Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*
 * Audio Command Interface (ACI) driver (sound/aci.c)
 *
 * ACI is a protocol used to communicate with the microcontroller on
 * some sound cards produced by miro, e.g. the miroSOUND PCM12 and
 * PCM20. The ACI has been developed for miro by Norberto Pellicci
 * <pellicci@home.com>. Special thanks to both him and miro for
 * providing the ACI specification.
 *
 * The main function of the ACI is to control the mixer and to get a
 * product identification. On the PCM20, ACI also controls the radio
 * tuner on this card, this is supported in the Video for Linux 
 * radio-miropcm20 driver.
 * 
 * This Voxware ACI driver currently only supports the ACI functions
 * on the miroSOUND PCM12 and PCM20 card. Support for miro sound cards 
 * with additional ACI functions can easily be added later.
 *
 * / NOTE / When compiling as a module, make sure to load the module 
 * after loading the mad16 module. The initialisation code expects the
 * MAD16 default mixer to be already available.
 *
 * / NOTE / When compiling as a module, make sure to load the module 
 * after loading the mad16 module. The initialisation code expects the
 * MAD16 default mixer to be already available.
 *
 * Revision history:
 *
 *   1995-11-10  Markus Kuhn <mskuhn@cip.informatik.uni-erlangen.de>
 *        First version written.
 *   1995-12-31  Markus Kuhn
 *        Second revision, general code cleanup.
 *   1996-05-16	 Hannu Savolainen
 *	  Integrated with other parts of the driver.
 *   1996-05-28  Markus Kuhn
 *        Initialize CS4231A mixer, make ACI first mixer,
 *        use new private mixer API for solo mode.
 *   1998-08-18  Ruurd Reitsma <R.A.Reitsma@wbmt.tudelft.nl>
 *	  Small modification to export ACI functions and 
 *	  complete modularisation.
 */

/*
 * Some driver specific information and features:
 *
 * This mixer driver identifies itself to applications as "ACI" in
 * mixer_info.id as retrieved by ioctl(fd, SOUND_MIXER_INFO, &mixer_info).
 *
 * Proprietary mixer features that go beyond the standard OSS mixer
 * interface are:
 * 
 * Full duplex solo configuration:
 *
 *   int solo_mode;
 *   ioctl(fd, SOUND_MIXER_PRIVATE1, &solo_mode);
 *
 *   solo_mode = 0: deactivate solo mode (default)
 *   solo_mode > 0: activate solo mode
 *                  With activated solo mode, the PCM input can not any
 *                  longer hear the signals produced by the PCM output.
 *                  Activating solo mode is important in duplex mode in order
 *                  to avoid feedback distortions.
 *   solo_mode < 0: do not change solo mode (just retrieve the status)
 *
 *   When the ioctl() returns 0, solo_mode contains the previous
 *   status (0 = deactivated, 1 = activated). If solo mode is not
 *   implemented on this card, ioctl() returns -1 and sets errno to
 *   EINVAL.
 *
 */

#include <linux/config.h> /* for CONFIG_ACI_MIXER */
#include <linux/module.h> 
#include "lowlevel.h"
#include "../sound_config.h"

#if defined(CONFIG_ACI_MIXER) || defined(CONFIG_ACI_MIXER_MODULE)

#undef  DEBUG             /* if defined, produce a verbose report via syslog */

int aci_port = 0x354; /* as determined by bit 4 in the OPTi 929 MC4 register */
unsigned char aci_idcode[2] = {0, 0};         /* manufacturer and product ID */
unsigned char aci_version = 0;                       /* ACI firmware version */
int aci_solo;                     /* status bit of the card that can't be    *
                                   * checked with ACI versions prior to 0xb0 */

static int aci_present = 0;

#ifdef MODULE                  /* Whether the aci mixer is to be reset.    */
int aci_reset = 0;             /* Default: don't reset if the driver is a  */
MODULE_PARM(aci_reset,"i");
#else                          /* module; use "insmod aci.o aci_reset=1" */
int aci_reset = 1;             /* to override.                             */
#endif


#define COMMAND_REGISTER    (aci_port)
#define STATUS_REGISTER     (aci_port + 1)
#define BUSY_REGISTER       (aci_port + 2)

/*
 * Wait until the ACI microcontroller has set the READYFLAG in the
 * Busy/IRQ Source Register to 0. This is required to avoid
 * overrunning the sound card microcontroller. We do a busy wait here,
 * because the microcontroller is not supposed to signal a busy
 * condition for more than a few clock cycles. In case of a time-out,
 * this function returns -1.
 *
 * This busy wait code normally requires less than 15 loops and
 * practically always less than 100 loops on my i486/DX2 66 MHz.
 *
 * Warning: Waiting on the general status flag after reseting the MUTE
 * function can take a VERY long time, because the PCM12 does some kind
 * of fade-in effect. For this reason, access to the MUTE function has
 * not been implemented at all.
 */

static int busy_wait(void)
{
  long timeout;

  for (timeout = 0; timeout < 10000000L; timeout++)
    if ((inb_p(BUSY_REGISTER) & 1) == 0)
      return 0;

#ifdef DEBUG
  printk("ACI: READYFLAG timed out.\n");
#endif

  return -1;
}


/*
 * Read the GENERAL STATUS register.
 */

static int read_general_status(void)
{
  unsigned long flags;
  int status;

  save_flags(flags);
  cli();
  if (busy_wait()) { restore_flags(flags); return -1; }
  status = (unsigned) inb_p(STATUS_REGISTER);
  restore_flags(flags);
  return status;
}


/*
 * The four ACI command types (implied, write, read and indexed) can
 * be sent to the microcontroller using the following four functions.
 * If a problem occurred, they return -1.
 */

int aci_implied_cmd(unsigned char opcode)
{
  unsigned long flags;

#ifdef DEBUG
  printk("ACI: aci_implied_cmd(0x%02x)\n", opcode);
#endif

  save_flags(flags);
  cli();
  
  if (read_general_status() < 0 || busy_wait()) {
    restore_flags(flags);
    return -1;
  }
  outb_p(opcode, COMMAND_REGISTER);

  restore_flags(flags);
  return 0;
}


int aci_write_cmd(unsigned char opcode, unsigned char parameter)
{
  unsigned long flags;
  int status;

#ifdef DEBUG
  printk("ACI: aci_write_cmd(0x%02x, 0x%02x)\n", opcode, parameter);
#endif

  save_flags(flags);
  cli();
  
  if (read_general_status() < 0 || busy_wait()) {
    restore_flags(flags);
    return -1;
  }
  outb_p(opcode, COMMAND_REGISTER);
  if (busy_wait()) { restore_flags(flags); return -1; }
  outb_p(parameter, COMMAND_REGISTER);

  if ((status = read_general_status()) < 0) {
    restore_flags(flags);
    return -1;
  }
  /* polarity of the INVALID flag depends on ACI version */
  if ((aci_version <  0xb0 && (status & 0x40) != 0) ||
      (aci_version >= 0xb0 && (status & 0x40) == 0)) {
    restore_flags(flags);
    printk("ACI: invalid write command 0x%02x, 0x%02x.\n",
	   opcode, parameter);
    return -1;
  }

  restore_flags(flags);
  return 0;
}

/*
 * This write command send 2 parameters instead of one.
 * Only used in PCM20 radio frequency tuning control
 */

int aci_write_cmd_d(unsigned char opcode, unsigned char parameter, unsigned char parameter2)
{
  unsigned long flags;
  int status;

#ifdef DEBUG
  printk("ACI: aci_write_cmd_d(0x%02x, 0x%02x)\n", opcode, parameter, parameter2);
#endif

  save_flags(flags);
  cli();
  
  if (read_general_status() < 0 || busy_wait()) {
    restore_flags(flags);
    return -1;
  }
  outb_p(opcode, COMMAND_REGISTER);
  if (busy_wait()) { restore_flags(flags); return -1; }
  outb_p(parameter, COMMAND_REGISTER);
  if (busy_wait()) { restore_flags(flags); return -1; }
  outb_p(parameter2, COMMAND_REGISTER);

  if ((status = read_general_status()) < 0) {
    restore_flags(flags);
    return -1;
  }
  /* polarity of the INVALID flag depends on ACI version */
  if ((aci_version <  0xb0 && (status & 0x40) != 0) ||
      (aci_version >= 0xb0 && (status & 0x40) == 0)) {
    restore_flags(flags);
#if 0	/* Frequency tuning works, but the INVALID flag is set ??? */
    printk("ACI: invalid write (double) command 0x%02x, 0x%02x, 0x%02x.\n",
	   opcode, parameter, parameter2);
#endif
    return -1;
  }

  restore_flags(flags);
  return 0;
}

int aci_read_cmd(unsigned char opcode, int length, unsigned char *parameter)
{
  unsigned long flags;
  int i = 0;

  save_flags(flags);
  cli();
  
  if (read_general_status() < 0) { restore_flags(flags); return -1; }
  while (i < length) {
    if (busy_wait()) { restore_flags(flags); return -1; }
    outb_p(opcode, COMMAND_REGISTER);
    if (busy_wait()) { restore_flags(flags); return -1; }
    parameter[i++] = inb_p(STATUS_REGISTER);
#ifdef DEBUG
    if (i == 1)
      printk("ACI: aci_read_cmd(0x%02x, %d) = 0x%02x\n", opcode, length,
	     parameter[i-1]);
    else
      printk("ACI: aci_read_cmd cont.: 0x%02x\n", parameter[i-1]);
#endif
  }

  restore_flags(flags);
  return 0;
}


int aci_indexed_cmd(unsigned char opcode, unsigned char index,
		       unsigned char *parameter)
{
  unsigned long flags;

  save_flags(flags);
  cli();
  
  if (read_general_status() < 0 || busy_wait()) {
    restore_flags(flags);
    return -1;
  }
  outb_p(opcode, COMMAND_REGISTER);
  if (busy_wait()) { restore_flags(flags); return -1; }
  outb_p(index, COMMAND_REGISTER);
  if (busy_wait()) { restore_flags(flags); return -1; }
  *parameter = inb_p(STATUS_REGISTER);
#ifdef DEBUG
  printk("ACI: aci_indexed_cmd(0x%02x, 0x%02x) = 0x%02x\n", opcode, index,
	 *parameter);
#endif

  restore_flags(flags);
  return 0;
}


/*
 * The following macro SCALE can be used to scale one integer volume
 * value into another one using only integer arithmetic. If the input
 * value x is in the range 0 <= x <= xmax, then the result will be in
 * the range 0 <= SCALE(xmax,ymax,x) <= ymax.
 *
 * This macro has for all xmax, ymax > 0 and all 0 <= x <= xmax the
 * following nice properties:
 *
 * - SCALE(xmax,ymax,xmax) = ymax
 * - SCALE(xmax,ymax,0) = 0
 * - SCALE(xmax,ymax,SCALE(ymax,xmax,SCALE(xmax,ymax,x))) = SCALE(xmax,ymax,x)
 *
 * In addition, the rounding error is minimal and nicely distributed.
 * The proofs are left as an exercise to the reader.
 */

#define SCALE(xmax,ymax,x) (((x)*(ymax)+(xmax)/2)/(xmax))


static int getvolume(caddr_t arg,
		     unsigned char left_index, unsigned char right_index)
{
  int vol;
  unsigned char buf;

  /* left channel */
  if (aci_indexed_cmd(0xf0, left_index, &buf)) return -EIO;
  vol = SCALE(0x20, 100, buf < 0x20 ? 0x20-buf : 0);
  /* right channel */
  if (aci_indexed_cmd(0xf0, right_index, &buf)) return -EIO;
  vol |= SCALE(0x20, 100, buf < 0x20 ? 0x20-buf : 0) << 8;

  return (*(int *) arg = vol);
}


static int setvolume(caddr_t arg, 
		     unsigned char left_index, unsigned char right_index)
{
  int vol, ret;

  /* left channel */
  vol = *(int *)arg & 0xff;
  if (vol > 100) vol = 100;
  vol = SCALE(100, 0x20, vol);
  if (aci_write_cmd(left_index, 0x20 - vol)) return -EIO;
  ret = SCALE(0x20, 100, vol);
  /* right channel */
  vol = (*(int *)arg >> 8) & 0xff;
  if (vol > 100) vol = 100;
  vol = SCALE(100, 0x20, vol);
  if (aci_write_cmd(right_index, 0x20 - vol)) return -EIO;
  ret |= SCALE(0x20, 100, vol) << 8;
 
  return (*(int *) arg = ret);
}


static int
aci_mixer_ioctl (int dev, unsigned int cmd, caddr_t arg)
{
  int status, vol;
  unsigned char buf;

  /* handle solo mode control */
  if (cmd == SOUND_MIXER_PRIVATE1) {
    if (*(int *) arg >= 0) {
      aci_solo = !!*(int *) arg;
      if (aci_write_cmd(0xd2, aci_solo)) return -EIO;
    } else if (aci_version >= 0xb0) {
      if ((status = read_general_status()) < 0) return -EIO;
      return (*(int *) arg = (status & 0x20) == 0);
    }
    return (*(int *) arg = aci_solo);
  }

  if (((cmd >> 8) & 0xff) == 'M') {
    if (cmd & IOC_IN)
      /* read and write */
      switch (cmd & 0xff) {
      case SOUND_MIXER_VOLUME:
	return setvolume(arg, 0x01, 0x00);
      case SOUND_MIXER_CD:
	return setvolume(arg, 0x3c, 0x34);
      case SOUND_MIXER_MIC:
	return setvolume(arg, 0x38, 0x30);
      case SOUND_MIXER_LINE:
	return setvolume(arg, 0x39, 0x31);
      case SOUND_MIXER_SYNTH:
	return setvolume(arg, 0x3b, 0x33);
      case SOUND_MIXER_PCM:
	return setvolume(arg, 0x3a, 0x32);
      case SOUND_MIXER_LINE1:  /* AUX1 */
	return setvolume(arg, 0x3d, 0x35);
      case SOUND_MIXER_LINE2:  /* AUX2 */
	return setvolume(arg, 0x3e, 0x36);
      case SOUND_MIXER_IGAIN:  /* MIC pre-amp */
	vol = *(int *) arg & 0xff;
	if (vol > 100) vol = 100;
	vol = SCALE(100, 3, vol);
	if (aci_write_cmd(0x03, vol)) return -EIO;
	vol = SCALE(3, 100, vol);
	return (*(int *) arg = vol | (vol << 8));
      case SOUND_MIXER_RECSRC:
	return (*(int *) arg = 0);
	break;
      default:
	return -EINVAL;
      }
    else
      /* only read */
      switch (cmd & 0xff) {
      case SOUND_MIXER_DEVMASK:
	return (*(int *) arg =
				 SOUND_MASK_VOLUME | SOUND_MASK_CD    |
				 SOUND_MASK_MIC    | SOUND_MASK_LINE  |
				 SOUND_MASK_SYNTH  | SOUND_MASK_PCM   |
#if 0
				 SOUND_MASK_IGAIN  |
#endif
				 SOUND_MASK_LINE1  | SOUND_MASK_LINE2);
	break;
      case SOUND_MIXER_STEREODEVS:
	return (*(int *) arg =
				 SOUND_MASK_VOLUME | SOUND_MASK_CD   |
				 SOUND_MASK_MIC    | SOUND_MASK_LINE |
				 SOUND_MASK_SYNTH  | SOUND_MASK_PCM  |
				 SOUND_MASK_LINE1  | SOUND_MASK_LINE2);
	break;
      case SOUND_MIXER_RECMASK:
	return (*(int *) arg = 0);
	break;
      case SOUND_MIXER_RECSRC:
	return (*(int *) arg = 0);
	break;
      case SOUND_MIXER_CAPS:
	return (*(int *) arg = 0);
	break;
      case SOUND_MIXER_VOLUME:
	return getvolume(arg, 0x04, 0x03);
      case SOUND_MIXER_CD:
	return getvolume(arg, 0x0a, 0x09);
      case SOUND_MIXER_MIC:
	return getvolume(arg, 0x06, 0x05);
      case SOUND_MIXER_LINE:
	return getvolume(arg, 0x08, 0x07);
      case SOUND_MIXER_SYNTH:
	return getvolume(arg, 0x0c, 0x0b);
      case SOUND_MIXER_PCM:
	return getvolume(arg, 0x0e, 0x0d);
      case SOUND_MIXER_LINE1:  /* AUX1 */
	return getvolume(arg, 0x11, 0x10);
      case SOUND_MIXER_LINE2:  /* AUX2 */
	return getvolume(arg, 0x13, 0x12);
      case SOUND_MIXER_IGAIN:  /* MIC pre-amp */
	if (aci_indexed_cmd(0xf0, 0x21, &buf)) return -EIO;
	vol = SCALE(3, 100, buf <= 3 ? buf : 3);
	vol |= vol << 8;
	return (*(int *) arg = vol);
      default:
	return -EINVAL;
      }
  }

  return -EINVAL;
}


static struct mixer_operations aci_mixer_operations =
{
  "ACI",
  "ACI mixer",
  aci_mixer_ioctl,
  NULL
};

static unsigned char
mad_read (int port)
{
  outb (0xE3, 0xf8f); /* Write MAD16 password */
  return inb (port);  /* Read from port */
}


/*
 * Check, whether there actually is any ACI port operational and if
 * one was found, then initialize the ACI interface, reserve the I/O
 * addresses and attach the new mixer to the relevant VoxWare data
 * structures.
 *
 * Returns:  1   ACI mixer detected
 *           0   nothing there
 *
 * There is also an internal mixer in the codec (CS4231A or AD1845),
 * that deserves no purpose in an ACI based system which uses an
 * external ACI controlled stereo mixer. Make sure that this codec
 * mixer has the AUX1 input selected as the recording source, that the
 * input gain is set near maximum and that the other channels going
 * from the inputs to the codec output are muted.
 */

int attach_aci(void)
{
  char *boardname = "unknown";
  int volume;

#define MC4_PORT	0xf90

  aci_port =
      (mad_read(MC4_PORT) & 0x10) ? 0x344 : 0x354;

  if (check_region(aci_port, 3)) {
#ifdef DEBUG
    printk("ACI: I/O area 0x%03x-0x%03x already used.\n",
           aci_port, aci_port+2);
#endif
    return 0;
  }

  if (aci_read_cmd(0xf2, 2, aci_idcode)) {
#ifdef DEBUG
    printk("ACI: Failed to read idcode.\n");
#endif
    return 0;
  }
  if (aci_read_cmd(0xf1, 1, &aci_version)) {
#ifdef DEBUG
    printk("ACI: Failed to read version.\n");
#endif
    return 0;
  }

  if (aci_idcode[0] == 0x6d) {
    /* It looks like a miro sound card. */
    switch (aci_idcode[1]) {
    case 0x41:
      boardname = "PCM1 pro / early PCM12";
      break;
    case 0x42:
      boardname = "PCM12";
      break;
    case 0x43:
      boardname = "PCM20";
      break;
    default:
      boardname = "unknown miro";
    }
  } else
#ifndef DEBUG
    return 0;
#endif
  
  printk("<ACI %02x, id %02x %02x (%s)> at 0x%03x\n",
	 aci_version, aci_idcode[0], aci_idcode[1], boardname, aci_port);

  if (aci_reset) {
    /* initialize ACI mixer */
    aci_implied_cmd(0xff);
    aci_solo = 0;
  }

  /* attach the mixer */
  request_region(aci_port, 3, "sound mixer (ACI)");
  if (num_mixers < MAX_MIXER_DEV) {
    if (num_mixers > 0 &&
        !strncmp("MAD16 WSS", mixer_devs[num_mixers-1]->name, 9)) {
      /*
       * The previously registered mixer device is the CS4231A which
       * has no function on an ACI card. Make the ACI mixer the first
       * of the two mixer devices.
       */
      mixer_devs[num_mixers] = mixer_devs[num_mixers-1];
      mixer_devs[num_mixers-1] = &aci_mixer_operations;
      /*
       * Initialize the CS4231A mixer with reasonable values. It is
       * unlikely that the user ever will want to change these as all
       * channels can be mixed via ACI.
       */
      volume = 0x6464;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_PCM,     (caddr_t) &volume);
      volume = 0x6464;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_IGAIN,   (caddr_t) &volume);
      volume = 0;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_SPEAKER, (caddr_t) &volume);
      volume = 0;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_MIC,     (caddr_t) &volume);
      volume = 0;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_IMIX,    (caddr_t) &volume);
      volume = 0;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_LINE1,   (caddr_t) &volume);
      volume = 0;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_LINE2,   (caddr_t) &volume);
      volume = 0;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_LINE3,   (caddr_t) &volume);
      volume = SOUND_MASK_LINE1;
      mixer_devs[num_mixers]->
        ioctl(num_mixers, SOUND_MIXER_WRITE_RECSRC,  (caddr_t) &volume);
      num_mixers++;
    } else
      mixer_devs[num_mixers++] = &aci_mixer_operations;
  }

  /* Just do something; otherwise the first write command fails, at
   * least with my PCM20.
   */
  aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_READ_VOLUME, (caddr_t) &volume);

  if (aci_reset) {
    /* Initialize ACI mixer with reasonable power-up values */
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_VOLUME, (caddr_t) &volume);
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_SYNTH,  (caddr_t) &volume);
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_PCM,    (caddr_t) &volume);
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_LINE,   (caddr_t) &volume);
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_MIC,    (caddr_t) &volume);
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_CD,     (caddr_t) &volume);
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_LINE1,  (caddr_t) &volume);
    volume = 0x3232;
    aci_mixer_ioctl(num_mixers-1, SOUND_MIXER_WRITE_LINE2,  (caddr_t) &volume);
  }
  
  aci_present = 1;

  return 1;
}

void unload_aci(void)
{
  if (aci_present)
    release_region(aci_port, 3);
}

#endif

#if defined(MODULE)

int init_module(void) {
	attach_aci();
	return(0);
}

void cleanup_module(void) {
	unload_aci();
}

#endif /* MODULE */