Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/*
 *  linux/mm/page_alloc.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pagemap.h>

#include <asm/dma.h>
#include <asm/uaccess.h> /* for copy_to/from_user */
#include <asm/pgtable.h>

int nr_swap_pages = 0;
int nr_free_pages = 0;

/*
 * Free area management
 *
 * The free_area_list arrays point to the queue heads of the free areas
 * of different sizes
 */

#if CONFIG_AP1000
/* the AP+ needs to allocate 8MB contiguous, aligned chunks of ram
   for the ring buffers */
#define NR_MEM_LISTS 12
#else
#define NR_MEM_LISTS 10
#endif
#define NR_MEM_TYPES 2		/* GFP_DMA vs not for now. */

/* The start of this MUST match the start of "struct page" */
struct free_area_struct {
	struct page *next;
	struct page *prev;
	unsigned int * map;
	unsigned long count;
};

#define memory_head(x) ((struct page *)(x))

static struct free_area_struct free_area[NR_MEM_TYPES][NR_MEM_LISTS];

static inline void init_mem_queue(struct free_area_struct * head)
{
	head->next = memory_head(head);
	head->prev = memory_head(head);
}

static inline void add_mem_queue(struct free_area_struct * head, struct page * entry)
{
	struct page * next = head->next;

	entry->prev = memory_head(head);
	entry->next = next;
	next->prev = entry;
	head->next = entry;
	head->count++;
}

static inline void remove_mem_queue(struct page * entry)
{
	struct page * next = entry->next;
	struct page * prev = entry->prev;
	next->prev = prev;
	prev->next = next;
}

/*
 * Free_page() adds the page to the free lists. This is optimized for
 * fast normal cases (no error jumps taken normally).
 *
 * The way to optimize jumps for gcc-2.2.2 is to:
 *  - select the "normal" case and put it inside the if () { XXX }
 *  - no else-statements if you can avoid them
 *
 * With the above two rules, you get a straight-line execution path
 * for the normal case, giving better asm-code.
 */

/*
 * Buddy system. Hairy. You really aren't expected to understand this
 *
 * Hint: -mask = 1+~mask
 */
spinlock_t page_alloc_lock = SPIN_LOCK_UNLOCKED;

#define list(x) (mem_map+(x))
#define __free_pages_ok(map_nr, mask, area, index)		\
	nr_free_pages -= (mask);				\
	while ((mask) + (1 << (NR_MEM_LISTS-1))) {		\
		if (!test_and_change_bit((index), (area)->map))	\
			break;					\
		(area)->count--;				\
		remove_mem_queue(list((map_nr) ^ -(mask)));	\
		(mask) <<= 1;					\
		(area)++;					\
		(index) >>= 1;					\
		(map_nr) &= (mask);				\
	}							\
	add_mem_queue(area, list(map_nr));

static void free_local_pages(struct page * page) {
	unsigned long order = page->offset;
	unsigned int type = PageDMA(page) ? 1 : 0;
	struct free_area_struct *area;
	unsigned long map_nr = page - mem_map;
	unsigned long mask = (~0UL) << order;
	unsigned long index = map_nr >> (1 + order);

	area = free_area[type] + order;
	__free_pages_ok(map_nr, mask, area, index);
}

static inline void free_pages_ok(unsigned long map_nr, unsigned long order, unsigned type)
{
	struct free_area_struct *area;
	unsigned long index;
	unsigned long mask;
	unsigned long flags;
	struct page * page;

	if (current->flags & PF_FREE_PAGES)
		goto local_freelist;
 back_local_freelist:

	index = map_nr >> (1 + order);
	mask = (~0UL) << order;
	map_nr &= mask;

	spin_lock_irqsave(&page_alloc_lock, flags);
	area = free_area[type] + order;
	__free_pages_ok(map_nr, mask, area, index);
	spin_unlock_irqrestore(&page_alloc_lock, flags);
	return;

 local_freelist:
	/*
	 * This is a little subtle: if the allocation order
	 * wanted is major than zero we'd better take all the pages
	 * local since we must deal with fragmentation too and we
	 * can't rely on the nr_local_pages information.
	 */
	if (current->nr_local_pages && !current->allocation_order)
		goto back_local_freelist;

	page = mem_map + map_nr;
	list_add((struct list_head *) page, &current->local_pages);
	page->offset = order;
	current->nr_local_pages++;
}

void __free_pages(struct page *page, unsigned long order)
{
	if (!PageReserved(page) && atomic_dec_and_test(&page->count)) {
		if (PageSwapCache(page))
			panic ("Freeing swap cache page");
		page->flags &= ~(1 << PG_referenced);
		free_pages_ok(page - mem_map, order, PageDMA(page) ? 1 : 0);
		return;
	}
}

void free_pages(unsigned long addr, unsigned long order)
{
	unsigned long map_nr = MAP_NR(addr);

	if (map_nr < max_mapnr)
		__free_pages(mem_map + map_nr, order);
}

/*
 * Some ugly macros to speed up __get_free_pages()..
 */
#define MARK_USED(index, order, area) \
	change_bit((index) >> (1+(order)), (area)->map)
#define ADDRESS(x) (PAGE_OFFSET + ((x) << PAGE_SHIFT))
#define RMQUEUE_TYPE(order, type) \
do { struct free_area_struct * area = free_area[type]+order; \
     unsigned long new_order = order; \
	do { struct page *prev = memory_head(area), *ret = prev->next; \
		if (memory_head(area) != ret) { \
			unsigned long map_nr; \
			(prev->next = ret->next)->prev = prev; \
			map_nr = ret - mem_map; \
			MARK_USED(map_nr, new_order, area); \
			nr_free_pages -= 1 << order; \
			area->count--; \
			EXPAND(ret, map_nr, order, new_order, area); \
			spin_unlock_irqrestore(&page_alloc_lock, flags); \
			return ADDRESS(map_nr); \
		} \
		new_order++; area++; \
	} while (new_order < NR_MEM_LISTS); \
} while (0)

#define EXPAND(map,index,low,high,area) \
do { unsigned long size = 1 << high; \
	while (high > low) { \
		area--; high--; size >>= 1; \
		add_mem_queue(area, map); \
		MARK_USED(index, high, area); \
		index += size; \
		map += size; \
	} \
	atomic_set(&map->count, 1); \
} while (0)

static void refile_local_pages(void)
{
	if (current->nr_local_pages) {
		struct page * page;
		struct list_head * entry;
		int nr_pages = current->nr_local_pages;

		while ((entry = current->local_pages.next) != &current->local_pages) {
			list_del(entry);
			page = (struct page *) entry;
			free_local_pages(page);
			if (!nr_pages--)
				panic("__get_free_pages local_pages list corrupted I");
		}
		if (nr_pages)
			panic("__get_free_pages local_pages list corrupted II");
		current->nr_local_pages = 0;
	}
}

unsigned long __get_free_pages(int gfp_mask, unsigned long order)
{
	unsigned long flags;

	if (order >= NR_MEM_LISTS)
		goto out;

#ifdef ATOMIC_MEMORY_DEBUGGING
	if ((gfp_mask & __GFP_WAIT) && in_interrupt()) {
		static int count = 0;
		if (++count < 5) {
			printk("gfp called nonatomically from interrupt %p\n",
				__builtin_return_address(0));
		}
		goto out;
	}
#endif

	/*
	 * Acquire lock before reading nr_free_pages to make sure it
	 * won't change from under us.
	 */
	spin_lock_irqsave(&page_alloc_lock, flags);

	/*
	 * If this is a recursive call, we'd better
	 * do our best to just allocate things without
	 * further thought.
	 */
	if (!(current->flags & PF_MEMALLOC)) {
		extern struct wait_queue * kswapd_wait;

		if (nr_free_pages > freepages.low)
			goto ok_to_allocate;

		if (waitqueue_active(&kswapd_wait))
			wake_up_interruptible(&kswapd_wait);

		/* Do we have to block or can we proceed? */
		if (nr_free_pages > freepages.min)
			goto ok_to_allocate;
		if (gfp_mask & __GFP_WAIT) {
			int freed;
			/*
			 * If the task is ok to sleep it's fine also
			 * if we release irq here.
			 */
			spin_unlock_irq(&page_alloc_lock);

			current->flags |= PF_MEMALLOC|PF_FREE_PAGES;
			current->allocation_order = order;
			freed = try_to_free_pages(gfp_mask);
			current->flags &= ~(PF_MEMALLOC|PF_FREE_PAGES);

			spin_lock_irq(&page_alloc_lock);
			refile_local_pages();

			/*
			 * Re-check we're still low on memory after we blocked
			 * for some time. Somebody may have released lots of
			 * memory from under us while we was trying to free
			 * the pages. We check against pages_high to be sure
			 * to succeed only if lots of memory is been released.
			 */
			if (nr_free_pages > freepages.high)
				goto ok_to_allocate;

			if (!freed && !(gfp_mask & (__GFP_MED | __GFP_HIGH)))
				goto nopage;
		}
	}
ok_to_allocate:
	/* if it's not a dma request, try non-dma first */
	if (!(gfp_mask & __GFP_DMA))
		RMQUEUE_TYPE(order, 0);
	RMQUEUE_TYPE(order, 1);
 nopage:
	spin_unlock_irqrestore(&page_alloc_lock, flags);
 out:
	return 0;
}

/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
 */
void show_free_areas(void)
{
 	unsigned long order, flags;
	unsigned type;

	spin_lock_irqsave(&page_alloc_lock, flags);
	printk("Free pages:      %6dkB\n ( ",nr_free_pages<<(PAGE_SHIFT-10));
	printk("Free: %d (%d %d %d)\n",
		nr_free_pages,
		freepages.min,
		freepages.low,
		freepages.high);
	for (type = 0; type < NR_MEM_TYPES; type++) {
 		unsigned long total = 0;
		printk("%sDMA: ", type ? "" : "Non");
 		for (order=0 ; order < NR_MEM_LISTS; order++) {
			unsigned long nr = free_area[type][order].count;

			total += nr * ((PAGE_SIZE>>10) << order);
			printk("%lu*%lukB ", nr, (unsigned long)((PAGE_SIZE>>10) << order));
		}
		printk("= %lukB)\n", total);
	}
	spin_unlock_irqrestore(&page_alloc_lock, flags);
#ifdef SWAP_CACHE_INFO
	show_swap_cache_info();
#endif	
}

#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))

/*
 * set up the free-area data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 */
unsigned long __init free_area_init(unsigned long start_mem, unsigned long end_mem)
{
	mem_map_t * p;
	unsigned long i, j;

	/*
	 * Select nr of pages we try to keep free for important stuff
	 * with a minimum of 10 pages and a maximum of 256 pages, so
	 * that we don't waste too much memory on large systems.
	 * This is fairly arbitrary, but based on some behaviour
	 * analysis.
	 */
	i = (end_mem - PAGE_OFFSET) >> (PAGE_SHIFT+7);
	if (i < 10)
		i = 10;
	if (i > 256)
		i = 256;
	freepages.min = i;
	freepages.low = i * 2;
	freepages.high = i * 3;
	mem_map = (mem_map_t *) LONG_ALIGN(start_mem);
	p = mem_map + MAP_NR(end_mem);
	start_mem = LONG_ALIGN((unsigned long) p);
	memset(mem_map, 0, start_mem - (unsigned long) mem_map);
	do {
		--p;
		atomic_set(&p->count, 0);
		p->flags = (1 << PG_DMA) | (1 << PG_reserved);
	} while (p > mem_map);

	for (j = 0; j < NR_MEM_TYPES; j++) {
		unsigned long mask = PAGE_MASK;
		for (i = 0 ; i < NR_MEM_LISTS ; i++) {
			unsigned long bitmap_size;
			init_mem_queue(free_area[j]+i);
			mask += mask;
			end_mem = (end_mem + ~mask) & mask;
			bitmap_size = (end_mem - PAGE_OFFSET) >> (PAGE_SHIFT + i);
			bitmap_size = (bitmap_size + 7) >> 3;
			bitmap_size = LONG_ALIGN(bitmap_size);
			free_area[j][i].map = (unsigned int *) start_mem;
			memset((void *) start_mem, 0, bitmap_size);
			start_mem += bitmap_size;
		}
	}
	return start_mem;
}

/* 
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...  
 */
void swapin_readahead(unsigned long entry)
{
	int i;
	struct page *new_page;
	unsigned long offset = SWP_OFFSET(entry);
	struct swap_info_struct *swapdev = SWP_TYPE(entry) + swap_info;
	
	offset = (offset >> page_cluster) << page_cluster;

	i = 1 << page_cluster;
	do {
		/* Don't read-ahead past the end of the swap area */
		if (offset >= swapdev->max)
			break;
		/* Don't block on I/O for read-ahead */
		if (atomic_read(&nr_async_pages) >= pager_daemon.swap_cluster)
			break;
		/* Don't read in bad or busy pages */
		if (!swapdev->swap_map[offset])
			break;
		if (swapdev->swap_map[offset] == SWAP_MAP_BAD)
			break;
		if (test_bit(offset, swapdev->swap_lockmap))
			break;

		/* Ok, do the async read-ahead now */
		new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry), offset), 0);
		if (new_page != NULL)
			__free_page(new_page);
		offset++;
	} while (--i);
	return;
}

/*
 * The tests may look silly, but it essentially makes sure that
 * no other process did a swap-in on us just as we were waiting.
 *
 * Also, don't bother to add to the swap cache if this page-in
 * was due to a write access.
 */
int swap_in(struct task_struct * tsk, struct vm_area_struct * vma,
	pte_t * page_table, unsigned long entry, int write_access)
{
	unsigned long page;
	struct page *page_map = lookup_swap_cache(entry);

	if (!page_map) {
		swapin_readahead(entry);
		page_map = read_swap_cache(entry);
	}
	if (pte_val(*page_table) != entry) {
		if (page_map)
			free_page_and_swap_cache(page_address(page_map));
		return 1;
	}
	if (!page_map)
		return -1;

	page = page_address(page_map);
	vma->vm_mm->rss++;
	tsk->min_flt++;
	swap_free(entry);

	if (!write_access || is_page_shared(page_map)) {
		set_pte(page_table, mk_pte(page, vma->vm_page_prot));
		return 1;
	}

	/*
	 * The page is unshared and we're going to dirty it - so tear
	 * down the swap cache and give exclusive access to the page to
	 * this process.
	 */
	delete_from_swap_cache(page_map);
	set_pte(page_table, pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))));
  	return 1;
}