Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
/*
 * Fast Ethernet Controller (FECC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
 * This version of the driver is specific to the FADS implementation,
 * since the board contains control registers external to the processor
 * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual
 * describes connections using the internal parallel port I/O, which
 * is basically all of Port D.
 *
 * Right now, I am very watseful with the buffers.  I allocate memory
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 */
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/malloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>

#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/uaccess.h>
#include "commproc.h"

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#if 1
#define FEC_ENET_RX_PAGES	4
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE		8	/* Must be power of two */
#define TX_RING_MOD_MASK	7	/*   for this to work */
#else
#define FEC_ENET_RX_PAGES	16
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */
#endif

/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	scc_t	*sccp;
	struct	net_device_stats stats;
	char	tx_full;
	unsigned long lock;
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int fec_enet_rx(struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
static	void fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
static int fec_enet_close(struct net_device *dev);
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);

static	ushort	my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };

/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(int val);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	10
mii_list_t	mii_cmds[NMII];
mii_list_t	*mii_free;
mii_list_t	*mii_head;
mii_list_t	*mii_tail;

static int	mii_queue(int request, void (*func)(int));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))

static int
fec_enet_open(struct net_device *dev)
{

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */

	dev->tbusy = 0;
	dev->interrupt = 0;
	dev->start = 1;

	return 0;					/* Always succeed */
}

static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
	volatile cbd_t	*bdp;
	unsigned long flags;

	/* Transmitter timeout, serious problems. */
	if (dev->tbusy) {
		int tickssofar = jiffies - dev->trans_start;
		if (tickssofar < 20)
			return 1;
		printk("%s: transmit timed out.\n", dev->name);
		fep->stats.tx_errors++;
#ifndef final_version
		{
			int	i;
			cbd_t	*bdp;
			printk(" Ring data dump: cur_tx %x%s cur_rx %x.\n",
				   fep->cur_tx, fep->tx_full ? " (full)" : "",
				   fep->cur_rx);
			bdp = fep->tx_bd_base;
			for (i = 0 ; i < TX_RING_SIZE; i++)
				printk("%04x %04x %08x\n",
					bdp->cbd_sc,
					bdp->cbd_datlen,
					bdp->cbd_bufaddr);
			bdp = fep->rx_bd_base;
			for (i = 0 ; i < RX_RING_SIZE; i++)
				printk("%04x %04x %08x\n",
					bdp->cbd_sc,
					bdp->cbd_datlen,
					bdp->cbd_bufaddr);
		}
#endif

		dev->tbusy=0;
		dev->trans_start = jiffies;

		return 0;
	}

	/* Block a timer-based transmit from overlapping.  This could better be
	   done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
	if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
		printk("%s: Transmitter access conflict.\n", dev->name);
		return 1;
	}

	if (test_and_set_bit(0, (void*)&fep->lock) != 0) {
		printk("%s: tx queue lock!.\n", dev->name);
		/* don't clear dev->tbusy flag. */
		return 1;
	}

	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

#ifndef final_version
	if (bdp->cbd_sc & BD_ENET_TX_READY) {
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
		fep->lock = 0;
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
	bdp->cbd_sc &= ~BD_ENET_TX_STATS;

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

	fep->stats.tx_bytes += skb->len;
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
	
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
	flush_dcache_range(skb->data, skb->data + skb->len);

	/* Send it on its way.  Tell CPM its ready, interrupt when done,
	 * its the last BD of the frame, and to put the CRC on the end.
	 */
	save_flags(flags);
	cli();

	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);

	dev->trans_start = jiffies;
	(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_x_des_active = 0x01000000;

	/* If this was the last BD in the ring, start at the beginning again.
	*/
	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
		bdp = fep->tx_bd_base;
	else
		bdp++;

	fep->lock = 0;
	if (bdp->cbd_sc & BD_ENET_TX_READY)
		fep->tx_full = 1;
	else
		dev->tbusy=0;
	restore_flags(flags);

	fep->cur_tx = (cbd_t *)bdp;

	return 0;
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static	void
fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
	struct	net_device *dev = dev_id;
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
	volatile fec_t	*ep;
	uint	int_events;
	int c=0;

	fep = (struct fec_enet_private *)dev->priv;
	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
	if (dev->interrupt)
		printk("%s: Re-entering the interrupt handler.\n", dev->name);
	dev->interrupt = 1;

	/* Get the interrupt events that caused us to be here.
	*/
	while ((int_events = ep->fec_ievent) != 0) {
	ep->fec_ievent = int_events;
	if ((int_events &
		(FEC_ENET_HBERR | FEC_ENET_BABR |
			FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
				printk("FEC ERROR %x\n", int_events);

	/* Handle receive event in its own function.
	*/
	if (int_events & (FEC_ENET_RXF | FEC_ENET_RXB))
		fec_enet_rx(dev_id);

	/* Transmit OK, or non-fatal error.  Update the buffer descriptors.
	 * FEC handles all errors, we just discover them as part of the
	 * transmit process.
	 */
	if (int_events & (FEC_ENET_TXF | FEC_ENET_TXB)) {
	    bdp = fep->dirty_tx;
	    while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
#if 1
		if (bdp==fep->cur_tx)
		    break;
#endif
		if (++c>1) {/*we go here when an it has been lost*/};


		if (bdp->cbd_sc & BD_ENET_TX_HB)	/* No heartbeat */
		    fep->stats.tx_heartbeat_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_LC)	/* Late collision */
		    fep->stats.tx_window_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_RL)	/* Retrans limit */
		    fep->stats.tx_aborted_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_UN)	/* Underrun */
		    fep->stats.tx_fifo_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_CSL)	/* Carrier lost */
		    fep->stats.tx_carrier_errors++;

		fep->stats.tx_errors++;
	    
		fep->stats.tx_packets++;
		
#ifndef final_version
		if (bdp->cbd_sc & BD_ENET_TX_READY)
		    printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
		if (bdp->cbd_sc & BD_ENET_TX_DEF)
		    fep->stats.collisions++;
	    
		/* Free the sk buffer associated with this last transmit.
		 */
		dev_kfree_skb(fep->tx_skbuff[fep->skb_dirty]/*, FREE_WRITE*/);
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
	    
		/* Update pointer to next buffer descriptor to be transmitted.
		 */
		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
		    bdp = fep->tx_bd_base;
		else
		    bdp++;
	    
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full && dev->tbusy) {
		    fep->tx_full = 0;
		    dev->tbusy = 0;
		    mark_bh(NET_BH);
		}

		fep->dirty_tx = (cbd_t *)bdp;
#if 0
		if (bdp==fep->cur_tx)
		    break;
#endif
	    }/*while (bdp->cbd_sc&BD_ENET_TX_READY)==0*/
	 } /* if tx events */

	if (int_events & FEC_ENET_MII)
		fec_enet_mii(dev_id);
	
	} /* while any events */

	dev->interrupt = 0;

	return;
}

/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static int
fec_enet_rx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile cbd_t *bdp;
	struct	sk_buff	*skb;
	ushort	pkt_len;
	volatile fec_t	*ep;

	fep = (struct fec_enet_private *)dev->priv;
	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);

	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

for (;;) {
	if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
		break;
		
#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
	if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
		printk("FEC ENET: rcv is not +last\n");
#endif

	/* Frame too long or too short.
	*/
	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
		fep->stats.rx_length_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
		fep->stats.rx_frame_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
		fep->stats.rx_crc_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
		fep->stats.rx_crc_errors++;

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
	if (bdp->cbd_sc & BD_ENET_RX_CL) {
		fep->stats.rx_frame_errors++;
	}
	else {

		/* Process the incoming frame.
		*/
		fep->stats.rx_packets++;
		pkt_len = bdp->cbd_datlen;
		fep->stats.rx_bytes += pkt_len;

		/* This does 16 byte alignment, exactly what we need.
		*/
		skb = dev_alloc_skb(pkt_len);

		if (skb == NULL) {
			printk("%s: Memory squeeze, dropping packet.\n", dev->name);
			fep->stats.rx_dropped++;
		}
		else {
			skb->dev = dev;
			skb_put(skb,pkt_len);	/* Make room */
			eth_copy_and_sum(skb,
				(unsigned char *)__va(bdp->cbd_bufaddr),
				pkt_len, 0);
			skb->protocol=eth_type_trans(skb,dev);
			netif_rx(skb);
		}
	}

	/* Clear the status flags for this buffer.
	*/
	bdp->cbd_sc &= ~BD_ENET_RX_STATS;

	/* Mark the buffer empty.
	*/
	bdp->cbd_sc |= BD_ENET_RX_EMPTY;

	/* Update BD pointer to next entry.
	*/
	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
		bdp = fep->rx_bd_base;
	else
		bdp++;
	
#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
	ep->fec_r_des_active = 0x01000000;
#endif
   }
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
	ep->fec_r_des_active = 0x01000000;
#endif

	return 0;
}

static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = (struct fec_enet_private *)dev->priv;
	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
	mii_reg = ep->fec_mii_data;
	
	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
		return;
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL)
		ep->fec_mii_data = mip->mii_regval;
}

static int
mii_queue(int regval, void (*func)(int))
{
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	retval = 0;

	save_flags(flags);
	cli();

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
		}
		else {
			mii_head = mii_tail = mip;
			(&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
		}
	}
	else {
		retval = 1;
	}

	restore_flags(flags);

	return(retval);
}

static void
mii_status(uint mii_reg)
{
	if (((mii_reg >> 18) & 0x1f) == 1) {
		/* status register.
		*/
		printk("fec: ");
		if (mii_reg & 0x0004)
			printk("link up");
		else
			printk("link down");

		if (mii_reg & 0x0010)
			printk(",remote fault");
		if (mii_reg & 0x0020)
			printk(",auto complete");
		printk("\n");
	}
	if (((mii_reg >> 18) & 0x1f) == 0x14) {
		/* Extended chip status register.
		*/
		printk("fec: ");
		if (mii_reg & 0x0800)
			printk("100 Mbps");
		else
			printk("10 Mbps");

		if (mii_reg & 0x1000)
			printk(", Full-Duplex\n");
		else
			printk(", Half-Duplex\n");
	}
	if (((mii_reg >> 18) & 0x1f) == 0x1f) {
		printk("fec: %x\n", mii_reg);
	}
}

static	void
mii_startup_cmds(void)
{

	/* Read status registers to clear any pending interrupt.
	*/
	mii_queue(mk_mii_read(1), mii_status);
#ifndef CONFIG_RPXCLASSIC
	mii_queue(mk_mii_read(18), mii_status);

	/* Read extended chip status register.
	*/
	mii_queue(mk_mii_read(0x14), mii_status);

	/* Enable Link status change interrupts.
	*/
	mii_queue(mk_mii_write(0x11, 0x0002), NULL);

#ifdef CONFIG_FADS
	/* FADS uses the TRSTE in the BCSR, which is kind of weird.
	 * This really controls the startup default configuration.
	 * Changing the state of TRSTE once powered up doesn't do
	 * anything, you have to whack the control register.
	 * This of course screws up any autoconfig that was done.......
	 */
	mii_queue(mk_mii_write(0, 0x1000), NULL);
#endif
#else
	/* Experimenting with the QS6612 PHY....not done yet.
	*/
	mii_queue(mk_mii_read(31), mii_status);
#endif
}

/* This supports the mii_link interrupt below.
 * We should get called three times.  Once for register 1, once for
 * register 18, and once for register 20.
 */
static	uint mii_saved_reg1;

static void
mii_relink(uint mii_reg)
{
	if (((mii_reg >> 18) & 0x1f) == 1) {
		/* Just save the status register and get out.
		*/
		mii_saved_reg1 = mii_reg;
		return;
	}
	if (((mii_reg >> 18) & 0x1f) == 18) {
		/* Not much here, but has to be read to clear the
		 * interrupt condition.
		 */
		if ((mii_reg & 0x8000) == 0)
			printk("fec: re-link and no IRQ?\n");
		if ((mii_reg & 0x4000) == 0)
			printk("fec: no PHY power?\n");
	}
	if (((mii_reg >> 18) & 0x1f) == 20) {
		/* Extended chip status register.
		 * OK, now we have it all, so figure out what is going on.
		 */
		printk("fec: ");
		if (mii_saved_reg1 & 0x0004)
			printk("link up");
		else
			printk("link down");

		if (mii_saved_reg1 & 0x0010)
			printk(", remote fault");
		if (mii_saved_reg1 & 0x0020)
			printk(", auto complete");

		if (mii_reg & 0x0800)
			printk(", 100 Mbps");
		else
			printk(", 10 Mbps");

		if (mii_reg & 0x1000)
			printk(", Full-Duplex\n");
		else
			printk(", Half-Duplex\n");
	}
}

/* This interrupt occurs when the LTX970 detects a link change.
*/
static	void
mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
{
	struct	net_device *dev = dev_id;
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;

	fep = (struct fec_enet_private *)dev->priv;
	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);

	/* We need to sequentially read registers 1 and 18 to clear
	 * the interrupt.  We don't need to do that here because this
	 * is an edge triggered interrupt that has already been acknowledged
	 * by the top level handler.  We also read the extended status
	 * register 20.  We just queue the commands and let them happen
	 * as part of the "normal" processing.
	 */
	mii_queue(mk_mii_read(1), mii_relink);
#ifndef CONFIG_RPXCLASSIC
	
	/* Unique to LevelOne PHY.
	*/
	mii_queue(mk_mii_read(18), mii_relink);
	mii_queue(mk_mii_read(20), mii_relink);
#else

	/* Unique to QS6612 PHY.
	*/
	mii_queue(mk_mii_read(6), mii_relink);
	mii_queue(mk_mii_read(31), mii_relink);
#endif
}

static int
fec_enet_close(struct net_device *dev)
{
	/* Don't know what to do yet.
	*/

	return 0;
}

static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
{
	struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;

	return &fep->stats;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

static void set_multicast_list(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	struct	dev_mc_list *dmi;
	u_char	*mcptr, *tdptr;
	volatile fec_t *ep;
	int	i, j;

	fep = (struct fec_enet_private *)dev->priv;
	ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);

	if (dev->flags&IFF_PROMISC) {
	  
		/* Log any net taps. */
		printk("%s: Promiscuous mode enabled.\n", dev->name);
		ep->fec_r_cntrl |= 0x0008;
	} else {

		ep->fec_r_cntrl &= ~0x0008;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
			ep->fec_hash_table_high = 0xffffffff;
			ep->fec_hash_table_low = 0xffffffff;
		}
#if 0
		else {
			/* Clear filter and add the addresses in the list.
			*/
			ep->sen_gaddr1 = 0;
			ep->sen_gaddr2 = 0;
			ep->sen_gaddr3 = 0;
			ep->sen_gaddr4 = 0;

			dmi = dev->mc_list;

			for (i=0; i<dev->mc_count; i++) {
				
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;

				/* The address in dmi_addr is LSB first,
				 * and taddr is MSB first.  We have to
				 * copy bytes MSB first from dmi_addr.
				 */
				mcptr = (u_char *)dmi->dmi_addr + 5;
				tdptr = (u_char *)&ep->sen_taddrh;
				for (j=0; j<6; j++)
					*tdptr++ = *mcptr--;

				/* Ask CPM to run CRC and set bit in
				 * filter mask.
				 */
				cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
				/* this delay is necessary here -- Cort */
				udelay(10);
				while (cpmp->cp_cpcr & CPM_CR_FLG);
			}
		}
#endif
	}
}

/* Initialize the FEC Ethernet on 860T.
 */
int __init fec_enet_init(void)
{
	struct net_device *dev;
	struct fec_enet_private *fep;
	int i, j;
	unsigned char	*eap;
	unsigned long	mem_addr;
	pte_t		*pte;
	volatile	cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile	immap_t	*immap;
	volatile	fec_t	*fecp;
	unsigned char	*iap;
	bd_t		*bd;

	bd = (bd_t *)__res;

	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */

	/* Allocate some private information.
	*/
	fep = (struct fec_enet_private *)kmalloc(sizeof(*fep), GFP_KERNEL);
	__clear_user(fep,sizeof(*fep));

	/* Create an Ethernet device instance.
	*/
	dev = init_etherdev(0, 0);

	fecp = &(immap->im_cpm.cp_fec);

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Enable interrupts we wish to service.
	*/
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
				FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);

	/* Clear any outstanding interrupt.
	*/
	fecp->fec_ievent = 0xffc0;

	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;

	/* Right now, all of the boards supply the ethernet address in
	 * the board descriptor.  If someone doesn't we can just use
	 * the hard coded address in this driver for testing (this is
	 * a Motorola address for a board I have, so it is unlikely to
	 * be used elsewhere).
	 */
	eap = (unsigned char *)&my_enet_addr[0];
#if 1
	iap = bd->bi_enetaddr;
	for (i=0; i<6; i++)
		dev->dev_addr[i] = *eap++ = *iap++;
#else
	for (i=0; i<6; i++)
		dev->dev_addr[i] = *eap++;
#endif

	/* Set station address.
	*/
	fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
	fecp->fec_addr_high = my_enet_addr[2];

	/* Reset all multicast.
	*/
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low = 0;

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_r_hash = PKT_MAXBUF_SIZE;

	/* Allocate memory for buffer descriptors.
	*/
	if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
		printk("FEC init error.  Need more space.\n");
		printk("FEC initialization failed.\n");
		return 1;
	}
	mem_addr = __get_free_page(GFP_KERNEL);
	cbd_base = (cbd_t *)mem_addr;

	/* Make it uncached.
	*/
	pte = find_pte(&init_mm, (int)mem_addr);
	pte_val(*pte) |= _PAGE_NO_CACHE;
	flush_tlb_page(current->mm->mmap, mem_addr);

	/* Set receive and transmit descriptor base.
	*/
	fecp->fec_r_des_start = __pa(mem_addr);
	fep->rx_bd_base = cbd_base;
	fecp->fec_x_des_start = __pa((unsigned long)(cbd_base + RX_RING_SIZE));
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);

		/* Make it uncached.
		*/
		pte = find_pte(&init_mm, mem_addr);
		pte_val(*pte) |= _PAGE_NO_CACHE;
		flush_tlb_page(current->mm->mmap, mem_addr);

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode, half-duplex until we know better..
	*/
	fecp->fec_r_cntrl = 0x0c;
	fecp->fec_x_cntrl = 0x00;

	/* Enable big endian and don't care about SDMA FC.
	*/
	fecp->fec_fun_code = 0x78000000;

	/* Set MII speed (50 MHz core).
	*/
	fecp->fec_mii_speed = 0x14;

	/* Configure all of port D for MII.
	*/
	immap->im_ioport.iop_pdpar = 0x1fff;
	immap->im_ioport.iop_pddir = 0x1c58;

	/* Install our interrupt handlers.  The 860T FADS board uses
	 * IRQ2 for the MII interrupt.
	 */
	if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
		panic("Could not allocate FEC IRQ!");
	if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
		panic("Could not allocate MII IRQ!");

	dev->base_addr = (unsigned long)fecp;
	dev->priv = fep;
	dev->name = "fec";

	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->stop = fec_enet_close;
	dev->get_stats = fec_enet_get_stats;
	dev->set_multicast_list = set_multicast_list;

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = 2;
	fecp->fec_r_des_active = 0x01000000;

	printk("FEC ENET Version 0.1, ");
	for (i=0; i<5; i++)
		printk("%02x:", dev->dev_addr[i]);
	printk("%02x\n", dev->dev_addr[5]);

	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;

	mii_startup_cmds();

	return 0;
}