Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
 *	linux/arch/alpha/kernel/core_t2.c
 *
 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
 * December 1996.
 *
 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
 *
 * Code common to all T2 core logic chips.
 */

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/init.h>

#include <asm/ptrace.h>
#include <asm/system.h>

#define __EXTERN_INLINE
#include <asm/io.h>
#include <asm/core_t2.h>
#undef __EXTERN_INLINE

#include "proto.h"
#include "pci_impl.h"


/*
 * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
 * One plausible explanation is that the i/o controller does not properly
 * handle the system transaction.  Another involves timing.  Ho hum.
 */

/*
 * BIOS32-style PCI interface:
 */

#define DEBUG_CONFIG 0

#if DEBUG_CONFIG
# define DBG(args)	printk args
#else
# define DBG(args)
#endif


/*
 * Given a bus, device, and function number, compute resulting
 * configuration space address and setup the T2_HAXR2 register
 * accordingly.  It is therefore not safe to have concurrent
 * invocations to configuration space access routines, but there
 * really shouldn't be any need for this.
 *
 * Type 0:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:11	Device select bit.
 * 	10:8	Function number
 * 	 7:2	Register number
 *
 * Type 1:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:24	reserved
 *	23:16	bus number (8 bits = 128 possible buses)
 *	15:11	Device number (5 bits)
 *	10:8	function number
 *	 7:2	register number
 *  
 * Notes:
 *	The function number selects which function of a multi-function device 
 *	(e.g., SCSI and Ethernet).
 * 
 *	The register selects a DWORD (32 bit) register offset.  Hence it
 *	doesn't get shifted by 2 bits as we want to "drop" the bottom two
 *	bits.
 */

static int
mk_conf_addr(struct pci_dev *dev, int where, unsigned long *pci_addr,
	     unsigned char *type1)
{
	unsigned long addr;
	u8 bus = dev->bus->number;
	u8 device_fn = dev->devfn;

	DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
	     " addr=0x%lx, type1=0x%x)\n",
	     bus, device_fn, where, pci_addr, type1));

	if (bus == 0) {
		int device = device_fn >> 3;

		/* Type 0 configuration cycle.  */

		if (device > 8) {
			DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
			     device));
			return -1;
		}

		*type1 = 0;
		addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
	} else {
		/* Type 1 configuration cycle.  */
		*type1 = 1;
		addr = (bus << 16) | (device_fn << 8) | (where);
	}
	*pci_addr = addr;
	DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
	return 0;
}

static unsigned int
conf_read(unsigned long addr, unsigned char type1)
{
	unsigned long flags;
	unsigned int value, cpu;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	__save_and_cli(flags);	/* avoid getting hit by machine check */

	DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));

#if 0
	{
	  unsigned long stat0;
	  /* Reset status register to avoid losing errors.  */
	  stat0 = *(vulp)T2_IOCSR;
	  *(vulp)T2_IOCSR = stat0;
	  mb();
	  DBG(("conf_read: T2 IOCSR was 0x%x\n", stat0));
	}
#endif

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
		mb();
		DBG(("conf_read: TYPE1 access\n"));
	}
	mb();
	draina();

	mcheck_expected(cpu) = 1;
	mcheck_taken(cpu) = 0;
	mb();

	/* Access configuration space. */
	value = *(vuip)addr;
	mb();
	mb();  /* magic */

	if (mcheck_taken(cpu)) {
		mcheck_taken(cpu) = 0;
		value = 0xffffffffU;
		mb();
	}
	mcheck_expected(cpu) = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}
	DBG(("conf_read(): finished\n"));

	__restore_flags(flags);
	return value;
}

static void
conf_write(unsigned long addr, unsigned int value, unsigned char type1)
{
	unsigned long flags;
	unsigned int cpu;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	__save_and_cli(flags);	/* avoid getting hit by machine check */

#if 0
	{
	  unsigned long stat0;
	  /* Reset status register to avoid losing errors.  */
	  stat0 = *(vulp)T2_IOCSR;
	  *(vulp)T2_IOCSR = stat0;
	  mb();
	  DBG(("conf_write: T2 ERR was 0x%x\n", stat0));
	}
#endif

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
		mb();
		DBG(("conf_write: TYPE1 access\n"));
	}
	mb();
	draina();

	mcheck_expected(cpu) = 1;
	mb();

	/* Access configuration space.  */
	*(vuip)addr = value;
	mb();
	mb();  /* magic */

	mcheck_expected(cpu) = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}
	DBG(("conf_write(): finished\n"));
	__restore_flags(flags);
}

static int
t2_read_config_byte(struct pci_dev *dev, int where, u8 *value)
{
	unsigned long addr, pci_addr;
	unsigned char type1;

	if (mk_conf_addr(dev, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr = (pci_addr << 5) + 0x00 + T2_CONF;
	*value = conf_read(addr, type1) >> ((where & 3) * 8);
	return PCIBIOS_SUCCESSFUL;
}

static int 
t2_read_config_word(struct pci_dev *dev, int where, u16 *value)
{
	unsigned long addr, pci_addr;
	unsigned char type1;

	if (mk_conf_addr(dev, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr = (pci_addr << 5) + 0x08 + T2_CONF;
	*value = conf_read(addr, type1) >> ((where & 3) * 8);
	return PCIBIOS_SUCCESSFUL;
}

static int 
t2_read_config_dword(struct pci_dev *dev, int where, u32 *value)
{
	unsigned long addr, pci_addr;
	unsigned char type1;

	if (mk_conf_addr(dev, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr = (pci_addr << 5) + 0x18 + T2_CONF;
	*value = conf_read(addr, type1);
	return PCIBIOS_SUCCESSFUL;
}

static int 
t2_write_config(struct pci_dev *dev, int where, u32 value, long mask)
{
	unsigned long addr, pci_addr;
	unsigned char type1;

	if (mk_conf_addr(dev, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr = (pci_addr << 5) + mask + T2_CONF;
	conf_write(addr, value << ((where & 3) * 8), type1);
	return PCIBIOS_SUCCESSFUL;
}

static int 
t2_write_config_byte(struct pci_dev *dev, int where, u8 value)
{
	return t2_write_config(dev, where, value, 0x00);
}

static int 
t2_write_config_word(struct pci_dev *dev, int where, u16 value)
{
	return t2_write_config(dev, where, value, 0x08);
}

static int 
t2_write_config_dword(struct pci_dev *dev, int where, u32 value)
{
	return t2_write_config(dev, where, value, 0x18);
}

struct pci_ops t2_pci_ops = 
{
	read_byte:	t2_read_config_byte,
	read_word:	t2_read_config_word,
	read_dword:	t2_read_config_dword,
	write_byte:	t2_write_config_byte,
	write_word:	t2_write_config_word,
	write_dword:	t2_write_config_dword
};

void __init
t2_init_arch(void)
{
	struct pci_controler *hose;
	unsigned int i;

	for (i = 0; i < NR_CPUS; i++) {
		mcheck_expected(i) = 0;
		mcheck_taken(i) = 0;
	}

#if 0
	{
	  /* Set up error reporting.  */
	  unsigned long t2_err;

	  t2_err = *(vulp)T2_IOCSR;
	  t2_err |= (0x1 << 7);   /* master abort */
	  *(vulp)T2_IOCSR = t2_err;
	  mb();
	}
#endif

	printk("t2_init: HBASE was 0x%lx\n", *(vulp)T2_HBASE);
#if 0
	printk("t2_init: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
	       *(vulp)T2_WBASE1,
	       *(vulp)T2_WMASK1,
	       *(vulp)T2_TBASE1);
	printk("t2_init: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
	       *(vulp)T2_WBASE2,
	       *(vulp)T2_WMASK2,
	       *(vulp)T2_TBASE2);
#endif

	/*
	 * Set up the PCI->physical memory translation windows.
	 * For now, window 2 is  disabled.  In the future, we may
	 * want to use it to do scatter/gather DMA. 
	 *
	 * Window 1 goes at 1 GB and is 1 GB large.
	 */

	/* WARNING!! must correspond to the DMA_WIN params!!! */
	*(vulp)T2_WBASE1 = 0x400807ffU;
	*(vulp)T2_WMASK1 = 0x3ff00000U;
	*(vulp)T2_TBASE1 = 0;

	*(vulp)T2_WBASE2 = 0x0;
	*(vulp)T2_HBASE = 0x0;

	/* Zero HAE.  */
	*(vulp)T2_HAE_1 = 0; mb();
	*(vulp)T2_HAE_2 = 0; mb();
	*(vulp)T2_HAE_3 = 0; mb();
#if 0
	*(vulp)T2_HAE_4 = 0; mb(); /* do not touch this */
#endif

	/*
	 * Create our single hose.
	 */

	pci_isa_hose = hose = alloc_pci_controler();
	hose->io_space = &ioport_resource;
	hose->mem_space = &iomem_resource;
	hose->index = 0;

	hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
	hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
	hose->sparse_io_base = T2_IO - IDENT_ADDR;
	hose->dense_io_base = 0;

	hose->sg_isa = hose->sg_pci = NULL;
	__direct_map_base = 0x40000000;
	__direct_map_size = 0x40000000;
}

#define SIC_SEIC (1UL << 33)    /* System Event Clear */

static void
t2_clear_errors(int cpu)
{
	struct sable_cpu_csr *cpu_regs;

	cpu_regs = (struct sable_cpu_csr *)T2_CPU0_BASE;
	if (cpu == 1)
		cpu_regs = (struct sable_cpu_csr *)T2_CPU1_BASE;
	if (cpu == 2)
		cpu_regs = (struct sable_cpu_csr *)T2_CPU2_BASE;
	if (cpu == 3)
		cpu_regs = (struct sable_cpu_csr *)T2_CPU3_BASE;
		
	cpu_regs->sic &= ~SIC_SEIC;

	/* Clear CPU errors.  */
	cpu_regs->bcce |= cpu_regs->bcce;
	cpu_regs->cbe  |= cpu_regs->cbe;
	cpu_regs->bcue |= cpu_regs->bcue;
	cpu_regs->dter |= cpu_regs->dter;

	*(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
	*(vulp)T2_PERR1 |= *(vulp)T2_PERR1;

	mb();
	mb();  /* magic */
}

void
t2_machine_check(unsigned long vector, unsigned long la_ptr,
		 struct pt_regs * regs)
{
	int cpu = smp_processor_id();

	/* Clear the error before any reporting.  */
	mb();
	mb();  /* magic */
	draina();
	t2_clear_errors(cpu);
	wrmces(rdmces()|1);	/* ??? */
	mb();

	process_mcheck_info(vector, la_ptr, regs, "T2", mcheck_expected(cpu));
}