:	0, 				\
	fd:		&init_files.fd_array[0], 	\
	close_on_exec:	&init_files.close_on_exec_init, \
	open_fds:	&init_files.open_fds_init, 	\
	close_on_exec_init: { { 0, } }, 		\
	open_fds_init:	{ { 0, } }, 			\
	fd_array:	{ NULL, } 			\
}

/* Maximum number of active map areas.. This is a random (large) number */
#define DEFAULT_MAX_MAP_COUNT	(65536)

extern int max_map_count;

struct mm_struct {
	struct vm_area_struct * mmap;		/* list of VMAs */
	rb_root_t mm_rb;
	struct vm_area_struct * mmap_cache;	/* last find_vma result */
	pgd_t * pgd;
	atomic_t mm_users;			/* How many users with user space? */
	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
	int map_count;				/* number of VMAs */
	struct rw_semaphore mmap_sem;
	spinlock_t page_table_lock;		/* Protects task page tables and mm->rss */

	struct list_head mmlist;		/* List of all active mm's.  These are globally strung
						 * together off init_mm.mmlist, and are protected
						 * by mmlist_lock
						 */

	unsigned long start_code, end_code, start_data, end_data;
	unsigned long start_brk, brk, start_stack;
	unsigned long arg_start, arg_end, env_start, env_end;
	unsigned long rss, total_vm, locked_vm;
	unsigned long def_flags;
	unsigned long cpu_vm_mask;
	unsigned long swap_address;

	unsigned dumpable:1;

	/* Architecture-specific MM context */
	mm_context_t context;
};

extern int mmlist_nr;

#define INIT_MM(name) \
{			 				\
	mm_rb:		RB_ROOT,			\
	pgd:		swapper_pg_dir, 		\
	mm_users:	ATOMIC_INIT(2), 		\
	mm_count:	ATOMIC_INIT(1), 		\
	mmap_sem:	__RWSEM_INITIALIZER(name.mmap_sem), \
	page_table_lock: SPIN_LOCK_UNLOCKED, 		\
	mmlist:		LIST_HEAD_INIT(name.mmlist),	\
}

struct signal_struct {
	atomic_t		count;
	struct k_sigaction	action[_NSIG];
	spinlock_t		siglock;
};


#define INIT_SIGNALS {	\
	count:		ATOMIC_INIT(1), 		\
	action:		{ {{0,}}, }, 			\
	siglock:	SPIN_LOCK_UNLOCKED 		\
}

/*
 * Some day this will be a full-fledged user tracking system..
 */
struct user_struct {
	atomic_t __count;	/* reference count */
	atomic_t processes;	/* How many processes does this user have? */
	atomic_t files;		/* How many open files does this user have? */

	/* Hash table maintenance information */
	struct user_struct *next, **pprev;
	uid_t uid;
};

#define get_current_user() ({ 				\
	struct user_struct *__user = current->user;	\
	atomic_inc(&__user->__count);			\
	__user; })

extern struct user_struct root_user;
#define INIT_USER (&root_user)

struct task_struct {
	/*
	 * offsets of these are hardcoded elsewhere - touch with care
	 */
	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
	unsigned long flags;	/* per process flags, defined below */
	int sigpending;
	mm_segment_t addr_limit;	/* thread address space:
					 	0-0xBFFFFFFF for user-thead
						0-0xFFFFFFFF for kernel-thread
					 */
	struct exec_domain *exec_domain;
	volatile long need_resched;
	unsigned long ptrace;

	int lock_depth;		/* Lock depth */

/*
 * offset 32 begins here on 32-bit platforms. We keep
 * all fields in a single cacheline that are needed for
 * the goodness() loop in schedule().
 */
	long counter;
	long nice;
	unsigned long policy;
	struct mm_struct *mm;
	int processor;
	/*
	 * cpus_runnable is ~0 if the process is not running on any
	 * CPU. It's (1 << cpu) if it's running on a CPU. This mask
	 * is updated under the runqueue lock.
	 *
	 * To determine whether a process might run on a CPU, this
	 * mask is AND-ed with cpus_allowed.
	 */
	unsigned long cpus_runnable, cpus_allowed;
	/*
	 * (only the 'next' pointer fits into the cacheline, but
	 * that's just fine.)
	 */
	struct list_head run_list;
	unsigned long sleep_time;

	struct task_struct *next_task, *prev_task;
	struct mm_struct *active_mm;
	struct list_head local_pages;
	unsigned int allocation_order, nr_local_pages;

/* task state */
	struct linux_binfmt *binfmt;
	int exit_code, exit_signal;
	int pdeath_signal;  /*  The signal sent when the parent dies  */
	/* ??? */
	unsigned long personality;
	int did_exec:1;
	unsigned task_dumpable:1;
	pid_t pid;
	pid_t pgrp;
	pid_t tty_old_pgrp;
	pid_t session;
	pid_t tgid;
	/* boolean value for session group leader */
	int leader;
	/* 
	 * pointers to (original) parent process, youngest child, younger sibling,
	 * older sibling, respectively.  (p->father can be replaced with 
	 * p->p_pptr->pid)
	 */
	struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
	struct list_head thread_group;

	/* PID hash table linkage. */
	struct task_struct *pidhash_next;
	struct task_struct **pidhash_pprev;

	wait_queue_head_t wait_chldexit;	/* for wait4() */
	struct completion *vfork_done;		/* for vfork() */
	unsigned long rt_priority;
	unsigned long it_real_value, it_prof_value, it_virt_value;
	unsigned long it_real_incr, it_prof_incr, it_virt_incr;
	struct timer_list real_timer;
	struct tms times;
	unsigned long start_time;
	long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
	unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
	int swappable:1;
/* process credentials */
	uid_t uid,euid,suid,fsuid;
	gid_t gid,egid,sgid,fsgid;
	int ngroups;
	gid_t	groups[NGROUPS];
	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
	int keep_capabilities:1;
	struct user_struct *user;
/* limits */
	struct rlimit rlim[RLIM_NLIMITS];
	unsigned short used_math;
	char comm[16];
/* file system info */
	int link_count, total_link_count;
	struct tty_struct *tty; /* NULL if no tty */
	unsigned int locks; /* How many file locks are being held */
/* ipc stuff */
	struct sem_undo *semundo;
	struct sem_queue *semsleeping;
/* CPU-specific state of this task */
	struct thread_struct thread;
/* filesystem information */
	struct fs_struct *fs;
/* open file information */
	struct files_struct *files;
/* namespace */
	struct namespace *namespace;
/* signal handlers */
	spinlock_t sigmask_lock;	/* Protects signal and blocked */
	struct signal_struct *sig;

	sigset_t blocked;
	struct sigpending pending;

	unsigned long sas_ss_sp;
	size_t sas_ss_size;
	int (*notifier)(void *priv);
	void *notifier_data;
	sigset_t *notifier_mask;
	
/* Thread group tracking */
   	u32 parent_exec_id;
   	u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty */
	spinlock_t alloc_lock;

/* journalling filesystem info */
	void *journal_info;
};

/*
 * Per process flags
 */
#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
					/* Not implemented yet, only for 486*/
#define PF_STARTING	0x00000002	/* being created */
#define PF_EXITING	0x00000004	/* getting shut down */
#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
#define PF_DUMPCORE	0x00000200	/* dumped core */
#define PF_SIGNALED	0x00000400	/* killed by a signal */
#define PF_MEMALLOC	0x00000800	/* Allocating memory */
#define PF_FREE_PAGES	0x00002000	/* per process page freeing */
#define PF_NOIO		0x00004000	/* avoid generating further I/O */

#define PF_USEDFPU	0x00100000	/* task used FPU this quantum (SMP) */

/*
 * Ptrace flags
 */

#define PT_PTRACED	0x00000001
#define PT_TRACESYS	0x00000002
#define PT_DTRACE	0x00000004	/* delayed trace (used on m68k, i386) */
#define PT_TRACESYSGOOD	0x00000008
#define PT_PTRACE_CAP	0x00000010	/* ptracer can follow suid-exec */

#define is_dumpable(tsk)    ((tsk)->task_dumpable && (tsk)->mm && (tsk)->mm->dumpable)

/*
 * Limit the stack by to some sane default: root can always
 * increase this limit if needed..  8MB seems reasonable.
 */
#define _STK_LIM	(8*1024*1024)

#define DEF_COUNTER	(10*HZ/100)	/* 100 ms time slice */
#define MAX_COUNTER	(20*HZ/100)
#define DEF_NICE	(0)

extern void yield(void);

/*
 * The default (Linux) execution domain.
 */
extern struct exec_domain	default_exec_domain;

/*
 *  INIT_TASK is used to set up the first task table, touch at
 * your own risk!. Base=0, limit=0x1fffff (=2MB)
 */
#define INIT_TASK(tsk)	\
{									\
    state:		0,						\
    flags:		0,						\
    sigpending:		0,						\
    addr_limit:		KERNEL_DS,					\
    exec_domain:	&default_exec_domain,				\
    lock_depth:		-1,						\
    counter:		DEF_COUNTER,					\
    nice:		DEF_NICE,					\
    policy:		SCHED_OTHER,					\
    mm:			NULL,						\
    active_mm:		&init_mm,					\
    cpus_runnable:	~0UL,						\
    cpus_allowed:	~0UL,						\
    run_list:		LIST_HEAD_INIT(tsk.run_list),			\
    next_task:		&tsk,						\
    prev_task:		&tsk,						\
    p_opptr:		&tsk,						\
    p_pptr:		&tsk,						\
    thread_group:	LIST_HEAD_INIT(tsk.thread_group),		\
    wait_chldexit:	__WAIT_QUEUE_HEAD_INITIALIZER(tsk.wait_chldexit),\
    real_timer:		{						\
	function:		it_real_fn				\
    },									\
    cap_effective:	CAP_INIT_EFF_SET,				\
    cap_inheritable:	CAP_INIT_INH_SET,				\
    cap_permitted:	CAP_FULL_SET,					\
    keep_capabilities:	0,						\
    rlim:		INIT_RLIMITS,					\
    user:		INIT_USER,					\
    comm:		"swapper",					\
    thread:		INIT_THREAD,					\
    fs:			&init_fs,					\
    files:		&init_files,					\
    sigmask_lock:	SPIN_LOCK_UNLOCKED,				\
    sig:		&init_signals,					\
    pending:		{ NULL, &tsk.pending.head, {{0}}},		\
    blocked:		{{0}},						\
    alloc_lock:		SPIN_LOCK_UNLOCKED,				\
    journal_info:	NULL,						\
}


#ifndef INIT_TASK_SIZE
# define INIT_TASK_SIZE	2048*sizeof(long)
#endif

union task_union {
	struct task_struct task;
	unsigned long stack[INIT_TASK_SIZE/sizeof(long)];
};

extern union task_union init_task_union;

extern struct   mm_struct init_mm;
extern struct task_struct *init_tasks[NR_CPUS];

/* PID hashing. (shouldnt this be dynamic?) */
#define PIDHASH_SZ (4096 >> 2)
extern struct task_struct *pidhash[PIDHASH_SZ];

#define pid_hashfn(x)	((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))

static inline void hash_pid(struct task_struct *p)
{
	struct task_struct **htable = &pidhash[pid_hashfn(p->pid)];

	if((p->pidhash_next = *htable) != NULL)
		(*htable)->pidhash_pprev = &p->pidhash_next;
	*htable = p;
	p->pidhash_pprev = htable;
}

static inline void unhash_pid(struct task_struct *p)
{
	if(p->pidhash_next)
		p->pidhash_next->pidhash_pprev = p->pidhash_pprev;
	*p->pidhash_pprev = p->pidhash_next;
}

static inline struct task_struct *find_task_by_pid(int pid)
{
	struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];

	for(p = *htable; p && p->pid != pid; p = p->pidhash_next)
		;

	return p;
}

#define task_has_cpu(tsk) ((tsk)->cpus_runnable != ~0UL)

static inline void task_set_cpu(struct task_struct *tsk, unsigned int cpu)
{
	tsk->processor = cpu;
	tsk->cpus_runnable = 1UL << cpu;
}

static inline void task_release_cpu(struct task_struct *tsk)
{
	tsk->cpus_runnable = ~0UL;
}

/* per-UID process charging. */
extern struct user_struct * alloc_uid(uid_t);
extern void free_uid(struct user_struct *);
extern void switch_uid(struct user_struct *);

#include <asm/current.h>

extern unsigned long volatile jiffies;
extern unsigned long itimer_ticks;
extern unsigned long itimer_next;
extern struct timeval xtime;
extern void do_timer(struct pt_regs *);

extern unsigned int * prof_buffer;
extern unsigned long prof_len;
extern unsigned long prof_shift;

#define CURRENT_TIME (xtime.tv_sec)

extern void FASTCALL(__wake_up(wait_queue_head_t *q, unsigned int mode, int nr));
extern void FASTCALL(__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr));
extern void FASTCALL(sleep_on(wait_queue_head_t *q));
extern long FASTCALL(sleep_on_timeout(wait_queue_head_t *q,
				      signed long timeout));
extern void FASTCALL(interruptible_sleep_on(wait_queue_head_t *q));
extern long FASTCALL(interruptible_sleep_on_timeout(wait_queue_head_t *q,
						    signed long timeout));
extern int FASTCALL(wake_up_process(struct task_struct * tsk));

#define wake_up(x)			__wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
#define wake_up_nr(x, nr)		__wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
#define wake_up_all(x)			__wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0)
#define wake_up_sync(x)			__wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
#define wake_up_sync_nr(x, nr)		__wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
#define wake_up_interruptible(x)	__wake_up((x),TASK_INTERRUPTIBLE, 1)
#define wake_up_interruptible_nr(x, nr)	__wake_up((x),TASK_INTERRUPTIBLE, nr)
#define wake_up_interruptible_all(x)	__wake_up((x),TASK_INTERRUPTIBLE, 0)
#define wake_up_interruptible_sync(x)	__wake_up_sync((x),TASK_INTERRUPTIBLE, 1)
#define wake_up_interruptible_sync_nr(x, nr) __wake_up_sync((x),TASK_INTERRUPTIBLE,  nr)
asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru);

extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);

extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *);
extern void sig_exit(int, int, struct siginfo *);
extern int dequeue_signal(sigset_t *, siginfo_t *);
extern void block_all_signals(int (*notifier)(void *priv), void *priv,
			      sigset_t *mask);
extern void unblock_all_signals(void);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int kill_pg_info(int, struct siginfo *, pid_t);
extern int kill_sl_info(int, struct siginfo *, pid_t);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern void notify_parent(struct task_struct *, int);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern int kill_pg(pid_t, int, int);
extern int kill_sl(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t *, stack_t *, unsigned long);

static inline int signal_pending(struct task_struct *p)
{
	return (p->sigpending != 0);
}

/*
 * Re-calculate pending state from the set of locally pending
 * signals, globally pending signals, and blocked signals.
 */
static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
{
	unsigned long ready;
	long i;

	switch (_NSIG_WORDS) {
	default:
		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
			ready |= signal->sig[i] &~ blocked->sig[i];
		break;

	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
		ready |= signal->sig[2] &~ blocked->sig[2];
		ready |= signal->sig[1] &~ blocked->sig[1];
		ready |= signal->sig[0] &~ blocked->sig[0];
		break;

	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
		ready |= signal->sig[0] &~ blocked->sig[0];
		break;

	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
	}
	return ready !=	0;
}

/* Reevaluate whether the task has signals pending delivery.
   This is required every time the blocked sigset_t changes.
   All callers should have t->sigmask_lock.  */

static inline void recalc_sigpending(struct task_struct *t)
{
	t->sigpending = has_pending_signals(&t->pending.signal, &t->blocked);
}

/* True if we are on the alternate signal stack.  */

static inline int on_sig_stack(unsigned long sp)
{
	return (sp - current->sas_ss_sp < current->sas_ss_size);
}

static inline int sas_ss_flags(unsigned long sp)
{
	return (current->sas_ss_size == 0 ? SS_DISABLE
		: on_sig_stack(sp) ? SS_ONSTACK : 0);
}

extern int request_irq(unsigned int,
		       void (*handler)(int, void *, struct pt_regs *),
		       unsigned long, const char *, void *);
extern void free_irq(unsigned int, void *);

/*
 * This has now become a routine instead of a macro, it sets a flag if
 * it returns true (to do BSD-style accounting where the process is flagged
 * if it uses root privs). The implication of this is that you should do
 * normal permissions checks first, and check suser() last.
 *
 * [Dec 1997 -- Chris Evans]
 * For correctness, the above considerations need to be extended to
 * fsuser(). This is done, along with moving fsuser() checks to be
 * last.
 *
 * These will be removed, but in the mean time, when the SECURE_NOROOT 
 * flag is set, uids don't grant privilege.
 */
static inline int suser(void)
{
	if (!issecure(SECURE_NOROOT) && current->euid == 0) { 
		current->flags |= PF_SUPERPRIV;
		return 1;
	}
	return 0;
}

static inline int fsuser(void)
{
	if (!issecure(SECURE_NOROOT) && current->fsuid == 0) {
		current->flags |= PF_SUPERPRIV;
		return 1;
	}
	return 0;
}

/*
 * capable() checks for a particular capability.  
 * New privilege checks should use this interface, rather than suser() or
 * fsuser(). See include/linux/capability.h for defined capabilities.
 */

static inline int capable(int cap)
{
#if 1 /* ok now */
	if (cap_raised(current->cap_effective, cap))
#else
	if (cap_is_fs_cap(cap) ? current->fsuid == 0 : current->euid == 0)
#endif
	{
		current->flags |= PF_SUPERPRIV;
		return 1;
	}
	return 0;
}

/*
 * Routines for handling mm_structs
 */
extern struct mm_struct * mm_alloc(void);

extern struct mm_struct * start_lazy_tlb(void);
extern void end_lazy_tlb(struct mm_struct *mm);

/* mmdrop drops the mm and the page tables */
extern inline void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
{
	if (atomic_dec_and_test(&mm->mm_count))
		__mmdrop(mm);
}

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(void);

/*
 * Routines for handling the fd arrays
 */
extern struct file ** alloc_fd_array(int);
extern int expand_fd_array(struct files_struct *, int nr);
extern void free_fd_array(struct file **, int);

extern fd_set *alloc_fdset(int);
extern int expand_fdset(struct files_struct *, int nr);
extern void free_fdset(fd_set *, int);

extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_mm(struct task_struct *);
extern void exit_files(struct task_struct *);
extern void exit_sighand(struct task_struct *);

extern void reparent_to_init(void);
extern void daemonize(void);

extern int do_execve(char *, char **, char **, struct pt_regs *);
extern int do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long);

extern void FASTCALL(add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));
extern void FASTCALL(add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait));
extern void FASTCALL(remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));

extern long kernel_thread(int (*fn)(void *), void * arg, unsigned long flags);

#define __wait_event(wq, condition) 					\
do {									\
	wait_queue_t __wait;						\
	init_waitqueue_entry(&__wait, current);				\
									\
	add_wait_queue(&wq, &__wait);					\
	for (;;) {							\
		set_current_state(TASK_UNINTERRUPTIBLE);		\
		if (condition)						\
			break;						\
		schedule();						\
	}								\
	current->state = TASK_RUNNING;					\
	remove_wait_queue(&wq, &__wait);				\
} while (0)

#define wait_event(wq, condition) 					\
do {									\
	if (condition)	 						\
		break;							\
	__wait_event(wq, condition);					\
} while (0)

#define __wait_event_interruptible(wq, condition, ret)			\
do {									\
	wait_queue_t __wait;						\
	init_waitqueue_entry(&__wait, current);				\
									\
	add_wait_queue(&wq, &__wait);					\
	for (;;) {							\
		set_current_state(TASK_INTERRUPTIBLE);			\
		if (condition)						\
			break;						\
		if (!signal_pending(current)) {				\
			schedule();					\
			continue;					\
		}							\
		ret = -ERESTARTSYS;					\
		break;							\
	}								\
	current->state = TASK_RUNNING;					\
	remove_wait_queue(&wq, &__wait);				\
} while (0)
	
#define wait_event_interruptible(wq, condition)				\
({									\
	int __ret = 0;							\
	if (!(condition))						\
		__wait_event_interruptible(wq, condition, __ret);	\
	__ret;								\
})

#define REMOVE_LINKS(p) do { \
	(p)->next_task->prev_task = (p)->prev_task; \
	(p)->prev_task->next_task = (p)->next_task; \
	if ((p)->p_osptr) \
		(p)->p_osptr->p_ysptr = (p)->p_ysptr; \
	if ((p)->p_ysptr) \
		(p)->p_ysptr->p_osptr = (p)->p_osptr; \
	else \
		(p)->p_pptr->p_cptr = (p)->p_osptr; \
	} while (0)

#define SET_LINKS(p) do { \
	(p)->next_task = &init_task; \
	(p)->prev_task = init_task.prev_task; \
	init_task.prev_task->next_task = (p); \
	init_task.prev_task = (p); \
	(p)->p_ysptr = NULL; \
	if (((p)->p_osptr = (p)->p_pptr->p_cptr) != NULL) \
		(p)->p_osptr->p_ysptr = p; \
	(p)->p_pptr->p_cptr = p; \
	} while (0)

#define for_each_task(p) \
	for (p = &init_task ; (p = p->next_task) != &init_task ; )

#define for_each_thread(task) \
	for (task = next_thread(current) ; task != current ; task = next_thread(task))

#define next_thread(p) \
	list_entry((p)->thread_group.next, struct task_struct, thread_group)

#define thread_group_leader(p)	(p->pid == p->tgid)

static inline void del_from_runqueue(struct task_struct * p)
{
	nr_running--;
	p->sleep_time = jiffies;
	list_del(&p->run_list);
	p->run_list.next = NULL;
}

static inline int task_on_runqueue(struct task_struct *p)
{
	return (p->run_list.next != NULL);
}

static inline void unhash_process(struct task_struct *p)
{
	if (task_on_runqueue(p))
		out_of_line_bug();
	write_lock_irq(&tasklist_lock);
	nr_threads--;
	unhash_pid(p);
	REMOVE_LINKS(p);
	list_del(&p->thread_group);
	write_unlock_irq(&tasklist_lock);
}

/* Protects ->fs, ->files, ->mm, and synchronises with wait4().  Nests inside tasklist_lock */
static inline void task_lock(struct task_struct *p)
{
	spin_lock(&p->alloc_lock);
}

static inline void task_unlock(struct task_struct *p)
{
	spin_unlock(&p->alloc_lock);
}

/* write full pathname into buffer and return start of pathname */
static inline char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
				char *buf, int buflen)
{
	char *res;
	struct vfsmount *rootmnt;
	struct dentry *root;
	read_lock(&current->fs->lock);
	rootmnt = mntget(current->fs->rootmnt);
	root = dget(current->fs->root);
	read_unlock(&current->fs->lock);
	spin_lock(&dcache_lock);
	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
	spin_unlock(&dcache_lock);
	dput(root);
	mntput(rootmnt);
	return res;
}

static inline int need_resched(void)
{
	return (unlikely(current->need_resched));
}

extern void __cond_resched(void);
static inline void cond_resched(void)
{
	if (need_resched())
		__cond_resched();
}

#endif /* __KERNEL__ */
#endif