Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
/*
 * linux/fs/inode.c
 *
 * (C) 1997 Linus Torvalds
 */

#include <linux/config.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/quotaops.h>
#include <linux/slab.h>
#include <linux/cache.h>

/*
 * New inode.c implementation.
 *
 * This implementation has the basic premise of trying
 * to be extremely low-overhead and SMP-safe, yet be
 * simple enough to be "obviously correct".
 *
 * Famous last words.
 */

/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */

/* #define INODE_PARANOIA 1 */
/* #define INODE_DEBUG 1 */

/*
 * Inode lookup is no longer as critical as it used to be:
 * most of the lookups are going to be through the dcache.
 */
#define I_HASHBITS	i_hash_shift
#define I_HASHMASK	i_hash_mask

static unsigned int i_hash_mask;
static unsigned int i_hash_shift;

/*
 * Each inode can be on two separate lists. One is
 * the hash list of the inode, used for lookups. The
 * other linked list is the "type" list:
 *  "in_use" - valid inode, i_count > 0, i_nlink > 0
 *  "dirty"  - as "in_use" but also dirty
 *  "unused" - valid inode, i_count = 0
 *
 * A "dirty" list is maintained for each super block,
 * allowing for low-overhead inode sync() operations.
 */

static LIST_HEAD(inode_in_use);
static LIST_HEAD(inode_unused);
static struct list_head *inode_hashtable;
static LIST_HEAD(anon_hash_chain); /* for inodes with NULL i_sb */

/*
 * A simple spinlock to protect the list manipulations.
 *
 * NOTE! You also have to own the lock if you change
 * the i_state of an inode while it is in use..
 */
spinlock_t inode_lock = SPIN_LOCK_UNLOCKED;

/*
 * Statistics gathering..
 */
struct inodes_stat_t inodes_stat;

static kmem_cache_t * inode_cachep;

#define alloc_inode() \
	 ((struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL))
static void destroy_inode(struct inode *inode) 
{
	if (!list_empty(&inode->i_dirty_buffers))
		BUG();
	kmem_cache_free(inode_cachep, (inode));
}


/*
 * These are initializations that only need to be done
 * once, because the fields are idempotent across use
 * of the inode, so let the slab aware of that.
 */
static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
	struct inode * inode = (struct inode *) foo;

	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
	    SLAB_CTOR_CONSTRUCTOR)
	{
		memset(inode, 0, sizeof(*inode));
		init_waitqueue_head(&inode->i_wait);
		INIT_LIST_HEAD(&inode->i_hash);
		INIT_LIST_HEAD(&inode->i_data.clean_pages);
		INIT_LIST_HEAD(&inode->i_data.dirty_pages);
		INIT_LIST_HEAD(&inode->i_data.locked_pages);
		INIT_LIST_HEAD(&inode->i_dentry);
		INIT_LIST_HEAD(&inode->i_dirty_buffers);
		sema_init(&inode->i_sem, 1);
		sema_init(&inode->i_zombie, 1);
		spin_lock_init(&inode->i_data.i_shared_lock);
	}
}

/*
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but
 * move it onto the dirty list only if it is hashed.
 * If it was not hashed, it will never be added to
 * the dirty list even if it is later hashed, as it
 * will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_
 * you start marking them dirty..
 */
 
/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *
 *	Mark an inode as dirty. Callers should use mark_inode_dirty.
 */
 
void __mark_inode_dirty(struct inode *inode, int flags)
{
	struct super_block * sb = inode->i_sb;

	if (sb) {
		/* Don't do this for I_DIRTY_PAGES - that doesn't actually dirty the inode itself */
		if (flags & (I_DIRTY | I_DIRTY_SYNC)) {
			if (sb->s_op && sb->s_op->dirty_inode)
				sb->s_op->dirty_inode(inode);
		}

		/* avoid the locking if we can */
		if ((inode->i_state & flags) == flags)
			return;

		spin_lock(&inode_lock);
		if ((inode->i_state & flags) != flags) {
			inode->i_state |= flags;
			/* Only add valid (ie hashed) inodes to the dirty list */
			if (!list_empty(&inode->i_hash)) {
				list_del(&inode->i_list);
				list_add(&inode->i_list, &sb->s_dirty);
			}
		}
		spin_unlock(&inode_lock);
	}
}

static void __wait_on_inode(struct inode * inode)
{
	DECLARE_WAITQUEUE(wait, current);

	add_wait_queue(&inode->i_wait, &wait);
repeat:
	set_current_state(TASK_UNINTERRUPTIBLE);
	if (inode->i_state & I_LOCK) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&inode->i_wait, &wait);
	current->state = TASK_RUNNING;
}

static inline void wait_on_inode(struct inode *inode)
{
	if (inode->i_state & I_LOCK)
		__wait_on_inode(inode);
}


static inline void write_inode(struct inode *inode, int sync)
{
	if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode)
		inode->i_sb->s_op->write_inode(inode, sync);
}

static inline void __iget(struct inode * inode)
{
	if (atomic_read(&inode->i_count)) {
		atomic_inc(&inode->i_count);
		return;
	}
	atomic_inc(&inode->i_count);
	if (!(inode->i_state & I_DIRTY)) {
		list_del(&inode->i_list);
		list_add(&inode->i_list, &inode_in_use);
	}
	inodes_stat.nr_unused--;
}

static inline void sync_one(struct inode *inode, int sync)
{
	if (inode->i_state & I_LOCK) {
		__iget(inode);
		spin_unlock(&inode_lock);
		__wait_on_inode(inode);
		iput(inode);
		spin_lock(&inode_lock);
	} else {
		unsigned dirty;

		list_del(&inode->i_list);
		list_add(&inode->i_list, atomic_read(&inode->i_count)
							? &inode_in_use
							: &inode_unused);
		/* Set I_LOCK, reset I_DIRTY */
		dirty = inode->i_state & I_DIRTY;
		inode->i_state |= I_LOCK;
		inode->i_state &= ~I_DIRTY;
		spin_unlock(&inode_lock);

		filemap_fdatasync(inode->i_mapping);

		/* Don't write the inode if only I_DIRTY_PAGES was set */
		if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC))
			write_inode(inode, sync);

		filemap_fdatawait(inode->i_mapping);

		spin_lock(&inode_lock);
		inode->i_state &= ~I_LOCK;
		wake_up(&inode->i_wait);
	}
}

static inline void sync_list(struct list_head *head)
{
	struct list_head * tmp;

	while ((tmp = head->prev) != head)
		sync_one(list_entry(tmp, struct inode, i_list), 0);
}

/**
 *	sync_inodes
 *	@dev: device to sync the inodes from.
 *
 *	sync_inodes goes through the super block's dirty list, 
 *	writes them out, and puts them back on the normal list.
 */
 
void sync_inodes(kdev_t dev)
{
	struct super_block * sb = sb_entry(super_blocks.next);

	/*
	 * Search the super_blocks array for the device(s) to sync.
	 */
	spin_lock(&inode_lock);
	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) {
		if (!sb->s_dev)
			continue;
		if (dev && sb->s_dev != dev)
			continue;

		sync_list(&sb->s_dirty);

		if (dev)
			break;
	}
	spin_unlock(&inode_lock);
}

/*
 * Called with the spinlock already held..
 */
static void sync_all_inodes(void)
{
	struct super_block * sb = sb_entry(super_blocks.next);
	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) {
		if (!sb->s_dev)
			continue;
		sync_list(&sb->s_dirty);
	}
}

/**
 *	write_inode_now	-	write an inode to disk
 *	@inode: inode to write to disk
 *	@sync: whether the write should be synchronous or not
 *
 *	This function commits an inode to disk immediately if it is
 *	dirty. This is primarily needed by knfsd.
 */
 
void write_inode_now(struct inode *inode, int sync)
{
	struct super_block * sb = inode->i_sb;

	if (sb) {
		spin_lock(&inode_lock);
		while (inode->i_state & I_DIRTY)
			sync_one(inode, sync);
		spin_unlock(&inode_lock);
	}
	else
		printk("write_inode_now: no super block\n");
}

/**
 * generic_osync_inode - flush all dirty data for a given inode to disk
 * @inode: inode to write
 * @datasync: if set, don't bother flushing timestamps
 *
 * This can be called by file_write functions for files which have the
 * O_SYNC flag set, to flush dirty writes to disk.  
 */

int generic_osync_inode(struct inode *inode, int datasync)
{
	int err;
	
	/* 
	 * WARNING
	 *
	 * Currently, the filesystem write path does not pass the
	 * filp down to the low-level write functions.  Therefore it
	 * is impossible for (say) __block_commit_write to know if
	 * the operation is O_SYNC or not.
	 *
	 * Ideally, O_SYNC writes would have the filesystem call
	 * ll_rw_block as it went to kick-start the writes, and we
	 * could call osync_inode_buffers() here to wait only for
	 * those IOs which have already been submitted to the device
	 * driver layer.  As it stands, if we did this we'd not write
	 * anything to disk since our writes have not been queued by
	 * this point: they are still on the dirty LRU.
	 * 
	 * So, currently we will call fsync_inode_buffers() instead,
	 * to flush _all_ dirty buffers for this inode to disk on 
	 * every O_SYNC write, not just the synchronous I/Os.  --sct
	 */

#ifdef WRITERS_QUEUE_IO
	err = osync_inode_buffers(inode);
#else
	err = fsync_inode_buffers(inode);
#endif

	spin_lock(&inode_lock);
	if (!(inode->i_state & I_DIRTY))
		goto out;
	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
		goto out;
	spin_unlock(&inode_lock);
	write_inode_now(inode, 1);
	return err;

 out:
	spin_unlock(&inode_lock);
	return err;
}

/**
 * clear_inode - clear an inode
 * @inode: inode to clear
 *
 * This is called by the filesystem to tell us
 * that the inode is no longer useful. We just
 * terminate it with extreme prejudice.
 */
 
void clear_inode(struct inode *inode)
{
	if (!list_empty(&inode->i_dirty_buffers))
		invalidate_inode_buffers(inode);
       
	if (inode->i_data.nrpages)
		BUG();
	if (!(inode->i_state & I_FREEING))
		BUG();
	if (inode->i_state & I_CLEAR)
		BUG();
	wait_on_inode(inode);
	if (IS_QUOTAINIT(inode))
		DQUOT_DROP(inode);
	if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode)
		inode->i_sb->s_op->clear_inode(inode);
	if (inode->i_bdev) {
		bdput(inode->i_bdev);
		inode->i_bdev = NULL;
	}
	inode->i_state = I_CLEAR;
}

/*
 * Dispose-list gets a local list with local inodes in it, so it doesn't
 * need to worry about list corruption and SMP locks.
 */
static void dispose_list(struct list_head * head)
{
	struct list_head * inode_entry;
	struct inode * inode;

	while ((inode_entry = head->next) != head)
	{
		list_del(inode_entry);

		inode = list_entry(inode_entry, struct inode, i_list);
		if (inode->i_data.nrpages)
			truncate_inode_pages(&inode->i_data, 0);
		clear_inode(inode);
		destroy_inode(inode);
		inodes_stat.nr_inodes--;
	}
}

/*
 * Invalidate all inodes for a device.
 */
static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose)
{
	struct list_head *next;
	int busy = 0, count = 0;

	next = head->next;
	for (;;) {
		struct list_head * tmp = next;
		struct inode * inode;

		next = next->next;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_list);
		if (inode->i_sb != sb)
			continue;
		invalidate_inode_buffers(inode);
		if (!atomic_read(&inode->i_count)) {
			list_del(&inode->i_hash);
			INIT_LIST_HEAD(&inode->i_hash);
			list_del(&inode->i_list);
			list_add(&inode->i_list, dispose);
			inode->i_state |= I_FREEING;
			count++;
			continue;
		}
		busy = 1;
	}
	/* only unused inodes may be cached with i_count zero */
	inodes_stat.nr_unused -= count;
	return busy;
}

/*
 * This is a two-stage process. First we collect all
 * offending inodes onto the throw-away list, and in
 * the second stage we actually dispose of them. This
 * is because we don't want to sleep while messing
 * with the global lists..
 */
 
/**
 *	invalidate_inodes	- discard the inodes on a device
 *	@sb: superblock
 *
 *	Discard all of the inodes for a given superblock. If the discard
 *	fails because there are busy inodes then a non zero value is returned.
 *	If the discard is successful all the inodes have been discarded.
 */
 
int invalidate_inodes(struct super_block * sb)
{
	int busy;
	LIST_HEAD(throw_away);

	spin_lock(&inode_lock);
	busy = invalidate_list(&inode_in_use, sb, &throw_away);
	busy |= invalidate_list(&inode_unused, sb, &throw_away);
	busy |= invalidate_list(&sb->s_dirty, sb, &throw_away);
	spin_unlock(&inode_lock);

	dispose_list(&throw_away);

	return busy;
}

/*
 * This is called with the inode lock held. It searches
 * the in-use for freeable inodes, which are moved to a
 * temporary list and then placed on the unused list by
 * dispose_list. 
 *
 * We don't expect to have to call this very often.
 *
 * N.B. The spinlock is released during the call to
 *      dispose_list.
 */
#define CAN_UNUSE(inode) \
	((((inode)->i_state | (inode)->i_data.nrpages) == 0)  && \
	 !inode_has_buffers(inode))
#define INODE(entry)	(list_entry(entry, struct inode, i_list))

void prune_icache(int goal)
{
	LIST_HEAD(list);
	struct list_head *entry, *freeable = &list;
	int count = 0;
	struct inode * inode;

	spin_lock(&inode_lock);
	/* go simple and safe syncing everything before starting */
	sync_all_inodes();

	entry = inode_unused.prev;
	while (entry != &inode_unused)
	{
		struct list_head *tmp = entry;

		entry = entry->prev;
		inode = INODE(tmp);
		if (inode->i_state & (I_FREEING|I_CLEAR))
			BUG();
		if (!CAN_UNUSE(inode))
			continue;
		if (atomic_read(&inode->i_count))
			BUG();
		list_del(tmp);
		list_del(&inode->i_hash);
		INIT_LIST_HEAD(&inode->i_hash);
		list_add(tmp, freeable);
		inode->i_state |= I_FREEING;
		count++;
		if (!--goal)
			break;
	}
	inodes_stat.nr_unused -= count;
	spin_unlock(&inode_lock);

	dispose_list(freeable);
}

void shrink_icache_memory(int priority, int gfp_mask)
{
	int count = 0;

	/*
	 * Nasty deadlock avoidance..
	 *
	 * We may hold various FS locks, and we don't
	 * want to recurse into the FS that called us
	 * in clear_inode() and friends..
	 */
	if (!(gfp_mask & __GFP_IO))
		return;

	if (priority)
		count = inodes_stat.nr_unused / priority;

	prune_icache(count);
	kmem_cache_shrink(inode_cachep);
}

/*
 * Called with the inode lock held.
 * NOTE: we are not increasing the inode-refcount, you must call __iget()
 * by hand after calling find_inode now! This simplifies iunique and won't
 * add any additional branch in the common code.
 */
static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque)
{
	struct list_head *tmp;
	struct inode * inode;

	tmp = head;
	for (;;) {
		tmp = tmp->next;
		inode = NULL;
		if (tmp == head)
			break;
		inode = list_entry(tmp, struct inode, i_hash);
		if (inode->i_ino != ino)
			continue;
		if (inode->i_sb != sb)
			continue;
		if (find_actor && !find_actor(inode, ino, opaque))
			continue;
		break;
	}
	return inode;
}

/*
 * This just initializes the inode fields
 * to known values before returning the inode..
 *
 * i_sb, i_ino, i_count, i_state and the lists have
 * been initialized elsewhere..
 */
static void clean_inode(struct inode *inode)
{
	static struct address_space_operations empty_aops;
	static struct inode_operations empty_iops;
	static struct file_operations empty_fops;
	memset(&inode->u, 0, sizeof(inode->u));
	inode->i_sock = 0;
	inode->i_op = &empty_iops;
	inode->i_fop = &empty_fops;
	inode->i_nlink = 1;
	atomic_set(&inode->i_writecount, 0);
	inode->i_size = 0;
	inode->i_generation = 0;
	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
	inode->i_pipe = NULL;
	inode->i_bdev = NULL;
	inode->i_data.a_ops = &empty_aops;
	inode->i_data.host = inode;
	inode->i_data.gfp_mask = GFP_HIGHUSER;
	inode->i_mapping = &inode->i_data;
}

/**
 * get_empty_inode 	- obtain an inode
 *
 * This is called by things like the networking layer
 * etc that want to get an inode without any inode
 * number, or filesystems that allocate new inodes with
 * no pre-existing information.
 *
 * On a successful return the inode pointer is returned. On a failure
 * a %NULL pointer is returned. The returned inode is not on any superblock
 * lists.
 */
 
struct inode * get_empty_inode(void)
{
	static unsigned long last_ino;
	struct inode * inode;

	inode = alloc_inode();
	if (inode)
	{
		spin_lock(&inode_lock);
		inodes_stat.nr_inodes++;
		list_add(&inode->i_list, &inode_in_use);
		inode->i_sb = NULL;
		inode->i_dev = 0;
		inode->i_ino = ++last_ino;
		inode->i_flags = 0;
		atomic_set(&inode->i_count, 1);
		inode->i_state = 0;
		spin_unlock(&inode_lock);
		clean_inode(inode);
	}
	return inode;
}

/*
 * This is called without the inode lock held.. Be careful.
 *
 * We no longer cache the sb_flags in i_flags - see fs.h
 *	-- rmk@arm.uk.linux.org
 */
static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque)
{
	struct inode * inode;

	inode = alloc_inode();
	if (inode) {
		struct inode * old;

		spin_lock(&inode_lock);
		/* We released the lock, so.. */
		old = find_inode(sb, ino, head, find_actor, opaque);
		if (!old) {
			inodes_stat.nr_inodes++;
			list_add(&inode->i_list, &inode_in_use);
			list_add(&inode->i_hash, head);
			inode->i_sb = sb;
			inode->i_dev = sb->s_dev;
			inode->i_ino = ino;
			inode->i_flags = 0;
			atomic_set(&inode->i_count, 1);
			inode->i_state = I_LOCK;
			spin_unlock(&inode_lock);

			clean_inode(inode);

			/* reiserfs specific hack right here.  We don't
			** want this to last, and are looking for VFS changes
			** that will allow us to get rid of it.
			** -- mason@suse.com 
			*/
			if (sb->s_op->read_inode2) {
				sb->s_op->read_inode2(inode, opaque) ;
			} else {
				sb->s_op->read_inode(inode);
			}

			/*
			 * This is special!  We do not need the spinlock
			 * when clearing I_LOCK, because we're guaranteed
			 * that nobody else tries to do anything about the
			 * state of the inode when it is locked, as we
			 * just created it (so there can be no old holders
			 * that haven't tested I_LOCK).
			 */
			inode->i_state &= ~I_LOCK;
			wake_up(&inode->i_wait);

			return inode;
		}

		/*
		 * Uhhuh, somebody else created the same inode under
		 * us. Use the old inode instead of the one we just
		 * allocated.
		 */
		__iget(old);
		spin_unlock(&inode_lock);
		destroy_inode(inode);
		inode = old;
		wait_on_inode(inode);
	}
	return inode;
}

static inline unsigned long hash(struct super_block *sb, unsigned long i_ino)
{
	unsigned long tmp = i_ino + ((unsigned long) sb / L1_CACHE_BYTES);
	tmp = tmp + (tmp >> I_HASHBITS);
	return tmp & I_HASHMASK;
}

/* Yeah, I know about quadratic hash. Maybe, later. */

/**
 *	iunique - get a unique inode number
 *	@sb: superblock
 *	@max_reserved: highest reserved inode number
 *
 *	Obtain an inode number that is unique on the system for a given
 *	superblock. This is used by file systems that have no natural
 *	permanent inode numbering system. An inode number is returned that
 *	is higher than the reserved limit but unique.
 *
 *	BUGS:
 *	With a large number of inodes live on the file system this function
 *	currently becomes quite slow.
 */
 
ino_t iunique(struct super_block *sb, ino_t max_reserved)
{
	static ino_t counter = 0;
	struct inode *inode;
	struct list_head * head;
	ino_t res;
	spin_lock(&inode_lock);
retry:
	if (counter > max_reserved) {
		head = inode_hashtable + hash(sb,counter);
		inode = find_inode(sb, res = counter++, head, NULL, NULL);
		if (!inode) {
			spin_unlock(&inode_lock);
			return res;
		}
	} else {
		counter = max_reserved + 1;
	}
	goto retry;
	
}

struct inode *igrab(struct inode *inode)
{
	spin_lock(&inode_lock);
	if (!(inode->i_state & I_FREEING))
		__iget(inode);
	else
		/*
		 * Handle the case where s_op->clear_inode is not been
		 * called yet, and somebody is calling igrab
		 * while the inode is getting freed.
		 */
		inode = NULL;
	spin_unlock(&inode_lock);
	if (inode)
		wait_on_inode(inode);
	return inode;
}


struct inode *iget4(struct super_block *sb, unsigned long ino, find_inode_t find_actor, void *opaque)
{
	struct list_head * head = inode_hashtable + hash(sb,ino);
	struct inode * inode;

	spin_lock(&inode_lock);
	inode = find_inode(sb, ino, head, find_actor, opaque);
	if (inode) {
		__iget(inode);
		spin_unlock(&inode_lock);
		wait_on_inode(inode);
		return inode;
	}
	spin_unlock(&inode_lock);

	/*
	 * get_new_inode() will do the right thing, re-trying the search
	 * in case it had to block at any point.
	 */
	return get_new_inode(sb, ino, head, find_actor, opaque);
}

/**
 *	insert_inode_hash - hash an inode
 *	@inode: unhashed inode
 *
 *	Add an inode to the inode hash for this superblock. If the inode
 *	has no superblock it is added to a separate anonymous chain.
 */
 
void insert_inode_hash(struct inode *inode)
{
	struct list_head *head = &anon_hash_chain;
	if (inode->i_sb)
		head = inode_hashtable + hash(inode->i_sb, inode->i_ino);
	spin_lock(&inode_lock);
	list_add(&inode->i_hash, head);
	spin_unlock(&inode_lock);
}

/**
 *	remove_inode_hash - remove an inode from the hash
 *	@inode: inode to unhash
 *
 *	Remove an inode from the superblock or anonymous hash.
 */
 
void remove_inode_hash(struct inode *inode)
{
	spin_lock(&inode_lock);
	list_del(&inode->i_hash);
	INIT_LIST_HEAD(&inode->i_hash);
	spin_unlock(&inode_lock);
}

/**
 *	iput	- put an inode 
 *	@inode: inode to put
 *
 *	Puts an inode, dropping its usage count. If the inode use count hits
 *	zero the inode is also then freed and may be destroyed.
 */
 
void iput(struct inode *inode)
{
	if (inode) {
		struct super_operations *op = NULL;

		if (inode->i_sb && inode->i_sb->s_op)
			op = inode->i_sb->s_op;
		if (op && op->put_inode)
			op->put_inode(inode);

		if (!atomic_dec_and_lock(&inode->i_count, &inode_lock))
			return;

		if (!inode->i_nlink) {
			list_del(&inode->i_hash);
			INIT_LIST_HEAD(&inode->i_hash);
			list_del(&inode->i_list);
			INIT_LIST_HEAD(&inode->i_list);
			inode->i_state|=I_FREEING;
			inodes_stat.nr_inodes--;
			spin_unlock(&inode_lock);

			if (inode->i_data.nrpages)
				truncate_inode_pages(&inode->i_data, 0);

			if (op && op->delete_inode) {
				void (*delete)(struct inode *) = op->delete_inode;
				/* s_op->delete_inode internally recalls clear_inode() */
				delete(inode);
			} else
				clear_inode(inode);
			if (inode->i_state != I_CLEAR)
				BUG();
		} else {
			if (!list_empty(&inode->i_hash)) {
				if (!(inode->i_state & I_DIRTY)) {
					list_del(&inode->i_list);
					list_add(&inode->i_list,
						 &inode_unused);
				}
				inodes_stat.nr_unused++;
				spin_unlock(&inode_lock);
				return;
			} else {
				/* magic nfs path */
				list_del(&inode->i_list);
				INIT_LIST_HEAD(&inode->i_list);
				inode->i_state|=I_FREEING;
				inodes_stat.nr_inodes--;
				spin_unlock(&inode_lock);
				clear_inode(inode);
			}
		}
		destroy_inode(inode);
	}
}

void force_delete(struct inode *inode)
{
	/*
	 * Kill off unused inodes ... iput() will unhash and
	 * delete the inode if we set i_nlink to zero.
	 */
	if (atomic_read(&inode->i_count) == 1)
		inode->i_nlink = 0;
}

/**
 *	bmap	- find a block number in a file
 *	@inode: inode of file
 *	@block: block to find
 *
 *	Returns the block number on the device holding the inode that
 *	is the disk block number for the block of the file requested.
 *	That is, asked for block 4 of inode 1 the function will return the
 *	disk block relative to the disk start that holds that block of the 
 *	file.
 */
 
int bmap(struct inode * inode, int block)
{
	int res = 0;
	if (inode->i_mapping->a_ops->bmap)
		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
	return res;
}

/*
 * Initialize the hash tables.
 */
void __init inode_init(unsigned long mempages)
{
	struct list_head *head;
	unsigned long order;
	unsigned int nr_hash;
	int i;

	mempages >>= (14 - PAGE_SHIFT);
	mempages *= sizeof(struct list_head);
	for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++)
		;

	do {
		unsigned long tmp;

		nr_hash = (1UL << order) * PAGE_SIZE /
			sizeof(struct list_head);
		i_hash_mask = (nr_hash - 1);

		tmp = nr_hash;
		i_hash_shift = 0;
		while ((tmp >>= 1UL) != 0UL)
			i_hash_shift++;

		inode_hashtable = (struct list_head *)
			__get_free_pages(GFP_ATOMIC, order);
	} while (inode_hashtable == NULL && --order >= 0);

	printk("Inode-cache hash table entries: %d (order: %ld, %ld bytes)\n",
			nr_hash, order, (PAGE_SIZE << order));

	if (!inode_hashtable)
		panic("Failed to allocate inode hash table\n");

	head = inode_hashtable;
	i = nr_hash;
	do {
		INIT_LIST_HEAD(head);
		head++;
		i--;
	} while (i);

	/* inode slab cache */
	inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
					 0, SLAB_HWCACHE_ALIGN, init_once,
					 NULL);
	if (!inode_cachep)
		panic("cannot create inode slab cache");
}

/**
 *	update_atime	-	update the access time
 *	@inode: inode accessed
 *
 *	Update the accessed time on an inode and mark it for writeback.
 *	This function automatically handles read only file systems and media,
 *	as well as the "noatime" flag and inode specific "noatime" markers.
 */
 
void update_atime (struct inode *inode)
{
	if ( IS_NOATIME (inode) ) return;
	if ( IS_NODIRATIME (inode) && S_ISDIR (inode->i_mode) ) return;
	if ( IS_RDONLY (inode) ) return;
	inode->i_atime = CURRENT_TIME;
	mark_inode_dirty_sync (inode);
}   /*  End Function update_atime  */


/*
 *	Quota functions that want to walk the inode lists..
 */
#ifdef CONFIG_QUOTA

/* Functions back in dquot.c */
void put_dquot_list(struct list_head *);
int remove_inode_dquot_ref(struct inode *, short, struct list_head *);

void remove_dquot_ref(kdev_t dev, short type)
{
	struct super_block *sb = get_super(dev);
	struct inode *inode;
	struct list_head *act_head;
	LIST_HEAD(tofree_head);

	if (!sb || !sb->dq_op)
		return;	/* nothing to do */

	/* We have to be protected against other CPUs */
	spin_lock(&inode_lock);
 
	for (act_head = inode_in_use.next; act_head != &inode_in_use; act_head = act_head->next) {
		inode = list_entry(act_head, struct inode, i_list);
		if (inode->i_sb != sb || !IS_QUOTAINIT(inode))
			continue;
		remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	for (act_head = inode_unused.next; act_head != &inode_unused; act_head = act_head->next) {
		inode = list_entry(act_head, struct inode, i_list);
		if (inode->i_sb != sb || !IS_QUOTAINIT(inode))
			continue;
		remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	for (act_head = sb->s_dirty.next; act_head != &sb->s_dirty; act_head = act_head->next) {
		inode = list_entry(act_head, struct inode, i_list);
		if (!IS_QUOTAINIT(inode))
			continue;
  		remove_inode_dquot_ref(inode, type, &tofree_head);
	}
	spin_unlock(&inode_lock);

	put_dquot_list(&tofree_head);
}

#endif