Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#ifndef _I386_PGTABLE_H
#define _I386_PGTABLE_H

#include <linux/config.h>

/*
 * The Linux memory management assumes a three-level page table setup. On
 * the i386, we use that, but "fold" the mid level into the top-level page
 * table, so that we physically have the same two-level page table as the
 * i386 mmu expects.
 *
 * This file contains the functions and defines necessary to modify and use
 * the i386 page table tree.
 */

/* Caches aren't brain-dead on the intel. */
#define flush_cache_all()			do { } while (0)
#define flush_cache_mm(mm)			do { } while (0)
#define flush_cache_range(mm, start, end)	do { } while (0)
#define flush_cache_page(vma, vmaddr)		do { } while (0)
#define flush_page_to_ram(page)			do { } while (0)

/*
 * TLB flushing:
 *
 *  - flush_tlb() flushes the current mm struct TLBs
 *  - flush_tlb_all() flushes all processes TLBs
 *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
 *  - flush_tlb_page(vma, vmaddr) flushes one page
 *  - flush_tlb_range(mm, start, end) flushes a range of pages
 *
 * ..but the i386 has somewhat limited tlb flushing capabilities,
 * and page-granular flushes are available only on i486 and up.
 */

#define __flush_tlb() \
do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)

#ifdef CONFIG_M386
#define __flush_tlb_one(addr) flush_tlb()
#else
#define __flush_tlb_one(addr) \
__asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
#endif
 
#ifndef __SMP__

#define flush_tlb() __flush_tlb()
#define flush_tlb_all() __flush_tlb()
#define local_flush_tlb() __flush_tlb()

static inline void flush_tlb_mm(struct mm_struct *mm)
{
	if (mm == current->mm)
		__flush_tlb();
}

static inline void flush_tlb_page(struct vm_area_struct *vma,
	unsigned long addr)
{
	if (vma->vm_mm == current->mm)
		__flush_tlb_one(addr);
}

static inline void flush_tlb_range(struct mm_struct *mm,
	unsigned long start, unsigned long end)
{
	if (mm == current->mm)
		__flush_tlb();
}

#else

/*
 * We aren't very clever about this yet -  SMP could certainly
 * avoid some global flushes..
 */

#include <asm/smp.h>

#define local_flush_tlb() \
	__flush_tlb()


#define CLEVER_SMP_INVALIDATE
#ifdef CLEVER_SMP_INVALIDATE

/*
 *	Smarter SMP flushing macros. 
 *		c/o Linus Torvalds.
 *
 *	These mean you can really definitely utterly forget about
 *	writing to user space from interrupts. (Its not allowed anyway).
 */
 
static inline void flush_tlb_current_task(void)
{
	if (current->mm->count == 1)	/* just one copy of this mm */
		local_flush_tlb();	/* and that's us, so.. */
	else
		smp_flush_tlb();
}

#define flush_tlb() flush_tlb_current_task()

#define flush_tlb_all() smp_flush_tlb()

static inline void flush_tlb_mm(struct mm_struct * mm)
{
	if (mm == current->mm && mm->count == 1)
		local_flush_tlb();
	else
		smp_flush_tlb();
}

static inline void flush_tlb_page(struct vm_area_struct * vma,
	unsigned long va)
{
	if (vma->vm_mm == current->mm && current->mm->count == 1)
		__flush_tlb_one(va);
	else
		smp_flush_tlb();
}

static inline void flush_tlb_range(struct mm_struct * mm,
	unsigned long start, unsigned long end)
{
	flush_tlb_mm(mm);
}


#else

#define flush_tlb() \
	smp_flush_tlb()

#define flush_tlb_all() flush_tlb()

static inline void flush_tlb_mm(struct mm_struct *mm)
{
	flush_tlb();
}

static inline void flush_tlb_page(struct vm_area_struct *vma,
	unsigned long addr)
{
	flush_tlb();
}

static inline void flush_tlb_range(struct mm_struct *mm,
	unsigned long start, unsigned long end)
{
	flush_tlb();
}
#endif
#endif


/* Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))

/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT	22
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))

/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT	22
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/*
 * entries per page directory level: the i386 is two-level, so
 * we don't really have any PMD directory physically.
 */
#define PTRS_PER_PTE	1024
#define PTRS_PER_PMD	1
#define PTRS_PER_PGD	1024

/* Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 */
#define VMALLOC_OFFSET	(8*1024*1024)
#define VMALLOC_START	(((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))

/*
 * The 4MB page is guessing..  Detailed in the infamous "Chapter H"
 * of the Pentium details, but assuming intel did the straightforward
 * thing, this bit set in the page directory entry just means that
 * the page directory entry points directly to a 4MB-aligned block of
 * memory. 
 */
#define _PAGE_PRESENT	0x001
#define _PAGE_RW	0x002
#define _PAGE_USER	0x004
#define _PAGE_PCD	0x010
#define _PAGE_ACCESSED	0x020
#define _PAGE_DIRTY	0x040
#define _PAGE_4M	0x080	/* 4 MB page, Pentium+.. */

#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)

#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)

/*
 * The i386 can't do page protection for execute, and considers that the same are read.
 * Also, write permissions imply read permissions. This is the closest we can get..
 */
#define __P000	PAGE_NONE
#define __P001	PAGE_READONLY
#define __P010	PAGE_COPY
#define __P011	PAGE_COPY
#define __P100	PAGE_READONLY
#define __P101	PAGE_READONLY
#define __P110	PAGE_COPY
#define __P111	PAGE_COPY

#define __S000	PAGE_NONE
#define __S001	PAGE_READONLY
#define __S010	PAGE_SHARED
#define __S011	PAGE_SHARED
#define __S100	PAGE_READONLY
#define __S101	PAGE_READONLY
#define __S110	PAGE_SHARED
#define __S111	PAGE_SHARED

/*
 * Define this if things work differently on an i386 and an i486:
 * it will (on an i486) warn about kernel memory accesses that are
 * done without a 'verify_area(VERIFY_WRITE,..)'
 */
#undef TEST_VERIFY_AREA

/* page table for 0-4MB for everybody */
extern unsigned long pg0[1024];
/* zero page used for uninitialized stuff */
extern unsigned long empty_zero_page[1024];

/*
 * BAD_PAGETABLE is used when we need a bogus page-table, while
 * BAD_PAGE is used for a bogus page.
 *
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);

#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE ((unsigned long) empty_zero_page)

/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR			(8*sizeof(unsigned long))

/* to align the pointer to a pointer address */
#define PTR_MASK			(~(sizeof(void*)-1))

/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware!  SRB. */
#define SIZEOF_PTR_LOG2			2

/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)

/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
	unsigned long __pgdir = __pa(pgdir); \
	(tsk)->tss.cr3 = __pgdir; \
	if ((tsk) == current) \
		__asm__ __volatile__("movl %0,%%cr3": :"r" (__pgdir)); \
} while (0)

#define pte_none(x)	(!pte_val(x))
#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
#define pte_clear(xp)	do { pte_val(*(xp)) = 0; } while (0)

#define pmd_none(x)	(!pmd_val(x))
#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)

/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
extern inline int pgd_none(pgd_t pgd)		{ return 0; }
extern inline int pgd_bad(pgd_t pgd)		{ return 0; }
extern inline int pgd_present(pgd_t pgd)	{ return 1; }
extern inline void pgd_clear(pgd_t * pgdp)	{ }

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
extern inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }

extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_RW; return pte; }
extern inline pte_t pte_rdprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_exprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_RW; return pte; }
extern inline pte_t pte_mkread(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkexec(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#define mk_pte(page, pgprot) \
({ pte_t __pte; pte_val(__pte) = __pa(page) + pgprot_val(pgprot); __pte; })

/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })

extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }

#define pte_page(pte) \
((unsigned long) __va(pte_val(pte) & PAGE_MASK))

#define pmd_page(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))

/* to find an entry in a page-table-directory */
#define pgd_offset(mm, address) \
((mm)->pgd + ((address) >> PGDIR_SHIFT))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
	return (pmd_t *) dir;
}

/* Find an entry in the third-level page table.. */ 
#define pte_offset(pmd, address) \
((pte_t *) (pmd_page(*pmd) + ((address>>10) & ((PTRS_PER_PTE-1)<<2))))

/*
 * Allocate and free page tables. The xxx_kernel() versions are
 * used to allocate a kernel page table - this turns on ASN bits
 * if any.
 */
extern inline void pte_free_kernel(pte_t * pte)
{
	free_page((unsigned long) pte);
}

extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	if (pmd_none(*pmd)) {
		pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
		if (pmd_none(*pmd)) {
			if (page) {
				pmd_val(*pmd) = _KERNPG_TABLE + __pa(page);
				return page + address;
			}
			pmd_val(*pmd) = _KERNPG_TABLE + __pa(BAD_PAGETABLE);
			return NULL;
		}
		free_page((unsigned long) page);
	}
	if (pmd_bad(*pmd)) {
		printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
		pmd_val(*pmd) = _KERNPG_TABLE + __pa(BAD_PAGETABLE);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + address;
}

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern inline void pmd_free_kernel(pmd_t * pmd)
{
	pmd_val(*pmd) = 0;
}

extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

extern inline void pte_free(pte_t * pte)
{
	free_page((unsigned long) pte);
}

extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
	address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);

repeat:
	if (pmd_none(*pmd))
		goto getnew;
	if (pmd_bad(*pmd))
		goto fix;
	return (pte_t *) (pmd_page(*pmd) + address);
	
getnew:
{
	unsigned long page = __get_free_page(GFP_KERNEL);
	if (!pmd_none(*pmd))
		goto freenew;
	if (!page)
		goto oom;
	memset((void *) page, 0, PAGE_SIZE);
	pmd_val(*pmd) = _PAGE_TABLE + __pa(page);
	return (pte_t *) (page + address);
freenew:
	free_page(page);
	goto repeat;
}

fix:
	printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
oom:
	pmd_val(*pmd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
	return NULL;
}

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern inline void pmd_free(pmd_t * pmd)
{
	pmd_val(*pmd) = 0;
}

extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

extern inline void pgd_free(pgd_t * pgd)
{
	free_page((unsigned long) pgd);
}

extern inline pgd_t * pgd_alloc(void)
{
	return (pgd_t *) get_free_page(GFP_KERNEL);
}

extern pgd_t swapper_pg_dir[1024];

/*
 * The i386 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
extern inline void update_mmu_cache(struct vm_area_struct * vma,
	unsigned long address, pte_t pte)
{
}

#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 8)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))

#endif /* _I386_PAGE_H */