Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*
 * balloc.c
 *
 * PURPOSE
 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
 *
 * CONTACTS
 *	E-mail regarding any portion of the Linux UDF file system should be
 *	directed to the development team mailing list (run by majordomo):
 *		linux_udf@hootie.lvld.hp.com
 *
 * COPYRIGHT
 *	This file is distributed under the terms of the GNU General Public
 *	License (GPL). Copies of the GPL can be obtained from:
 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 *	Each contributing author retains all rights to their own work.
 *
 *  (C) 1999-2000 Ben Fennema
 *  (C) 1999 Stelias Computing Inc
 *
 * HISTORY
 *
 *  02/24/99 blf  Created.
 *
 */

#include "udfdecl.h"
#include <linux/fs.h>
#include <linux/locks.h>
#include <linux/quotaops.h>
#include <linux/udf_fs.h>

#include <asm/bitops.h>

#include "udf_i.h"
#include "udf_sb.h"

#define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
#define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
#define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
#define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
#define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)

#define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
#define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
#define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))

extern inline int find_next_one_bit (void * addr, int size, int offset)
{
	unsigned long * p = ((unsigned long *) addr) + (offset / BITS_PER_LONG);
	unsigned long result = offset & ~(BITS_PER_LONG-1);
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= (BITS_PER_LONG-1);
	if (offset)
	{
		tmp = leBPL_to_cpup(p++);
		tmp &= ~0UL << offset;
		if (size < BITS_PER_LONG)
			goto found_first;
		if (tmp)
			goto found_middle;
		size -= BITS_PER_LONG;
		result += BITS_PER_LONG;
	}
	while (size & ~(BITS_PER_LONG-1))
	{
		if ((tmp = leBPL_to_cpup(p++)))
			goto found_middle;
		result += BITS_PER_LONG;
		size -= BITS_PER_LONG;
	}
	if (!size)
		return result;
	tmp = leBPL_to_cpup(p);
found_first:
	tmp &= ~0UL >> (BITS_PER_LONG-size);
found_middle:
	return result + ffz(~tmp);
}

#define find_first_one_bit(addr, size)\
	find_next_one_bit((addr), (size), 0)

static int read_block_bitmap(struct super_block * sb, Uint32 bitmap,
	unsigned int block, unsigned long bitmap_nr)
{
	struct buffer_head *bh = NULL;
	int retval = 0;
	lb_addr loc;

	loc.logicalBlockNum = bitmap;
	loc.partitionReferenceNum = UDF_SB_PARTITION(sb);

	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block), sb->s_blocksize);
	if (!bh)
	{
		retval = -EIO;
	}
	UDF_SB_BLOCK_BITMAP_NUMBER(sb, bitmap_nr) = block;
	UDF_SB_BLOCK_BITMAP(sb, bitmap_nr) = bh;
	return retval;
}

static int __load_block_bitmap(struct super_block * sb, Uint32 bitmap,
	unsigned int block_group)
{
	int i, j, retval = 0;
	unsigned long block_bitmap_number;
	struct buffer_head * block_bitmap = NULL;
	int nr_groups = (UDF_SB_PARTLEN(sb, UDF_SB_PARTITION(sb)) +
		(sizeof(struct SpaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);

	if (block_group >= nr_groups)
	{
		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
	}

	if (nr_groups <= UDF_MAX_BLOCK_LOADED)
	{
		if (UDF_SB_BLOCK_BITMAP(sb, block_group))
		{
			if (UDF_SB_BLOCK_BITMAP_NUMBER(sb, block_group) == block_group)
				return block_group;
		}
		retval = read_block_bitmap(sb, bitmap, block_group, block_group);
		if (retval < 0)
			return retval;
		return block_group;
	}

	for (i=0; i<UDF_SB_LOADED_BLOCK_BITMAPS(sb) &&
		UDF_SB_BLOCK_BITMAP_NUMBER(sb, i) != block_group; i++)
	{
		;
	}
	if (i < UDF_SB_LOADED_BLOCK_BITMAPS(sb) &&
		UDF_SB_BLOCK_BITMAP_NUMBER(sb, i) == block_group)
	{
		block_bitmap_number = UDF_SB_BLOCK_BITMAP_NUMBER(sb, i);
		block_bitmap = UDF_SB_BLOCK_BITMAP(sb, i);
		for (j=i; j>0; j--)
		{
			UDF_SB_BLOCK_BITMAP_NUMBER(sb, j) = UDF_SB_BLOCK_BITMAP_NUMBER(sb, j-1);
			UDF_SB_BLOCK_BITMAP(sb, j) = UDF_SB_BLOCK_BITMAP(sb, j-1);
		}
		UDF_SB_BLOCK_BITMAP_NUMBER(sb, 0) = block_bitmap_number;
		UDF_SB_BLOCK_BITMAP(sb, 0) = block_bitmap;

		if (!block_bitmap)
			retval = read_block_bitmap(sb, bitmap, block_group, 0);
	}
	else
	{
		if (UDF_SB_LOADED_BLOCK_BITMAPS(sb) < UDF_MAX_BLOCK_LOADED)
			UDF_SB_LOADED_BLOCK_BITMAPS(sb) ++;
		else
			brelse(UDF_SB_BLOCK_BITMAP(sb, UDF_MAX_BLOCK_LOADED-1));
		for (j=UDF_SB_LOADED_BLOCK_BITMAPS(sb)-1; j>0; j--)
		{
			UDF_SB_BLOCK_BITMAP_NUMBER(sb, j) = UDF_SB_BLOCK_BITMAP_NUMBER(sb, j-1);
			UDF_SB_BLOCK_BITMAP(sb, j) = UDF_SB_BLOCK_BITMAP(sb, j-1);
		}
		retval = read_block_bitmap(sb, bitmap, block_group, 0);
	}
	return retval;
}

static inline int load_block_bitmap(struct super_block *sb, Uint32 bitmap,
	unsigned int block_group)
{
	int slot;
	int nr_groups = (UDF_SB_PARTLEN(sb, UDF_SB_PARTITION(sb)) +
		(sizeof(struct SpaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);

	if (UDF_SB_LOADED_BLOCK_BITMAPS(sb) > 0 &&
		UDF_SB_BLOCK_BITMAP_NUMBER(sb, 0) == block_group &&
		UDF_SB_BLOCK_BITMAP(sb, block_group))
	{
		return 0;
	}
	else if (nr_groups <= UDF_MAX_BLOCK_LOADED &&
		UDF_SB_BLOCK_BITMAP_NUMBER(sb, block_group) == block_group &&
		UDF_SB_BLOCK_BITMAP(sb, block_group))
	{
		slot = block_group;
	}
	else
	{
		slot = __load_block_bitmap(sb, bitmap, block_group);
	}

	if (slot < 0)
		return slot;

	if (!UDF_SB_BLOCK_BITMAP(sb, slot))
		return -EIO;

	return slot;
}

static void udf_bitmap_free_blocks(const struct inode * inode, Uint32 bitmap,
	lb_addr bloc, Uint32 offset, Uint32 count)
{
	struct buffer_head * bh = NULL;
	unsigned long block;
	unsigned long block_group;
	unsigned long bit;
	unsigned long i;
	int bitmap_nr;
	unsigned long overflow;
	struct super_block * sb;

	sb = inode->i_sb;
	if (!sb)
	{
		udf_debug("nonexistent device");
		return;
	}

	lock_super(sb);
	if (bloc.logicalBlockNum < 0 ||
		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
	{
		udf_debug("%d < %d || %d + %d > %d\n",
			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
		goto error_return;
	}

	block = bloc.logicalBlockNum + offset + (sizeof(struct SpaceBitmapDesc) << 3);

do_more:
	overflow = 0;
	block_group = block >> (sb->s_blocksize_bits + 3);
	bit = block % (sb->s_blocksize << 3);

	/*
	 * Check to see if we are freeing blocks across a group boundary.
	 */
	if (bit + count > (sb->s_blocksize << 3))
	{
		overflow = bit + count - (sb->s_blocksize << 3);
		count -= overflow;
	}
	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
	if (bitmap_nr < 0)
		goto error_return;

	bh = UDF_SB_BLOCK_BITMAP(sb, bitmap_nr);
	for (i=0; i < count; i++)
	{
		if (udf_set_bit(bit + i, bh->b_data))
		{
			udf_debug("bit %ld already set\n", bit + i);
			udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
		}
		else
		{
			DQUOT_FREE_BLOCK(sb, inode, 1);
			if (UDF_SB_LVIDBH(sb))
			{
				UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
					cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
			}
		}
	}
	mark_buffer_dirty(bh, 1);
	if (overflow)
	{
		block += count;
		count = overflow;
		goto do_more;
	}
error_return:
	sb->s_dirt = 1;
	if (UDF_SB_LVIDBH(sb))
		mark_buffer_dirty(UDF_SB_LVIDBH(sb), 1);
	unlock_super(sb);
	return;
}

static int udf_bitmap_prealloc_blocks(const struct inode * inode, Uint32 bitmap,
	Uint16 partition, Uint32 first_block, Uint32 block_count)
{
	int alloc_count = 0;
	int bit, block, block_group, group_start;
	int nr_groups, bitmap_nr;
	struct buffer_head *bh;
	struct super_block *sb;

	sb = inode->i_sb;
	if (!sb)
	{
		udf_debug("nonexistent device\n");
		return 0;
	}
	lock_super(sb);

	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
		goto out;

repeat:
	nr_groups = (UDF_SB_PARTLEN(sb, partition) +
		(sizeof(struct SpaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
	block = first_block + (sizeof(struct SpaceBitmapDesc) << 3);
	block_group = block >> (sb->s_blocksize_bits + 3);
	group_start = block_group ? 0 : sizeof(struct SpaceBitmapDesc);

	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
	if (bitmap_nr < 0)
		goto out;
	bh = UDF_SB_BLOCK_BITMAP(sb, bitmap_nr);

	bit = block % (sb->s_blocksize << 3);

	while (bit < (sb->s_blocksize << 3) && block_count > 0)
	{
		if (!udf_test_bit(bit, bh->b_data))
			goto out;
		else if (DQUOT_PREALLOC_BLOCK(sb, inode, 1))
			goto out;
		else if (!udf_clear_bit(bit, bh->b_data))
		{
			udf_debug("bit already cleared for block %d\n", bit);
			DQUOT_FREE_BLOCK(sb, inode, 1);
			goto out;
		}
		block_count --;
		alloc_count ++;
		bit ++;
		block ++;
	}
	mark_buffer_dirty(bh, 1);
	if (block_count > 0)
		goto repeat;
out:
	if (UDF_SB_LVIDBH(sb))
	{
		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
		mark_buffer_dirty(UDF_SB_LVIDBH(sb), 1);
	}
	sb->s_dirt = 1;
	unlock_super(sb);
	return alloc_count;
}

static int udf_bitmap_new_block(const struct inode * inode, Uint32 bitmap,
	Uint16 partition, Uint32 goal, int *err)
{
	int tmp, newbit, bit=0, block, block_group, group_start;
	int end_goal, nr_groups, bitmap_nr, i;
	struct buffer_head *bh = NULL;
	struct super_block *sb;
	char *ptr;
	int newblock = 0;

	*err = -ENOSPC;
	sb = inode->i_sb;
	if (!sb)
	{
		udf_debug("nonexistent device\n");
		return newblock;
	}
	lock_super(sb);

repeat:
	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
		goal = 0;

	nr_groups = (UDF_SB_PARTLEN(sb, partition) +
		(sizeof(struct SpaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
	block = goal + (sizeof(struct SpaceBitmapDesc) << 3);
	block_group = block >> (sb->s_blocksize_bits + 3);
	group_start = block_group ? 0 : sizeof(struct SpaceBitmapDesc);

	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
	if (bitmap_nr < 0)
		goto error_return;
	bh = UDF_SB_BLOCK_BITMAP(sb, bitmap_nr);
	ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);

	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
	{
		bit = block % (sb->s_blocksize << 3);

		if (udf_test_bit(bit, bh->b_data))
		{
			goto got_block;
		}
		end_goal = (bit + 63) & ~63;
		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
		if (bit < end_goal)
			goto got_block;
		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
		newbit = (ptr - ((char *)bh->b_data)) << 3;
		if (newbit < sb->s_blocksize << 3)
		{
			bit = newbit;
			goto search_back;
		}
		newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
		if (newbit < sb->s_blocksize << 3)
		{
			bit = newbit;
			goto got_block;
		}
	}

	for (i=0; i<(nr_groups*2); i++)
	{
		block_group ++;
		if (block_group >= nr_groups)
			block_group = 0;
		group_start = block_group ? 0 : sizeof(struct SpaceBitmapDesc);

		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
		if (bitmap_nr < 0)
			goto error_return;
		bh = UDF_SB_BLOCK_BITMAP(sb, bitmap_nr);
		if (i < nr_groups)
		{
			ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
			{
				bit = (ptr - ((char *)bh->b_data)) << 3;
				break;
			}
		}
		else
		{
			bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
			if (bit < sb->s_blocksize << 3)
				break;
		}
	}
	if (i >= (nr_groups*2))
	{
		unlock_super(sb);
		return newblock;
	}
	if (bit < sb->s_blocksize << 3)
		goto search_back;
	else
		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
	if (bit >= sb->s_blocksize << 3)
	{
		unlock_super(sb);
		return 0;
	}

search_back:
	for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);

got_block:

	/*
	 * Check quota for allocation of this block.
	 */
	if (DQUOT_ALLOC_BLOCK(sb, inode, 1))
	{
		unlock_super(sb);
		*err = -EDQUOT;
		return 0;
	}

	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
		(sizeof(struct SpaceBitmapDesc) << 3);

	tmp = udf_get_pblock(sb, newblock, partition, 0);
	if (!udf_clear_bit(bit, bh->b_data))
	{
		udf_debug("bit already cleared for block %d\n", bit);
		goto repeat;
	}

	mark_buffer_dirty(bh, 1);

	if (UDF_SB_LVIDBH(sb))
	{
		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
		mark_buffer_dirty(UDF_SB_LVIDBH(sb), 1);
	}
	sb->s_dirt = 1;
	unlock_super(sb);
	*err = 0;
	return newblock;

error_return:
	*err = -EIO;
	unlock_super(sb);
	return 0;
}

inline void udf_free_blocks(const struct inode * inode, lb_addr bloc,
    Uint32 offset, Uint32 count)
{
	if (UDF_SB_PARTFLAGS(inode->i_sb, bloc.partitionReferenceNum) & UDF_PART_FLAG_UNALLOC_BITMAP)
	{
		return udf_bitmap_free_blocks(inode,
			UDF_SB_PARTMAPS(inode->i_sb)[bloc.partitionReferenceNum].s_uspace.bitmap,
			bloc, offset, count);
	}
	else if (UDF_SB_PARTFLAGS(inode->i_sb, bloc.partitionReferenceNum) & UDF_PART_FLAG_FREED_BITMAP)
	{
		return udf_bitmap_free_blocks(inode,
			UDF_SB_PARTMAPS(inode->i_sb)[bloc.partitionReferenceNum].s_fspace.bitmap,
			bloc, offset, count);
	}
	else
		return;
}

inline int udf_prealloc_blocks(const struct inode * inode, Uint16 partition,
	Uint32 first_block, Uint32 block_count)
{
	if (UDF_SB_PARTFLAGS(inode->i_sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
	{
		return udf_bitmap_prealloc_blocks(inode,
			UDF_SB_PARTMAPS(inode->i_sb)[partition].s_uspace.bitmap,
			partition, first_block, block_count);
	}
	else if (UDF_SB_PARTFLAGS(inode->i_sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
	{
		return udf_bitmap_prealloc_blocks(inode,
			UDF_SB_PARTMAPS(inode->i_sb)[partition].s_fspace.bitmap,
			partition, first_block, block_count);
	}
	else
		return 0;
}

inline int udf_new_block(const struct inode * inode, Uint16 partition,
	Uint32 goal, int *err)
{
	if (UDF_SB_PARTFLAGS(inode->i_sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
	{
		return udf_bitmap_new_block(inode,
			UDF_SB_PARTMAPS(inode->i_sb)[partition].s_uspace.bitmap,
			partition, goal, err);
	}
	else if (UDF_SB_PARTFLAGS(inode->i_sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
	{
		return udf_bitmap_new_block(inode,
			UDF_SB_PARTMAPS(inode->i_sb)[partition].s_fspace.bitmap,
			partition, goal, err);
	}
	else
	{
		*err = -EIO;
		return 0;
	}
}