Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
/*
 *  linux/kernel/fork.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 *  'fork.c' contains the help-routines for the 'fork' system call
 * (see also system_call.s).
 * Fork is rather simple, once you get the hang of it, but the memory
 * management can be a bitch. See 'mm/mm.c': 'copy_page_tables()'
 */

#include <linux/malloc.h>
#include <linux/init.h>
#include <linux/unistd.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/vmalloc.h>

#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/uaccess.h>

/* The idle tasks do not count.. */
int nr_tasks=0;
int nr_running=0;

unsigned long int total_forks=0;	/* Handle normal Linux uptimes. */
int last_pid=0;

/* SLAB cache for mm_struct's. */
kmem_cache_t *mm_cachep;

/* SLAB cache for files structs */
kmem_cache_t *files_cachep; 

struct task_struct *pidhash[PIDHASH_SZ];

struct task_struct **tarray_freelist = NULL;
spinlock_t taskslot_lock = SPIN_LOCK_UNLOCKED;

/* UID task count cache, to prevent walking entire process list every
 * single fork() operation.
 */
#define UIDHASH_SZ	(PIDHASH_SZ >> 2)

static struct user_struct {
	atomic_t count;
	struct user_struct *next, **pprev;
	unsigned int uid;
} *uidhash[UIDHASH_SZ];

spinlock_t uidhash_lock = SPIN_LOCK_UNLOCKED;

kmem_cache_t *uid_cachep;

#define uidhashfn(uid)	(((uid >> 8) ^ uid) & (UIDHASH_SZ - 1))

/*
 * These routines must be called with the uidhash spinlock held!
 */
static inline void uid_hash_insert(struct user_struct *up, unsigned int hashent)
{
	if((up->next = uidhash[hashent]) != NULL)
		uidhash[hashent]->pprev = &up->next;
	up->pprev = &uidhash[hashent];
	uidhash[hashent] = up;
}

static inline void uid_hash_remove(struct user_struct *up)
{
	if(up->next)
		up->next->pprev = up->pprev;
	*up->pprev = up->next;
}

static inline struct user_struct *uid_hash_find(unsigned short uid, unsigned int hashent)
{
	struct user_struct *up, *next;

	next = uidhash[hashent];
	for (;;) {
		up = next;
		if (next) {
			next = up->next;
			if (up->uid != uid)
				continue;
			atomic_inc(&up->count);
		}
		break;
	}
	return up;
}

/*
 * For SMP, we need to re-test the user struct counter
 * after having aquired the spinlock. This allows us to do
 * the common case (not freeing anything) without having
 * any locking.
 */
#ifdef __SMP__
  #define uid_hash_free(up)	(!atomic_read(&(up)->count))
#else
  #define uid_hash_free(up)	(1)
#endif

void free_uid(struct task_struct *p)
{
	struct user_struct *up = p->user;

	if (up) {
		p->user = NULL;
		if (atomic_dec_and_test(&up->count)) {
			spin_lock(&uidhash_lock);
			if (uid_hash_free(up)) {
				uid_hash_remove(up);
				kmem_cache_free(uid_cachep, up);
			}
			spin_unlock(&uidhash_lock);
		}
	}
}

int alloc_uid(struct task_struct *p)
{
	unsigned int hashent = uidhashfn(p->uid);
	struct user_struct *up;

	spin_lock(&uidhash_lock);
	up = uid_hash_find(p->uid, hashent);
	spin_unlock(&uidhash_lock);

	if (!up) {
		struct user_struct *new;

		new = kmem_cache_alloc(uid_cachep, SLAB_KERNEL);
		if (!new)
			return -EAGAIN;
		new->uid = p->uid;
		atomic_set(&new->count, 1);

		/*
		 * Before adding this, check whether we raced
		 * on adding the same user already..
		 */
		spin_lock(&uidhash_lock);
		up = uid_hash_find(p->uid, hashent);
		if (up) {
			kmem_cache_free(uid_cachep, new);
		} else {
			uid_hash_insert(new, hashent);
			up = new;
		}
		spin_unlock(&uidhash_lock);

	}
	p->user = up;
	return 0;
}

void __init uidcache_init(void)
{
	int i;

	uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
				       0,
				       SLAB_HWCACHE_ALIGN, NULL, NULL);
	if(!uid_cachep)
		panic("Cannot create uid taskcount SLAB cache\n");

	for(i = 0; i < UIDHASH_SZ; i++)
		uidhash[i] = 0;
}

static inline struct task_struct ** find_empty_process(void)
{
	struct task_struct **tslot = NULL;

	if ((nr_tasks < NR_TASKS - MIN_TASKS_LEFT_FOR_ROOT) || !current->uid)
		tslot = get_free_taskslot();
	return tslot;
}

/* Protects next_safe and last_pid. */
spinlock_t lastpid_lock = SPIN_LOCK_UNLOCKED;

static int get_pid(unsigned long flags)
{
	static int next_safe = PID_MAX;
	struct task_struct *p;

	if (flags & CLONE_PID)
		return current->pid;

	spin_lock(&lastpid_lock);
	if((++last_pid) & 0xffff8000) {
		last_pid = 300;		/* Skip daemons etc. */
		goto inside;
	}
	if(last_pid >= next_safe) {
inside:
		next_safe = PID_MAX;
		read_lock(&tasklist_lock);
	repeat:
		for_each_task(p) {
			if(p->pid == last_pid	||
			   p->pgrp == last_pid	||
			   p->session == last_pid) {
				if(++last_pid >= next_safe) {
					if(last_pid & 0xffff8000)
						last_pid = 300;
					next_safe = PID_MAX;
				}
				goto repeat;
			}
			if(p->pid > last_pid && next_safe > p->pid)
				next_safe = p->pid;
			if(p->pgrp > last_pid && next_safe > p->pgrp)
				next_safe = p->pgrp;
			if(p->session > last_pid && next_safe > p->session)
				next_safe = p->session;
		}
		read_unlock(&tasklist_lock);
	}
	spin_unlock(&lastpid_lock);

	return last_pid;
}

static inline int dup_mmap(struct mm_struct * mm)
{
	struct vm_area_struct * mpnt, *tmp, **pprev;
	int retval;

	flush_cache_mm(current->mm);
	pprev = &mm->mmap;
	for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
		struct file *file;

		retval = -ENOMEM;
		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
		if (!tmp)
			goto fail_nomem;
		*tmp = *mpnt;
		tmp->vm_flags &= ~VM_LOCKED;
		tmp->vm_mm = mm;
		mm->map_count++;
		tmp->vm_next = NULL;
		file = tmp->vm_file;
		if (file) {
			file->f_count++;
			if (tmp->vm_flags & VM_DENYWRITE)
				file->f_dentry->d_inode->i_writecount--;
      
			/* insert tmp into the share list, just after mpnt */
			if((tmp->vm_next_share = mpnt->vm_next_share) != NULL)
				mpnt->vm_next_share->vm_pprev_share =
					&tmp->vm_next_share;
			mpnt->vm_next_share = tmp;
			tmp->vm_pprev_share = &mpnt->vm_next_share;
		}

		/* Copy the pages, but defer checking for errors */
		retval = copy_page_range(mm, current->mm, tmp);
		if (!retval && tmp->vm_ops && tmp->vm_ops->open)
			tmp->vm_ops->open(tmp);

		/*
		 * Link in the new vma even if an error occurred,
		 * so that exit_mmap() can clean up the mess.
		 */
		tmp->vm_next = *pprev;
		*pprev = tmp;

		pprev = &tmp->vm_next;
		if (retval)
			goto fail_nomem;
	}
	retval = 0;
	if (mm->map_count >= AVL_MIN_MAP_COUNT)
		build_mmap_avl(mm);

fail_nomem:
	flush_tlb_mm(current->mm);
	return retval;
}

/*
 * Allocate and initialize an mm_struct.
 *
 * NOTE! The mm mutex will be locked until the
 * caller decides that all systems are go..
 */
struct mm_struct * mm_alloc(void)
{
	struct mm_struct * mm;

	mm = kmem_cache_alloc(mm_cachep, SLAB_KERNEL);
	if (mm) {
		*mm = *current->mm;
		init_new_context(mm);
		atomic_set(&mm->count, 1);
		mm->map_count = 0;
		mm->def_flags = 0;
		init_MUTEX_LOCKED(&mm->mmap_sem);
		/*
		 * Leave mm->pgd set to the parent's pgd
		 * so that pgd_offset() is always valid.
		 */
		mm->mmap = mm->mmap_avl = mm->mmap_cache = NULL;

		/* It has not run yet, so cannot be present in anyone's
		 * cache or tlb.
		 */
		mm->cpu_vm_mask = 0;
	}
	return mm;
}

/* Please note the differences between mmput and mm_release.
 * mmput is called whenever we stop holding onto a mm_struct,
 * error success whatever.
 *
 * mm_release is called after a mm_struct has been removed
 * from the current process.
 *
 * This difference is important for error handling, when we
 * only half set up a mm_struct for a new process and need to restore
 * the old one.  Because we mmput the new mm_struct before
 * restoring the old one. . .
 * Eric Biederman 10 January 1998
 */
void mm_release(void)
{
	struct task_struct *tsk = current;
	forget_segments();
	/* notify parent sleeping on vfork() */
	if (tsk->flags & PF_VFORK) {
		tsk->flags &= ~PF_VFORK;
		up(tsk->p_opptr->vfork_sem);
	}
}

/*
 * Decrement the use count and release all resources for an mm.
 */
void mmput(struct mm_struct *mm)
{
	if (atomic_dec_and_test(&mm->count)) {
		release_segments(mm);
		exit_mmap(mm);
		free_page_tables(mm);
		kmem_cache_free(mm_cachep, mm);
	}
}

static inline int copy_mm(int nr, unsigned long clone_flags, struct task_struct * tsk)
{
	struct mm_struct * mm;
	int retval;

	if (clone_flags & CLONE_VM) {
		mmget(current->mm);
		/*
		 * Set up the LDT descriptor for the clone task.
		 */
		copy_segments(nr, tsk, NULL);
		SET_PAGE_DIR(tsk, current->mm->pgd);
		return 0;
	}

	retval = -ENOMEM;
	mm = mm_alloc();
	if (!mm)
		goto fail_nomem;

	tsk->mm = mm;
	tsk->min_flt = tsk->maj_flt = 0;
	tsk->cmin_flt = tsk->cmaj_flt = 0;
	tsk->nswap = tsk->cnswap = 0;
	copy_segments(nr, tsk, mm);
	retval = new_page_tables(tsk);
	if (retval)
		goto free_mm;
	retval = dup_mmap(mm);
	if (retval)
		goto free_pt;
	up(&mm->mmap_sem);
	return 0;

free_mm:
	tsk->mm = NULL;
	release_segments(mm);
	kmem_cache_free(mm_cachep, mm);
	return retval;
free_pt:
	tsk->mm = NULL;
	mmput(mm);
fail_nomem:
	return retval;
}

static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
{
	if (clone_flags & CLONE_FS) {
		atomic_inc(&current->fs->count);
		return 0;
	}
	tsk->fs = kmalloc(sizeof(*tsk->fs), GFP_KERNEL);
	if (!tsk->fs)
		return -1;
	atomic_set(&tsk->fs->count, 1);
	tsk->fs->umask = current->fs->umask;
	tsk->fs->root = dget(current->fs->root);
	tsk->fs->pwd = dget(current->fs->pwd);
	return 0;
}

/*
 * Copy a fd_set and compute the maximum fd it contains. 
 */
static inline int __copy_fdset(unsigned long *d, unsigned long *src)
{
	int i; 
	unsigned long *p = src; 
	unsigned long *max = src; 

	for (i = __FDSET_LONGS; i; --i) {
		if ((*d++ = *p++) != 0) 
			max = p; 
	}
	return (max - src)*sizeof(long)*8; 
}

static inline int copy_fdset(fd_set *dst, fd_set *src)
{
	return __copy_fdset(dst->fds_bits, src->fds_bits);  
}

static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
{
	struct files_struct *oldf, *newf;
	struct file **old_fds, **new_fds;
	int size, i, error = 0;

	/*
	 * A background process may not have any files ...
	 */
	oldf = current->files;
	if (!oldf)
		goto out;

	if (clone_flags & CLONE_FILES) {
		atomic_inc(&oldf->count);
		goto out;
	}

	tsk->files = NULL;
	error = -ENOMEM;
	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
	if (!newf) 
		goto out;

	/*
	 * Allocate the fd array, using get_free_page() if possible.
	 * Eventually we want to make the array size variable ...
	 */
	size = NR_OPEN * sizeof(struct file *);
	if (size == PAGE_SIZE)
		new_fds = (struct file **) __get_free_page(GFP_KERNEL);
	else
		new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
	if (!new_fds)
		goto out_release;

	atomic_set(&newf->count, 1);
	newf->max_fds = NR_OPEN;
	newf->fd = new_fds;
	newf->close_on_exec = oldf->close_on_exec;
	i = copy_fdset(&newf->open_fds, &oldf->open_fds);

	old_fds = oldf->fd;
	for (; i != 0; i--) {
		struct file *f = *old_fds++;
		*new_fds = f;
		if (f)
			f->f_count++;
		new_fds++;
	}
	/* This is long word aligned thus could use a optimized version */ 
	memset(new_fds, 0, (char *)newf->fd + size - (char *)new_fds); 
      
	tsk->files = newf;
	error = 0;
out:
	return error;

out_release:
	kmem_cache_free(files_cachep, newf);
	goto out;
}

static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
{
	if (clone_flags & CLONE_SIGHAND) {
		atomic_inc(&current->sig->count);
		return 0;
	}
	tsk->sig = kmalloc(sizeof(*tsk->sig), GFP_KERNEL);
	if (!tsk->sig)
		return -1;
	spin_lock_init(&tsk->sig->siglock);
	atomic_set(&tsk->sig->count, 1);
	memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action));
	return 0;
}

static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
{
	unsigned long new_flags = p->flags;

	new_flags &= ~(PF_SUPERPRIV | PF_USEDFPU | PF_VFORK);
	new_flags |= PF_FORKNOEXEC;
	if (!(clone_flags & CLONE_PTRACE))
		new_flags &= ~(PF_PTRACED|PF_TRACESYS);
	if (clone_flags & CLONE_VFORK)
		new_flags |= PF_VFORK;
	p->flags = new_flags;
}

/*
 *  Ok, this is the main fork-routine. It copies the system process
 * information (task[nr]) and sets up the necessary registers. It
 * also copies the data segment in its entirety.
 */
int do_fork(unsigned long clone_flags, unsigned long usp, struct pt_regs *regs)
{
	int nr;
	int retval = -ENOMEM;
	struct task_struct *p;
	DECLARE_MUTEX_LOCKED(sem);

	current->vfork_sem = &sem;

	p = alloc_task_struct();
	if (!p)
		goto fork_out;

	*p = *current;

	down(&current->mm->mmap_sem);
	lock_kernel();

	retval = -EAGAIN;
	if (p->user) {
		if (atomic_read(&p->user->count) >= p->rlim[RLIMIT_NPROC].rlim_cur)
			goto bad_fork_free;
	}

	{
		struct task_struct **tslot;
		tslot = find_empty_process();
		if (!tslot)
			goto bad_fork_free;
		p->tarray_ptr = tslot;
		*tslot = p;
		nr = tslot - &task[0];
	}

	if (p->exec_domain && p->exec_domain->module)
		__MOD_INC_USE_COUNT(p->exec_domain->module);
	if (p->binfmt && p->binfmt->module)
		__MOD_INC_USE_COUNT(p->binfmt->module);

	p->did_exec = 0;
	p->swappable = 0;
	p->state = TASK_UNINTERRUPTIBLE;

	copy_flags(clone_flags, p);
	p->pid = get_pid(clone_flags);

	/*
	 * This is a "shadow run" state. The process
	 * is marked runnable, but isn't actually on
	 * any run queue yet.. (that happens at the
	 * very end).
	 */
	p->state = TASK_RUNNING;
	p->next_run = p;
	p->prev_run = p;

	p->p_pptr = p->p_opptr = current;
	p->p_cptr = NULL;
	init_waitqueue_head(&p->wait_chldexit);
	p->vfork_sem = NULL;

	p->sigpending = 0;
	sigemptyset(&p->signal);
	p->sigqueue = NULL;
	p->sigqueue_tail = &p->sigqueue;

	p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
	p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
	init_timer(&p->real_timer);
	p->real_timer.data = (unsigned long) p;

	p->leader = 0;		/* session leadership doesn't inherit */
	p->tty_old_pgrp = 0;
	p->times.tms_utime = p->times.tms_stime = 0;
	p->times.tms_cutime = p->times.tms_cstime = 0;
#ifdef __SMP__
	{
		int i;
		p->has_cpu = 0;
		p->processor = NO_PROC_ID;
		/* ?? should we just memset this ?? */
		for(i = 0; i < smp_num_cpus; i++)
			p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0;
		spin_lock_init(&p->sigmask_lock);
	}
#endif
	p->lock_depth = -1;		/* -1 = no lock */
	p->start_time = jiffies;

	retval = -ENOMEM;
	/* copy all the process information */
	if (copy_files(clone_flags, p))
		goto bad_fork_cleanup;
	if (copy_fs(clone_flags, p))
		goto bad_fork_cleanup_files;
	if (copy_sighand(clone_flags, p))
		goto bad_fork_cleanup_fs;
	if (copy_mm(nr, clone_flags, p))
		goto bad_fork_cleanup_sighand;
	retval = copy_thread(nr, clone_flags, usp, p, regs);
	if (retval)
		goto bad_fork_cleanup_sighand;
	p->semundo = NULL;

	/* ok, now we should be set up.. */
	p->swappable = 1;
	p->exit_signal = clone_flags & CSIGNAL;
	p->pdeath_signal = 0;

	/*
	 * "share" dynamic priority between parent and child, thus the
	 * total amount of dynamic priorities in the system doesnt change,
	 * more scheduling fairness. This is only important in the first
	 * timeslice, on the long run the scheduling behaviour is unchanged.
	 */
	current->counter >>= 1;
	p->counter = current->counter;

	/*
	 * Ok, add it to the run-queues and make it
	 * visible to the rest of the system.
	 *
	 * Let it rip!
	 */
	retval = p->pid;
	if (retval) {
		write_lock_irq(&tasklist_lock);
		SET_LINKS(p);
		hash_pid(p);
		write_unlock_irq(&tasklist_lock);

		nr_tasks++;
		if (p->user)
			atomic_inc(&p->user->count);

		p->next_run = NULL;
		p->prev_run = NULL;
		wake_up_process(p);		/* do this last */
	}
	++total_forks;
bad_fork:
	unlock_kernel();
	up(&current->mm->mmap_sem);
fork_out:
	if ((clone_flags & CLONE_VFORK) && (retval > 0)) 
		down(&sem);
	return retval;

bad_fork_cleanup_sighand:
	exit_sighand(p);
bad_fork_cleanup_fs:
	exit_fs(p); /* blocking */
bad_fork_cleanup_files:
	exit_files(p); /* blocking */
bad_fork_cleanup:
	if (p->exec_domain && p->exec_domain->module)
		__MOD_DEC_USE_COUNT(p->exec_domain->module);
	if (p->binfmt && p->binfmt->module)
		__MOD_DEC_USE_COUNT(p->binfmt->module);

	add_free_taskslot(p->tarray_ptr);
bad_fork_free:
	free_task_struct(p);
	goto bad_fork;
}

void __init filescache_init(void)
{
	files_cachep = kmem_cache_create("files_cache", 
					 sizeof(struct files_struct),
					 0, 
					 SLAB_HWCACHE_ALIGN,
					 NULL, NULL);
	if (!files_cachep) 
		panic("Cannot create files cache"); 
}