Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*
 *  linux/mm/page_alloc.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>

/* Use NUMNODES instead of numnodes for better code inside kernel APIs */
#ifndef CONFIG_DISCONTIGMEM
#define NUMNODES 1
#else
#define NUMNODES numnodes
#endif

int nr_swap_pages = 0;
int nr_lru_pages;
pg_data_t *pgdat_list = (pg_data_t *)0;

static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
static int zone_balance_ratio[MAX_NR_ZONES] = { 128, 128, 128, };
static int zone_balance_min[MAX_NR_ZONES] = { 10 , 10, 10, };
static int zone_balance_max[MAX_NR_ZONES] = { 255 , 255, 255, };

/*
 * Free_page() adds the page to the free lists. This is optimized for
 * fast normal cases (no error jumps taken normally).
 *
 * The way to optimize jumps for gcc-2.2.2 is to:
 *  - select the "normal" case and put it inside the if () { XXX }
 *  - no else-statements if you can avoid them
 *
 * With the above two rules, you get a straight-line execution path
 * for the normal case, giving better asm-code.
 */

#define memlist_init(x) INIT_LIST_HEAD(x)
#define memlist_add_head list_add
#define memlist_add_tail list_add_tail
#define memlist_del list_del
#define memlist_entry list_entry
#define memlist_next(x) ((x)->next)
#define memlist_prev(x) ((x)->prev)

/*
 * Temporary debugging check.
 */
#define BAD_RANGE(zone,x) (((zone) != (x)->zone) || (((x)-mem_map) < (zone)->offset) || (((x)-mem_map) >= (zone)->offset+(zone)->size))

#if 0

static inline unsigned long classfree(zone_t *zone)
{
	unsigned long free = 0;
	zone_t *z = zone->zone_pgdat->node_zones;

	while (z != zone) {
		free += z->free_pages;
		z++;
	}
	free += zone->free_pages;
	return(free);
}

#endif

/*
 * Buddy system. Hairy. You really aren't expected to understand this
 *
 * Hint: -mask = 1+~mask
 */

void __free_pages_ok (struct page *page, unsigned long order)
{
	unsigned long index, page_idx, mask, flags;
	free_area_t *area;
	struct page *base;
	zone_t *zone;

	/*
	 * Subtle. We do not want to test this in the inlined part of
	 * __free_page() - it's a rare condition and just increases
	 * cache footprint unnecesserily. So we do an 'incorrect'
	 * decrement on page->count for reserved pages, but this part
	 * makes it safe.
	 */
	if (PageReserved(page))
		return;

	if (page->buffers)
		BUG();
	if (page->mapping)
		BUG();
	if (page-mem_map >= max_mapnr)
		BUG();
	if (PageSwapCache(page))
		BUG();
	if (PageLocked(page))
		BUG();
	if (PageDecrAfter(page))
		BUG();

	zone = page->zone;

	mask = (~0UL) << order;
	base = mem_map + zone->offset;
	page_idx = page - base;
	if (page_idx & ~mask)
		BUG();
	index = page_idx >> (1 + order);

	area = zone->free_area + order;

	spin_lock_irqsave(&zone->lock, flags);

	zone->free_pages -= mask;

	while (mask + (1 << (MAX_ORDER-1))) {
		struct page *buddy1, *buddy2;

		if (area >= zone->free_area + MAX_ORDER)
			BUG();
		if (!test_and_change_bit(index, area->map))
			/*
			 * the buddy page is still allocated.
			 */
			break;
		/*
		 * Move the buddy up one level.
		 */
		buddy1 = base + (page_idx ^ -mask);
		buddy2 = base + page_idx;
		if (BAD_RANGE(zone,buddy1))
			BUG();
		if (BAD_RANGE(zone,buddy2))
			BUG();

		memlist_del(&buddy1->list);
		mask <<= 1;
		area++;
		index >>= 1;
		page_idx &= mask;
	}
	memlist_add_head(&(base + page_idx)->list, &area->free_list);

	spin_unlock_irqrestore(&zone->lock, flags);

	if (zone->free_pages > zone->pages_high) {
		zone->zone_wake_kswapd = 0;
		zone->low_on_memory = 0;
	}
}

#define MARK_USED(index, order, area) \
	change_bit((index) >> (1+(order)), (area)->map)

static inline struct page * expand (zone_t *zone, struct page *page,
	 unsigned long index, int low, int high, free_area_t * area)
{
	unsigned long size = 1 << high;

	while (high > low) {
		if (BAD_RANGE(zone,page))
			BUG();
		area--;
		high--;
		size >>= 1;
		memlist_add_head(&(page)->list, &(area)->free_list);
		MARK_USED(index, high, area);
		index += size;
		page += size;
	}
	if (BAD_RANGE(zone,page))
		BUG();
	return page;
}

static FASTCALL(struct page * rmqueue(zone_t *zone, unsigned long order));
static struct page * rmqueue(zone_t *zone, unsigned long order)
{
	free_area_t * area = zone->free_area + order;
	unsigned long curr_order = order;
	struct list_head *head, *curr;
	unsigned long flags;
	struct page *page;

	spin_lock_irqsave(&zone->lock, flags);
	do {
		head = &area->free_list;
		curr = memlist_next(head);

		if (curr != head) {
			unsigned int index;

			page = memlist_entry(curr, struct page, list);
			if (BAD_RANGE(zone,page))
				BUG();
			memlist_del(curr);
			index = (page - mem_map) - zone->offset;
			MARK_USED(index, curr_order, area);
			zone->free_pages -= 1 << order;

			page = expand(zone, page, index, order, curr_order, area);
			spin_unlock_irqrestore(&zone->lock, flags);

			set_page_count(page, 1);
			if (BAD_RANGE(zone,page))
				BUG();
			return page;	
		}
		curr_order++;
		area++;
	} while (curr_order < MAX_ORDER);
	spin_unlock_irqrestore(&zone->lock, flags);

	return NULL;
}

static int zone_balance_memory(zonelist_t *zonelist)
{
	int tried = 0, freed = 0;
	zone_t **zone;
	int gfp_mask = zonelist->gfp_mask;
	extern wait_queue_head_t kswapd_wait;

	zone = zonelist->zones;
	for (;;) {
		zone_t *z = *(zone++);
		if (!z)
			break;
		if (z->free_pages > z->pages_low)
			continue;

		z->zone_wake_kswapd = 1;
		wake_up_interruptible(&kswapd_wait);

		/* Are we reaching the critical stage? */
		if (!z->low_on_memory) {
			/* Not yet critical, so let kswapd handle it.. */
			if (z->free_pages > z->pages_min)
				continue;
			z->low_on_memory = 1;
		}
		/*
		 * In the atomic allocation case we only 'kick' the
		 * state machine, but do not try to free pages
		 * ourselves.
		 */
		tried = 1;
		freed |= try_to_free_pages(gfp_mask, z);
	}
	if (tried && !freed) {
		if (!(gfp_mask & __GFP_HIGH))
			return 0;
	}
	return 1;
}

/*
 * This is the 'heart' of the zoned buddy allocator:
 */
struct page * __alloc_pages(zonelist_t *zonelist, unsigned long order)
{
	zone_t **zone = zonelist->zones;

	/*
	 * If this is a recursive call, we'd better
	 * do our best to just allocate things without
	 * further thought.
	 */
	if (current->flags & PF_MEMALLOC)
		goto allocate_ok;

	/*
	 * (If anyone calls gfp from interrupts nonatomically then it
	 * will sooner or later tripped up by a schedule().)
	 *
	 * We are falling back to lower-level zones if allocation
	 * in a higher zone fails.
	 */
	for (;;) {
		zone_t *z = *(zone++);
		if (!z)
			break;
		if (!z->size)
			BUG();

		/* Are we supposed to free memory? Don't make it worse.. */
		if (!z->zone_wake_kswapd && z->free_pages > z->pages_low) {
			struct page *page = rmqueue(z, order);
			if (page)
				return page;
		}
	}

	/*
	 * Ok, no obvious zones were available, start
	 * balancing things a bit..
	 */
	if (zone_balance_memory(zonelist)) {
		zone = zonelist->zones;
allocate_ok:
		for (;;) {
			zone_t *z = *(zone++);
			if (!z)
				break;
			if (z->free_pages) {
				struct page *page = rmqueue(z, order);
				if (page)
					return page;
			}
		}
	}
	return NULL;

/*
 * The main chunk of the balancing code is in this offline branch:
 */
}

/*
 * Total amount of free (allocatable) RAM:
 */
unsigned int nr_free_pages (void)
{
	unsigned int sum;
	zone_t *zone;
	int i;

	sum = 0;
	for (i = 0; i < NUMNODES; i++)
		for (zone = NODE_DATA(i)->node_zones; zone < NODE_DATA(i)->node_zones + MAX_NR_ZONES; zone++)
			sum += zone->free_pages;
	return sum;
}

/*
 * Amount of free RAM allocatable as buffer memory:
 */
unsigned int nr_free_buffer_pages (void)
{
	unsigned int sum;
	zone_t *zone;
	int i;

	sum = nr_lru_pages;
	for (i = 0; i < NUMNODES; i++)
		for (zone = NODE_DATA(i)->node_zones; zone <= NODE_DATA(i)->node_zones+ZONE_NORMAL; zone++)
			sum += zone->free_pages;
	return sum;
}

#if CONFIG_HIGHMEM
unsigned int nr_free_highpages (void)
{
	int i;
	unsigned int pages = 0;

	for (i = 0; i < NUMNODES; i++)
		pages += NODE_DATA(i)->node_zones[ZONE_HIGHMEM].free_pages;
	return pages;
}
#endif

/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
 */
void show_free_areas_core(int nid)
{
 	unsigned long order;
	unsigned type;

	printk("Free pages:      %6dkB (%6dkB HighMem)\n",
		nr_free_pages() << (PAGE_SHIFT-10),
		nr_free_highpages() << (PAGE_SHIFT-10));

	printk("( Free: %d, lru_cache: %d (%d %d %d) )\n",
		nr_free_pages(),
		nr_lru_pages,
		freepages.min,
		freepages.low,
		freepages.high);

	for (type = 0; type < MAX_NR_ZONES; type++) {
		struct list_head *head, *curr;
		zone_t *zone = NODE_DATA(nid)->node_zones + type;
 		unsigned long nr, total, flags;

		printk("  %s: ", zone->name);

		total = 0;
		if (zone->size) {
			spin_lock_irqsave(&zone->lock, flags);
		 	for (order = 0; order < MAX_ORDER; order++) {
				head = &(zone->free_area + order)->free_list;
				curr = head;
				nr = 0;
				for (;;) {
					curr = memlist_next(curr);
					if (curr == head)
						break;
					nr++;
				}
				total += nr * (1 << order);
				printk("%lu*%lukB ", nr,
						(PAGE_SIZE>>10) << order);
			}
			spin_unlock_irqrestore(&zone->lock, flags);
		}
		printk("= %lukB)\n", total * (PAGE_SIZE>>10));
	}

#ifdef SWAP_CACHE_INFO
	show_swap_cache_info();
#endif	
}

void show_free_areas(void)
{
	show_free_areas_core(0);
}

/*
 * Builds allocation fallback zone lists.
 */
static inline void build_zonelists(pg_data_t *pgdat)
{
	int i, j, k;

	for (i = 0; i < NR_GFPINDEX; i++) {
		zonelist_t *zonelist;
		zone_t *zone;

		zonelist = pgdat->node_zonelists + i;
		memset(zonelist, 0, sizeof(*zonelist));

		zonelist->gfp_mask = i;
		j = 0;
		k = ZONE_NORMAL;
		if (i & __GFP_HIGHMEM)
			k = ZONE_HIGHMEM;
		if (i & __GFP_DMA)
			k = ZONE_DMA;

		switch (k) {
			default:
				BUG();
			/*
			 * fallthrough:
			 */
			case ZONE_HIGHMEM:
				zone = pgdat->node_zones + ZONE_HIGHMEM;
				if (zone->size) {
#ifndef CONFIG_HIGHMEM
					BUG();
#endif
					zonelist->zones[j++] = zone;
				}
			case ZONE_NORMAL:
				zone = pgdat->node_zones + ZONE_NORMAL;
				if (zone->size)
					zonelist->zones[j++] = zone;
			case ZONE_DMA:
				zone = pgdat->node_zones + ZONE_DMA;
				if (zone->size)
					zonelist->zones[j++] = zone;
		}
		zonelist->zones[j++] = NULL;
	} 
}

#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 */
void __init free_area_init_core(int nid, pg_data_t *pgdat, struct page **gmap,
	unsigned long *zones_size, unsigned long zone_start_paddr, 
	unsigned long *zholes_size)
{
	struct page *p, *lmem_map;
	unsigned long i, j;
	unsigned long map_size;
	unsigned long totalpages, offset, realtotalpages;
	unsigned int cumulative = 0;

	pgdat->node_next = pgdat_list;
	pgdat_list = pgdat;

	totalpages = 0;
	for (i = 0; i < MAX_NR_ZONES; i++) {
		unsigned long size = zones_size[i];
		totalpages += size;
	}
	realtotalpages = totalpages;
	if (zholes_size)
		for (i = 0; i < MAX_NR_ZONES; i++)
			realtotalpages -= zholes_size[i];
			
	printk("On node %d totalpages: %lu\n", nid, realtotalpages);

	/*
	 * Select nr of pages we try to keep free for important stuff
	 * with a minimum of 10 pages and a maximum of 256 pages, so
	 * that we don't waste too much memory on large systems.
	 * This is fairly arbitrary, but based on some behaviour
	 * analysis.
	 */
	i = realtotalpages >> 7;
	if (i < 10)
		i = 10;
	if (i > 256)
		i = 256;
	freepages.min += i;
	freepages.low += i * 2;
	freepages.high += i * 3;

	/*
	 * Some architectures (with lots of mem and discontinous memory
	 * maps) have to search for a good mem_map area:
	 * For discontigmem, the conceptual mem map array starts from 
	 * PAGE_OFFSET, we need to align the actual array onto a mem map 
	 * boundary, so that MAP_NR works.
	 */
	map_size = (totalpages + 1)*sizeof(struct page);
	lmem_map = (struct page *) alloc_bootmem_node(nid, map_size);
	lmem_map = (struct page *)(PAGE_OFFSET + 
			MAP_ALIGN((unsigned long)lmem_map - PAGE_OFFSET));
	*gmap = pgdat->node_mem_map = lmem_map;
	pgdat->node_size = totalpages;
	pgdat->node_start_paddr = zone_start_paddr;
	pgdat->node_start_mapnr = (lmem_map - mem_map);

	/*
	 * Initially all pages are reserved - free ones are freed
	 * up by free_all_bootmem() once the early boot process is
	 * done.
	 */
	for (p = lmem_map; p < lmem_map + totalpages; p++) {
		set_page_count(p, 0);
		SetPageReserved(p);
		init_waitqueue_head(&p->wait);
		memlist_init(&p->list);
	}

	offset = lmem_map - mem_map;	
	for (j = 0; j < MAX_NR_ZONES; j++) {
		zone_t *zone = pgdat->node_zones + j;
		unsigned long mask;
		unsigned long size, realsize;

		realsize = size = zones_size[j];
		if (zholes_size)
			realsize -= zholes_size[j];

		printk("zone(%lu): %lu pages.\n", j, size);
		zone->size = size;
		zone->name = zone_names[j];
		zone->lock = SPIN_LOCK_UNLOCKED;
		zone->zone_pgdat = pgdat;
		zone->free_pages = 0;
		if (!size)
			continue;

		zone->offset = offset;
		cumulative += size;
		mask = (realsize / zone_balance_ratio[j]);
		if (mask < zone_balance_min[j])
			mask = zone_balance_min[j];
		else if (mask > zone_balance_max[j])
			mask = zone_balance_max[j];
		zone->pages_min = mask;
		zone->pages_low = mask*2;
		zone->pages_high = mask*3;
		zone->low_on_memory = 0;
		zone->zone_wake_kswapd = 0;
		zone->zone_mem_map = mem_map + offset;
		zone->zone_start_mapnr = offset;
		zone->zone_start_paddr = zone_start_paddr;

		for (i = 0; i < size; i++) {
			struct page *page = mem_map + offset + i;
			page->zone = zone;
			if (j != ZONE_HIGHMEM) {
				page->virtual = (unsigned long)(__va(zone_start_paddr));
				zone_start_paddr += PAGE_SIZE;
			}
		}

		offset += size;
		mask = -1;
		for (i = 0; i < MAX_ORDER; i++) {
			unsigned long bitmap_size;

			memlist_init(&zone->free_area[i].free_list);
			memlist_init(&zone->lru_cache);
			mask += mask;
			size = (size + ~mask) & mask;
			bitmap_size = size >> i;
			bitmap_size = (bitmap_size + 7) >> 3;
			bitmap_size = LONG_ALIGN(bitmap_size);
			zone->free_area[i].map = 
			  (unsigned int *) alloc_bootmem_node(nid, bitmap_size);
		}
	}
	build_zonelists(pgdat);
}

void __init free_area_init(unsigned long *zones_size)
{
	free_area_init_core(0, NODE_DATA(0), &mem_map, zones_size, 0, 0);
}

static int __init setup_mem_frac(char *str)
{
	int j = 0;

	while (get_option(&str, &zone_balance_ratio[j++]) == 2);
	printk("setup_mem_frac: ");
	for (j = 0; j < MAX_NR_ZONES; j++) printk("%d  ", zone_balance_ratio[j]);
	printk("\n");
	return 1;
}

__setup("memfrac=", setup_mem_frac);