Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*
 *  linux/arch/i386/mm/init.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 */

#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#ifdef CONFIG_BLK_DEV_INITRD
#include <linux/blk.h>
#endif

#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/dma.h>
#include <asm/fixmap.h>

extern void show_net_buffers(void);
extern unsigned long init_smp_mappings(unsigned long);

void __bad_pte_kernel(pmd_t *pmd)
{
	printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
	pmd_val(*pmd) = _KERNPG_TABLE + __pa(BAD_PAGETABLE);
}

void __bad_pte(pmd_t *pmd)
{
	printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
	pmd_val(*pmd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
}

pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long offset)
{
	pte_t *pte;

	pte = (pte_t *) __get_free_page(GFP_KERNEL);
	if (pmd_none(*pmd)) {
		if (pte) {
			clear_page((unsigned long)pte);
			pmd_val(*pmd) = _KERNPG_TABLE + __pa(pte);
			return pte + offset;
		}
		pmd_val(*pmd) = _KERNPG_TABLE + __pa(BAD_PAGETABLE);
		return NULL;
	}
	free_page((unsigned long)pte);
	if (pmd_bad(*pmd)) {
		__bad_pte_kernel(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + offset;
}

pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset)
{
	unsigned long pte;

	pte = (unsigned long) __get_free_page(GFP_KERNEL);
	if (pmd_none(*pmd)) {
		if (pte) {
			clear_page(pte);
			pmd_val(*pmd) = _PAGE_TABLE + __pa(pte);
			return (pte_t *)(pte + offset);
		}
		pmd_val(*pmd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
		return NULL;
	}
	free_page(pte);
	if (pmd_bad(*pmd)) {
		__bad_pte(pmd);
		return NULL;
	}
	return (pte_t *) (pmd_page(*pmd) + offset);
}

int do_check_pgt_cache(int low, int high)
{
	int freed = 0;
	if(pgtable_cache_size > high) {
		do {
			if(pgd_quicklist)
				free_pgd_slow(get_pgd_fast()), freed++;
			if(pmd_quicklist)
				free_pmd_slow(get_pmd_fast()), freed++;
			if(pte_quicklist)
				free_pte_slow(get_pte_fast()), freed++;
		} while(pgtable_cache_size > low);
	}
	return freed;
}

/*
 * BAD_PAGE is the page that is used for page faults when linux
 * is out-of-memory. Older versions of linux just did a
 * do_exit(), but using this instead means there is less risk
 * for a process dying in kernel mode, possibly leaving an inode
 * unused etc..
 *
 * BAD_PAGETABLE is the accompanying page-table: it is initialized
 * to point to BAD_PAGE entries.
 *
 * ZERO_PAGE is a special page that is used for zero-initialized
 * data and COW.
 */
pte_t * __bad_pagetable(void)
{
	extern char empty_bad_page_table[PAGE_SIZE];
	int d0, d1;

	__asm__ __volatile__("cld ; rep ; stosl"
			     : "=&D" (d0), "=&c" (d1)
			     : "a" (pte_val(BAD_PAGE)),
			     "0" ((long) empty_bad_page_table),
			     "1" (PAGE_SIZE/4)
			     : "memory");
	return (pte_t *) empty_bad_page_table;
}

pte_t __bad_page(void)
{
	extern char empty_bad_page[PAGE_SIZE];
	int d0, d1;

	__asm__ __volatile__("cld ; rep ; stosl"
			     : "=&D" (d0), "=&c" (d1)
			     : "a" (0),
			     "0" ((long) empty_bad_page),
			     "1" (PAGE_SIZE/4)
			     : "memory");
	return pte_mkdirty(mk_pte((unsigned long) empty_bad_page, PAGE_SHARED));
}

void show_mem(void)
{
	int i,free = 0,total = 0,reserved = 0;
	int shared = 0, cached = 0;

	printk("Mem-info:\n");
	show_free_areas();
	printk("Free swap:       %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
	i = max_mapnr;
	while (i-- > 0) {
		total++;
		if (PageReserved(mem_map+i))
			reserved++;
		else if (PageSwapCache(mem_map+i))
			cached++;
		else if (!atomic_read(&mem_map[i].count))
			free++;
		else
			shared += atomic_read(&mem_map[i].count) - 1;
	}
	printk("%d pages of RAM\n",total);
	printk("%d reserved pages\n",reserved);
	printk("%d pages shared\n",shared);
	printk("%d pages swap cached\n",cached);
	printk("%ld pages in file cache\n",page_cache_size-cached);
	printk("%ld pages in page cache\n",page_cache_size);
	printk("%ld pages in page table cache\n",pgtable_cache_size);
	show_buffers();
#ifdef CONFIG_NET
	show_net_buffers();
#endif
}

extern unsigned long free_area_init(unsigned long, unsigned long);

/* References to section boundaries */

extern char _text, _etext, _edata, __bss_start, _end;
extern char __init_begin, __init_end;

#define X86_CR4_VME		0x0001		/* enable vm86 extensions */
#define X86_CR4_PVI		0x0002		/* virtual interrupts flag enable */
#define X86_CR4_TSD		0x0004		/* disable time stamp at ipl 3 */
#define X86_CR4_DE		0x0008		/* enable debugging extensions */
#define X86_CR4_PSE		0x0010		/* enable page size extensions */
#define X86_CR4_PAE		0x0020		/* enable physical address extensions */
#define X86_CR4_MCE		0x0040		/* Machine check enable */
#define X86_CR4_PGE		0x0080		/* enable global pages */
#define X86_CR4_PCE		0x0100		/* enable performance counters at ipl 3 */

/*
 * Save the cr4 feature set we're using (ie
 * Pentium 4MB enable and PPro Global page
 * enable), so that any CPU's that boot up
 * after us can get the correct flags.
 */
unsigned long mmu_cr4_features __initdata = 0;

static inline void set_in_cr4(unsigned long mask)
{
	mmu_cr4_features |= mask;
	__asm__("movl %%cr4,%%eax\n\t"
		"orl %0,%%eax\n\t"
		"movl %%eax,%%cr4\n"
		: : "irg" (mask)
		:"ax");
}

/*
 * allocate page table(s) for compile-time fixed mappings
 */
static unsigned long __init fixmap_init(unsigned long start_mem)
{
	pgd_t * pg_dir;
	unsigned int idx;
	unsigned long address;

	start_mem = PAGE_ALIGN(start_mem);

	for (idx=1; idx <= __end_of_fixed_addresses; idx += PTRS_PER_PTE)
	{
		address = __fix_to_virt(__end_of_fixed_addresses-idx);
		pg_dir = swapper_pg_dir + (address >> PGDIR_SHIFT);
		memset((void *)start_mem, 0, PAGE_SIZE);
		pgd_val(*pg_dir) = _PAGE_TABLE | __pa(start_mem);
		start_mem += PAGE_SIZE;
	}

	return start_mem;
}

static void set_pte_phys (unsigned long vaddr, unsigned long phys)
{
	pgprot_t prot;
	pte_t * pte;

	pte = pte_offset(pmd_offset(pgd_offset_k(vaddr), vaddr), vaddr);
	prot = PAGE_KERNEL;
	if (boot_cpu_data.x86_capability & X86_FEATURE_PGE)
		pgprot_val(prot) |= _PAGE_GLOBAL;
	set_pte(pte, mk_pte_phys(phys, prot));

	local_flush_tlb();
}

void set_fixmap (enum fixed_addresses idx, unsigned long phys)
{
	unsigned long address = __fix_to_virt(idx);

	if (idx >= __end_of_fixed_addresses) {
		printk("Invalid set_fixmap\n");
		return;
	}
	set_pte_phys (address,phys);
}

/*
 * paging_init() sets up the page tables - note that the first 4MB are
 * already mapped by head.S.
 *
 * This routines also unmaps the page at virtual kernel address 0, so
 * that we can trap those pesky NULL-reference errors in the kernel.
 */
__initfunc(unsigned long paging_init(unsigned long start_mem, unsigned long end_mem))
{
	pgd_t * pg_dir;
	pte_t * pg_table;
	unsigned long tmp;
	unsigned long address;

/*
 * Physical page 0 is special; it's not touched by Linux since BIOS
 * and SMM (for laptops with [34]86/SL chips) may need it.  It is read
 * and write protected to detect null pointer references in the
 * kernel.
 * It may also hold the MP configuration table when we are booting SMP.
 */
	start_mem = PAGE_ALIGN(start_mem);
	address = PAGE_OFFSET;
	pg_dir = swapper_pg_dir;
	/* unmap the original low memory mappings */
	pgd_val(pg_dir[0]) = 0;

	/* Map whole memory from PAGE_OFFSET */
	pg_dir += USER_PGD_PTRS;
	while (address < end_mem) {
		/*
		 * If we're running on a Pentium CPU, we can use the 4MB
		 * page tables. 
		 *
		 * The page tables we create span up to the next 4MB
		 * virtual memory boundary, but that's OK as we won't
		 * use that memory anyway.
		 */
		if (boot_cpu_data.x86_capability & X86_FEATURE_PSE) {
			unsigned long __pe;

			set_in_cr4(X86_CR4_PSE);
			boot_cpu_data.wp_works_ok = 1;
			__pe = _KERNPG_TABLE + _PAGE_4M + __pa(address);
			/* Make it "global" too if supported */
			if (boot_cpu_data.x86_capability & X86_FEATURE_PGE) {
				set_in_cr4(X86_CR4_PGE);
				__pe += _PAGE_GLOBAL;
			}
			pgd_val(*pg_dir) = __pe;
			pg_dir++;
			address += 4*1024*1024;
			continue;
		}

		/*
		 * We're on a [34]86, use normal page tables.
		 * pg_table is physical at this point
		 */
		pg_table = (pte_t *) (PAGE_MASK & pgd_val(*pg_dir));
		if (!pg_table) {
			pg_table = (pte_t *) __pa(start_mem);
			start_mem += PAGE_SIZE;
		}

		pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pg_table;
		pg_dir++;

		/* now change pg_table to kernel virtual addresses */
		pg_table = (pte_t *) __va(pg_table);
		for (tmp = 0 ; tmp < PTRS_PER_PTE ; tmp++,pg_table++) {
			pte_t pte = mk_pte(address, PAGE_KERNEL);
			if (address >= end_mem)
				pte_val(pte) = 0;
			set_pte(pg_table, pte);
			address += PAGE_SIZE;
		}
	}
	start_mem = fixmap_init(start_mem);
#ifdef __SMP__
	start_mem = init_smp_mappings(start_mem);
#endif
	local_flush_tlb();

	return free_area_init(start_mem, end_mem);
}

/*
 * Test if the WP bit works in supervisor mode. It isn't supported on 386's
 * and also on some strange 486's (NexGen etc.). All 586+'s are OK. The jumps
 * before and after the test are here to work-around some nasty CPU bugs.
 */

__initfunc(void test_wp_bit(void))
{
	unsigned char tmp_reg;
	unsigned long old = pg0[0];

	printk("Checking if this processor honours the WP bit even in supervisor mode... ");
	pg0[0] = pte_val(mk_pte(PAGE_OFFSET, PAGE_READONLY));
	local_flush_tlb();
	current->mm->mmap->vm_start += PAGE_SIZE;
	__asm__ __volatile__(
		"jmp 1f; 1:\n"
		"movb %0,%1\n"
		"movb %1,%0\n"
		"jmp 1f; 1:\n"
		:"=m" (*(char *) __va(0)),
		 "=q" (tmp_reg)
		:/* no inputs */
		:"memory");
	pg0[0] = old;
	local_flush_tlb();
	current->mm->mmap->vm_start -= PAGE_SIZE;
	if (boot_cpu_data.wp_works_ok < 0) {
		boot_cpu_data.wp_works_ok = 0;
		printk("No.\n");
#ifdef CONFIG_X86_WP_WORKS_OK
		panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
#endif
	} else
		printk(".\n");
}

__initfunc(void mem_init(unsigned long start_mem, unsigned long end_mem))
{
	unsigned long start_low_mem = PAGE_SIZE;
	int codepages = 0;
	int reservedpages = 0;
	int datapages = 0;
	int initpages = 0;
	unsigned long tmp;

	end_mem &= PAGE_MASK;
	high_memory = (void *) end_mem;
	max_mapnr = num_physpages = MAP_NR(end_mem);

	/* clear the zero-page */
	memset(empty_zero_page, 0, PAGE_SIZE);

	/* mark usable pages in the mem_map[] */
	start_low_mem = PAGE_ALIGN(start_low_mem)+PAGE_OFFSET;

#ifdef __SMP__
	/*
	 * But first pinch a few for the stack/trampoline stuff
	 *	FIXME: Don't need the extra page at 4K, but need to fix
	 *	trampoline before removing it. (see the GDT stuff)
	 *
	 */
	start_low_mem += PAGE_SIZE;				/* 32bit startup code */
	start_low_mem = smp_alloc_memory(start_low_mem); 	/* AP processor stacks */
#endif
	start_mem = PAGE_ALIGN(start_mem);

	/*
	 * IBM messed up *AGAIN* in their thinkpad: 0xA0000 -> 0x9F000.
	 * They seem to have done something stupid with the floppy
	 * controller as well..
	 */
	while (start_low_mem < 0x9f000+PAGE_OFFSET) {
		clear_bit(PG_reserved, &mem_map[MAP_NR(start_low_mem)].flags);
		start_low_mem += PAGE_SIZE;
	}

	while (start_mem < end_mem) {
		clear_bit(PG_reserved, &mem_map[MAP_NR(start_mem)].flags);
		start_mem += PAGE_SIZE;
	}
	for (tmp = PAGE_OFFSET ; tmp < end_mem ; tmp += PAGE_SIZE) {
		if (tmp >= MAX_DMA_ADDRESS)
			clear_bit(PG_DMA, &mem_map[MAP_NR(tmp)].flags);
		if (PageReserved(mem_map+MAP_NR(tmp))) {
			if (tmp >= (unsigned long) &_text && tmp < (unsigned long) &_edata) {
				if (tmp < (unsigned long) &_etext)
					codepages++;
				else
					datapages++;
			} else if (tmp >= (unsigned long) &__init_begin
				   && tmp < (unsigned long) &__init_end)
				initpages++;
			else if (tmp >= (unsigned long) &__bss_start
				 && tmp < (unsigned long) start_mem)
				datapages++;
			else
				reservedpages++;
			continue;
		}
		atomic_set(&mem_map[MAP_NR(tmp)].count, 1);
#ifdef CONFIG_BLK_DEV_INITRD
		if (!initrd_start || (tmp < initrd_start || tmp >=
		    initrd_end))
#endif
			free_page(tmp);
	}
	printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
		(unsigned long) nr_free_pages << (PAGE_SHIFT-10),
		max_mapnr << (PAGE_SHIFT-10),
		codepages << (PAGE_SHIFT-10),
		reservedpages << (PAGE_SHIFT-10),
		datapages << (PAGE_SHIFT-10),
		initpages << (PAGE_SHIFT-10));

	if (boot_cpu_data.wp_works_ok < 0)
		test_wp_bit();
}

void free_initmem(void)
{
	unsigned long addr;
	
	addr = (unsigned long)(&__init_begin);
	for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
		mem_map[MAP_NR(addr)].flags &= ~(1 << PG_reserved);
		atomic_set(&mem_map[MAP_NR(addr)].count, 1);
		free_page(addr);
	}
	printk ("Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10);
}

void si_meminfo(struct sysinfo *val)
{
	int i;

	i = max_mapnr;
	val->totalram = 0;
	val->sharedram = 0;
	val->freeram = nr_free_pages << PAGE_SHIFT;
	val->bufferram = buffermem;
	while (i-- > 0)  {
		if (PageReserved(mem_map+i))
			continue;
		val->totalram++;
		if (!atomic_read(&mem_map[i].count))
			continue;
		val->sharedram += atomic_read(&mem_map[i].count) - 1;
	}
	val->totalram <<= PAGE_SHIFT;
	val->sharedram <<= PAGE_SHIFT;
	return;
}